The Formation of Binary Stars
TAU Symposium, Vol. 200, 2001
H. Zinnecker and R. D. Mathieu, eds.

Herbig Ae/Be Visual Binaries

Jéréme Bouvier & Patrice Corporon

Observatoire de Grenoble, Université J. Fourier, B.P. 53, 38041
Grenoble Cedezx 9, France

Abstract. We present the results of a high-angular resolution spectro-
imaging survey of a sample of isolated Herbig Ae-Be (HAeBe) stars aimed
at searching for close companions. The fraction of wide binaries is found
to be significantly higher in HAeBe stars than in solar-mass field dwarfs,
and suggests a companion star fraction possibly larger than 1. The spec-
tral energy distribution of the primaries and secondaries is derived inde-
pendently from multi-wavelength resolved photometry of the systems. It
is found that young low-mass companions usually do not exhibit infrared
excesses, which suggests that the lifetime of their circumstellar disk might
have been shortened by the influence of the massive primary.

1. Introduction

In the past decade, observational investigations of multiple systems among young
low-mass stars have significantly modified our perception of the star formation
process. In order to settle the most pressing issues, most studies so far have been
focusing onto solar-type and lower-mass stellar populations. As the physical
implications of the large number of multiple systems found in these populations
are being drawn, the study of more massive binaries will provide new constraints
on models of binary formation and evolution. How the binary frequency and the
distributions of orbital period and mass ratio varies as a function of the primary
mass will help to choose between current models.

In this contribution, we report the results of a high-angular resolution imag-
ing survey of a sample of young massive stars aimed at improving the binary
statistics among Herbig Ae-Be (HAeBe) stars and at investigating the spec-
trophotometric properties of the components of massive multiple systems. Impli-
cations for binary formation and the evolution of the circumstellar environment
in these systems are briefly discussed.

2. The Sample

The magnitude-limited (R<14) sample consists of 63 HAeBe candidates selected
from Thé, DeWinter & Pérez’s (1994) catalogue. Observations at visual and
near-IR wavelengths were obtained with CFHT’s adaptive optics system PUEQO
in the Northern hemisphere and with ESO’s adaptive optics system ADONIS in
the Southern hemisphere. Both systems deliver diffraction-limited images at K
with a FWHM of ~ 0.1".
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Figure 1.  Left: Distance distribution of the observed intermediate-
mass pre-main sequence stars (bar histogram). The dashed histogram
indicates the number of binary systems detected in each distance bin.
Right: Projected separation of binary components as a function of
distance. Each binary is represented by a filled dot and the size of the
surrounding circle is indicative of the flux ratio between the primary
and the secondary. The lines indicate the locus of constant angular
resolution in this diagram.

The sample is inhomogeneous in several ways, which complicates the deriva-
tion of unbiased binary statistics for HAeBe stars. While most of the stars listed
in Thé et al. (1994) are probably bona fide intermediate-mass, pre-main sequence
stars, the authors warn about a possible contamination of the catalogue by non-
HAeBe stars (e.g. Ble] main sequence objects). All stars in our sample were
selected from the best HAeBe candidates of this catalogue. Another difficulty
lies in the wide range of distances covered by the stars in the sample, from less
than 100 pc up to ~ 2 kpc. In addition, the distance of some candidates is un-
known. Since the survey is angular resolution limited, the range of semi-major
axes it probes varies with distance. Finally, HAeBe stars occur in a variety of en-
vironments, from being isolated to belonging to small clusters (Testi et al. 1998),
and the impact of the environment on massive binary formation and evolution
is unknown (see Patience & Duchéne, this volume). Thus, deriving reliable bi-
nary statistics for HAeBe stars is not as straightforward as for T Tauri stars,
not mentioning the large contrast between a low-mass companion and a massive
primary which involves significant completeness corrections to be applied to the
observed fraction of binaries.

3. Binary Statistics

Among the 63 HAeBe stars observed, 27 are found to have a companion at a
separation less than 3”. Figure la shows the distribution of distance for 50
stars of the sample (13 other stars have unknown distances). In each distance
bin, the dashed histogram illustrates the fraction of detected binaries. Since
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most sample stars are located at less than 1.2 kpc, we will exclude the 2 most
remote systems from the analysis below. Figure 1b illustrates the distribution
of detected binaries in a separation-distance diagram. The field-of-view of most
of our high angular resolution images is 6”. Therefore, we will restrict the
computation of binary frequency to systems in the separation range ~0.1-3.0".
By doing so, we consider as physical binaries only systems with a projected
semi-major axis less than 2000 AU.

Within these limits, the sample contains 44 HAeBe stars with known dis-
tances and a spectral type between BO and A9 of which 18 have a companion,
i.e., a raw binary fraction (BF) of 41+£10%!. Adding to this subsample 10 B0-A9
primaries and 3 systems with unknown distance yields a BF of 39+£9%. Within
Poisson uncertainties, the BF is found to be the same among B0-B7 primaries
(7-20Mg, BF=36%) and among B9-A9 ones (2-3Mg, BF=42%). These results
are consistent with those derived previously from a smaller sample (that partly
overlaps with ours) by Leinert, Richichi & Haas (1997).

The orbital periods have been estimated from the total mass of the system
and statistically correcting for the projection of the semi-major axis. Figure 2
shows the orbital period distribution of the detected binaries with known dis-
tance. The distribution of orbital periods for G-dwarf binaries (Duquennoy &
Mayor 1991, DM91) is also shown for comparison. Note that the DM91 dis-
tribution is complete in each log P bin down to a mass ratio of 0.1 while the
distribution for HAeBe stars has not been corrected for incompleteness. Since
we have most likely missed a number of companions at these separations (see be-
low), the HAeBe histogram is a lower limit to the true binary frequency in each
bin. Therefore, between log P =5.0-7.0 days, the binary excess among HAeBe
stars relative to G dwarfs appears to be at least a factor of two.

We attempted to compute the level of incompleteness on the statistics
above, i.e., to estimate the number of companions that we have missed due to
their proximity to the primary and/or their low luminosity. We have assumed
that the orbital period distribution of HAeBe binaries has the same Gaussian
shape as that of G dwarf binaries (DM 91, which is in fact nearly flat in the
restricted log P range investigated here), and that the mass-ratio distribution is
either the same as for G dwarfs (case A) or derives from random pairing of low-
mass companions to massive primaries according to an IMF prescription (case
B). For the latter case, we adopted a power-law IMF with a Salpeter exponent
of 2.3 for stars more massive than 1.0 Mg and of 1.0 for lower-mass stars. With
these assumptions, and taking into account the (separation-dependent) detec-
tion limit of adaptive optics images, we estimate that we detected about 60-80%
(case A or B) of the companions down to a mass ratio of 0.1. However, down
to a companion mass of 0.1 Mg (which corresponds to a mass ratio of 0.01 for a
10Mg B-type primary), only about 25% of the companions to B0-B7 primaries
are detected (case B).

Since the raw binary frequency is of order of 40% in the range log P =
5.0 — 7.0d, correcting for incompleteness would yield a true BF of about 50-60%
in this orbital period range. For comparison, the BF of G dwarfs over the same
orbital period range is only 20%. Thus, if the distribution of orbital period is at

!Not very different from the BF deduced for the whole sample, 27/63 = 43+8%

https://doi.org/10.1017/50074180900225175 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900225175

158 J. Bouvier & P. Corporon

0.5 T T T T T T s T T T T

0.4 | BO-B7 i B9-A9 | WL ]

03| E e 3/ —

z B3 A2

0.2} - B 2F

Binary Frequency (per log P bin)

A7 | A9 A2 B2 AO| A
0.1 E g 1

N A0 [AQAO|B3|BO|B3|BO A4 B9

) L 1 1 Il L i 0
5 5 7 o 0.2 0.4 0.6 0.8 1

6
log P [days] Mass ratio

6 7
tog P [days]

Figure 2.  Left: the distribution of orbital periods for binaries de-
tected in our survey (histogram). Vertical bars illustrate Poisson noise.
The distribution of orbital periods for G dwarf binaries (from DM91)
is shown for comparison (solid curve). Right: the distribution of mass
ratios for binaries with B-type and A-type primaries. The spectral type
of the primary is indicated. Mass ratios were derived from flux ratios
with an uncertainty of about 20%.

least approximately the same for HAeBe binaries and G dwarfs, extrapolating
this result over the whole range of semi-major axes would suggest that HAeBe
stars have on average more than one companion. A similarly high companion
star fraction is found among the massive stars of the Orion Trapezium cluster
(see Preibisch et al. 1999, and this volume) as well as in OB stars belonging to
the NGC 6611 cluster (Duchéne 2000).

While the most complete binary statistics on the main sequence holds for
G dwarfs, it would be more meaningful to compare the results obtained on
HAeBe binaries to the binary fraction among massive dwarfs. Unfortunately, the
binary statistics in massive main sequence stars is currently rather incomplete,
being derived from a variety of techniques that suffer strong biases. Thus, the
BF among massive dwarfs has been reported as being similar to that of low-
mass dwarfs by some authors (e.g. Abt 1983, McAlister et al. 1993) and as
much as 3 times larger by others (Abt, Gomez & Levy 1990, Mason et al.
1998). Considering these uncertainties, a comparison of the PMS and MS binary
frequency among massive stars is probably premature.

Figure 2 also shows the mass ratio distribution deduced for part of the
binary sample. For the systems with B-type primaries, mass-ratios were derived
from the flux ratio in the V-band using the MS mass-luminosity relationship.
For systems with A-type primaries, the mass ratio was obtained from the flux
ratio in the J-band (to avoid the complication of near-IR excesses in the K-band
and possible veiling at visual wavelengths in T Tauri-type companions) using
the mass-luminosity relationship provided by Siess et al. (2000) PMS models at
an age of 5 Myr. Mass ratio could be derived only for part of the binary sample
since several had no measurements in the V or J bands. The distribution is not
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significantly peaked, neither at low nor at high q values, and is in fact consistent
with being flat regardless of the mass of the primary.

4. Spectrophotometric Properties of the Binary Systems

Combining differential photometry between the primary and the secondary de-
rived from the adaptative optics images with absolute photometry for the whole
system listed in the literature, the spectral energy distribution (SED) of each
component of the HAeBe binaries has been derived from optical to near-IR wave-
lengths. Assuming the same visual extinction for both components, dwarf-like
photospheres can then be fitted to the optical part of the companion’s SED in
order to estimate its spectral type. Examples of these SED and spectral type
derivation are shown in Figures 3 and 4.

We can classify the HAeBe binaries in 3 broad groups. The first group
consists of binaries with 2 massive Herbig Be stars (e.g. MWC 166, GU CMa,
Hen 3-225), the second group of a Herbig Be primary associated with a low-
mass T Tauri-type companion with a spectral type G or K (e.g. V380 Ori,
MWC 147, MWC 361), and the third group consists of a Herbig Ae primary
with a T Tauri type companion (Figure 4). Although we did not find any very
low-mass companion, with a spectral type M, this is probably merely due to our
detection limits.

Binaries with a B-type primary are illustrated in Figure 3. It is seen that
none of the companions, Be and TT stars alike, exhibit a significant near-IR
excess compared to a dwarf photosphere, except perhaps V380 Ori B at K. In
addition, when the companion is a massive B star, the B-type primary also lacks
a significant near-IR excess. In contrast, massive primaries with TT companions
systematically exhibit excess flux in the near-IR. A similar trend is observed for
binaries with A-type primaries (Figure 4): while the A-type primaries usually
exhibit strong near-IR excesses, the TT companions seem to systematically lack
the signature of circumstellar dust.

The spectrophotometric properties of HAeBe binaries thus suggest that the
circumstellar environment of the low-mass companions may be strongly affected
by the presence of a massive primary. A number of physical mechanisms might
affect the formation and evolution of circumstellar material around a young
low-mass star located in the vicinity of, and gravitationally bound to, a more
massive and luminous star. This includes, at least, competitive accretion, tidal
truncation, and photoevaporation of the disk.

Competitive accretion: assuming that HAeBe binaries result from the frag-
mentation of a molecular cloud core, thus leading to the formation of two proto-
stellar cores with unequal mass, the accretion of residual gas onto the protostellar
cores may be preferentially directed towards the most massive one whose po-
tential well is deeper. This would result in a massive circumprimary disk and
a relatively low-mass, and therefore shorter-lived circumsecondary one. This
process will probably be more important for relatively wide binaries formed in
small-N clusters (Bonnell et al. 1997). Although it could qualitatively account
for the systematic lack of near-IR excesses in the low-mass companions of Her-
big Ae-Be stars, this process would however not necessarily explain the lack of
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Figure 3.  The spectral energy distribution of pre-main sequence bi-

naries with a B-type primary. The SED of the primary is shown as
filled dots and of the secondary as filled triangles. Filled squares rep-
resent the total flux measured for the whole system. A reddenned
photosphere (dashed line) has been fitted to each of the components
at visual wavelengths. The spectral type of the primary is either taken
from the literature or derived from the SED fit. The secondary’s spec-
tral type is derived from the SED fit and indicated. The same Ay is
assumed for the primary and the secondary and was taken from the
literature.
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Figure 4. Same as Figure 3 but for binaries with A-type primaries.
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near-IR excesses in massive binaries with a mass ratio close to unity (e.g. the
Be-Be systems).

Tidal truncation and circumbinary accretion: for the tightest systems, with
a separation of order of the radius of the residual infalling envelope, circumstellar
(CS) disks are tidally truncated and a circumbinary (CB) disk/envelope may
result. The relative lifetime of the CS disks then depends upon their size and on
their differential replenishment as they accrete CB material. The latter process
heavily depends upon the properties of the system and its environment (initial
mass ratio, eccentricity, specific angular momentum of the CB material, cf. Bate
2000). Qualitatively, however, tidal truncation in unequal mass systems should
result in a smaller disk around the secondary which may thus evolve on a shorter
timescale (¢, oc R?/v). Even in nearly equal-mass binaries (e.g. the Be-Be
systems) truncation effects would reduce the disks radius and thus their lifetime,
possibly accounting for the lack of NIR excesses in both components. In this
respect, MWC 1080, an unusual B2-B2 binary in which both components do
exhibit strong infrared excesses, might be a very young system which has not
yet depleted its circumstellar disks. The detection of an associated molecular
outflow supports an extremely young age for this system (Yoshida et al. 1991).

Photoevaporation: compared to T Tauri stars, Herbig Be-Ae stars emit a
much larger fraction of their luminosity in the far-UV (FUV) range. FUV pho-
tons impacting onto a circumstellar disk heat its surface to a temperature of
about 10K which leads to the development of a massive disk wind. According
to models (e.g. Johnstone et al. 1998), FUV irradiated disks thus photoevap-
orate on a relatively short timescale (~ 10 yrs) as soon as the incident FUV
photon flux is of order of 10* G, or larger, where G, is the average UV photon
flux in the local insterstellar medium. Such a radiation field is produced for in-
stance by the hot (O-type) Orion Trapezium stars up to a distance of about 1pc,
which is the typical size of the region over which proplyds are observed (Storzer
& Hollenbach 1999 and references therein). For slightly colder stars, such as
Herbig Be-Ae stars, the UV photon flux is greatly reduced. Nevertheless, the
distance up to which these stars produce the minimum FUV flux required to
photoevaporate disks is still of order of 10* AU from a B3 star and about 500
AU from an AO star. Hence, in at least some of the systems detected during
our survey, especially those with massive primaries, the (projected) separation
and the primary’s luminosity are such that photoevaporation of the circum-
secondary disk might have already occurred as a result of it being irradiated
by the primary’s FUV photon flux. This could account for the lack of near-IR
excesses in at least some of the companions of these systems. In most cases, how-
ever, the primaries still exhibit near-IR excesses indicating that they have not
photoevaporated their own disks. Although this result casts some doubt on this
interpretation, there might be a couple of reason why circumprimary disks might
survive photoevaporation longer than circumsecondary ones. Firstly, only the
outer parts of the disks are photoevaporated by this process, beyond the “gravi-
tational” radius defined as ry ~ (0.2—0.5) - GM, /a?, where a is the sound speed
in the gas (typically a few km/s). This radius is of order of 30 AU for a 1M
secondary and about 300 AU for a 10Mg primary. Secondly, dust opacity in the
disk atmosphere and in the disk wind may significantly lower the incident UV
flux that reaches the outer part of the circumprimary disk (Hollenbach et al.
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1994) while, unless the circumprimary and circumsecondary disks are coplanar,
FUV photons may more easily escape in the direction of the companion.

The spectrophotometric properties of resolved components of HAeBe bi-
naries thus hold clues to the formation and evolution of these systems. Several
processes may be at work, either simultaneously or not, depending on the binary
properties, and the analysis is further complicated by the fact that some of the
primaries and secondaries may themselves be multiple systems, such as spectro-
scopic binaries (cf. Corporon & Lagrange 1999). Interestingly enough, the SEDs
of HAeBe binaries reveal a trend which is opposite to that observed for T Tauri
binaries. Several studies have shown that the components of T Tauri binaries
have “correlated” near-IR SEDs, with either both or none of the components
exhibiting an infrared excess. Mixed pairs, with one component exhibiting a
near-IR excess and the other not, are very rare among TT binaries (e.g. Prato
& Simon 1997, Ghez et al. 1997, Duchéne et al. 1999). In contrast, Herbig AeBe
binaries predominantly consist of such mixed pairs. Since HAeBe and TT bina-
ries seem to have otherwise similar properties (projected separations, mass ratio
distribution), it is tempting to ascribe this difference to the impact of the lumi-
nous primary onto the secondary’s environment (e.g. photoevaporation) rather
than to dynamical effects in binary systems (e.g. disk truncation, differential
circumbinary accretion, etc...).

5. Conclusions

Multiple systems appear to be extremely common among intermediate-mass pre-
main sequence stars. Moreover, the binary fraction appears to be equally high
among isolated HAeBe and among massive stars in dense clusters. In contrast,
at lower masses, fewer T Tauri binaries are found in dense clusters than in
associations (see Patience & Duchéne, this volume). This difference may have
some implications for the binary formation process. According to current (and
still somewhat speculative) ideas, the fragmentation of molecular cloud cores
may initially lead to a protobinary fraction close to 100%. In dense clusters,
a number of the protobinaries are disrupted by gravitational encounters (e.g.
Kroupa, Petr, & McCaughrean 1999), which results in a lower binary fraction in
dense environments (such as Orion) than in loose associations (such as Taurus)
at an age of about 1 Myr. That massive binaries do not seem to show the same
density-related binary frequency may simply reflect the increased hardness of
these massive systems compared to T'T systems, which make them more difficult
to disrupt. If correct, one would expect a different distribution of orbital periods
between HAeBe and TT binaries, with a larger fraction of wide systems in the
former than in the latter, a prediction that is not inconsistent with the data at
hand.

Alternatively, models of dynamical capture in small-N protoclusters predict
an increase of the binary frequency with the mass of the primary. Current
results tend to agree with this prediction since in most star forming regions
the binary fraction among low-mass stars is statistically consistent with that of
G dwarfs, i.e., of order of 60% (with, however, the noticeable exception of the
Taurus cloud), while it appears to be a factor of at least 2 higher among Herbig
stars. Models of dissipative interactions in small-N protoclusters also predict a
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companion mass distribution that is invariant with primary mass (McDonald &
Clarke 1995). Unfortunately, due to the limited detectability levels and reduced
size of the samples, current studies do not quite allow a statistically reliable
determination of the distribution of mass ratios in intermediate-mass binary
systems.

Finally, the photospheric-like spectral energy distribution of the low-mass
companions of Herbig stars suggests that the luminous primary might signif-
icantly affect the evolution of the circumsecondary and possibly circumbinary
environment. Additional modelling and observations, especially resolved spec-
troscopy of the systems, will be needed to fully understand the formation and
fate of the circumstellar environment in young massive multiple systems.
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