
Part 3 
Concepts, Definitions, Models 

Plate VI. The original Pulkovo Observatory viewed from the southwest. The large screen 
protects the prime vertical instrument from direct sunlight. Photograph provided by 
Pulkovo Observatory. 
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Plate VIL The reconstructed Pulkovo Observatory viewed from the southwest. Photograph 
provided by Pulkovo Observatory. 
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ABSTRACT. The concept of reference system, reference frame, coordinate system and celestial sphere in a 
relativistic framework are given. The problems on the choice of celestial coordinate systems and the definition 
of the light deflection are discussed. Our suggestions are listed in Sec. 5. 

1. Introduction 

With the increasing of accuracy of observations, one should pay more and more attention to the 
relativistic effects in celestial reference systems. Some papers dealing on the definition and 
realization of reference system have been published (Moritz 1981; Brumberg 1981; Fujimoto et al. 
1982; Eichhorn 1984; Fukushima et al. 1986; Brumberg et al. 1989). The monographs titled 
Vectorial Astronometry (Murray 1983), Relativity in Astrometry, Celestial Mechanics and Geodesy 
(Soffel 1989) and Reference Frames in Astronomy and Geophysics (Kovalevsky et al. 1989) provide 
the useful tools for construction of the modern astrometric theory in the framework of general 
relativity. 

The concept of the work "reference frame" is used differently in physics and astronomy (Brumberg 
1989) and there exist different opinions even among astronomers. According to the suggestion of 
Kovalevsky and Mueller (1981), "The purpose of a reference frame is to provide the means to 
materialize a reference system so that it can be used for the quantitative description of positions and 
motions on the Earth or of celestial bodies in space." For example, the catalogue of over 1500 star 
coordinates defines the FK4 frame, materializing the FK4 system. An alternative definition is 
defined by a set of (physical) points which constitutes a well-defined spatial configuration. To 
specify the location of a point, which is not an element of the defining set within this frame of 
reference, one needs a construction that sets numbers to specify completely and uniquely the location 
of the point with respect to the specific frame of reference. Such a construction is called a coordinate 
system (Eichhorn 1984). According to this definition the FK4 frame is defined by the barycentre and 
the FK4 stars themselves rather than their coordinates. It seems that attention must be paid to the 
distinction between these definitions. 

One would also question the conceptual aspects of the barycentric celestial sphere as well as the 
global equatorial coordinate system, because the equator and the ecliptic could only be defined 
locally at the Earth when the spacetime is curved. 
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Another questionable concept is the light deflection, the most important relativistic effect for 
optical observations. Because of the space curvature, the two tangent vectors of a light path, at the 
observer and at the remote source respectively, belong to different tangent spaces, and there is no 
exact definition to determine the angle made by these two vectors. 

In the present paper, we try to make one step to solve these problems. For simplicity our discussions 
are mainly limited to optical astrometry. The reference system and celestial sphere will be discussed 
in Section 2, the choice of coordinate systems and the light deflection will be treated in section 3 and 
4 respectively. Section 5 lists our conclusions. 

2. The Reference System and the Celestial Sphere 

In some parts of this section we are much influenced by the textbook of Sachs and Wu (1977), but 
we use our own words to explain the concepts in order to be understood by astronomers more easily. 
If there is some misunderstanding we should take the mil responsibility. 

2.1 OBSERVER 

The worldline of any pointlike object is an observer (Sachs and Wu 1977, p. 41). Here the word 
"observer" has a more general meaning than that in astronomy. It could be a real observer or an 
observational object. 

Every observation is made by an instantaneous observer, which could be defined as (E,U), where 
Ε represents the event of the observation and the U is the instantaneous 4-velocity of the observer 
that passes through Ε (Sachs and Wu 1977 p. 43). 

2.2 REFERENCE FRAME 

Reference frame is a group of selected observers, to which all the observations or motions are 
referred. The only restriction to these observers is that they can not cross each other, otherwise at 
one event there could exist two different instantaneous observers that move with respect to each 
other. The observers, of which the reference frame is comprised, are called stationary observers with 
respect to the very reference frame. 

For astronomical application a reference frame must be realizable and be carefully chosen 
(Kovalevsky 1989). The stationary observers could be real celestial bodies such as remote stars or 
fictitious bodies connected with the real objects such as the barycentre in the solar system. 

2.3 COORDINATE SYSTEM 

A coordinate system draws a 4-dimensional network on the spacetime to make the quantitative 
measurement of the events and the other physical quantities possible. 

After a reference frame has been selected, there still remain infinite choices of possible coordinate 
systems. On the contrary any coordinate system implies one reference frame, which is sometimes 
not physically realizable. A family of coordinate systems belong to the same reference frame if the 
transformation between them is as follows: 

t=qtt',x.r), 

(1) 

https://doi.org/10.1017/S0074180900086435 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900086435


101 

where i and V run from 1 to 3, φ and / are scalar functions (M0ller 1973). Eq. (1) tells us that 
d /3rand 3 Idt' are along the same direction. 

A coordinate system is essentially only a mathematical tool for convenience. In traditional 
astrometry coordinate systems have been usually denned physically. In the language of this paper 
we could say that the coordinate system defined by the equinox and the equator belongs to the 
reference frame specified by them. They could be considered as connected with some celestial 
bodies. 

A local tetrad is a local coordinate system, whose reference frame is represented by the instanta-
neous observer at its centre and some observers in its infinitesimal neighbourhood. 

2.4 REFERENCE SYSTEM 

A reference system includes three parts: 

1) a reference frame: 

2) a coordinate system; 
3) a recommended set of constants, theories and procedures of data processing. 

Parts 1) and 2) construct an idealized reference system, in which the reference frame represents the 
physical and fundamental part and the coordinate system is its mathematical aspect. Part 3) makes 
the reference system real. Astronomers make great efforts to improve that in part 3) from time to time 
and carefully keep the same reference frame and the same coordinate system. It is possible to happen 
that astronomers want to change the reference frame itself, for example, from the stellar frame to the 
radio source frame. 

2.5 OBSERVER'S CELESTIAL SPHERE 

Let (E,U) be an instantaneous observer, then the local rest space of (E,U) is defined as the 3-
dimensional subspace of the tangent space at E, in which every vector is orthogonal with U (Sachs 
and Wu 1977, p. 45). The light direction observed by (E,U) is the projection vector of the 4-
dimensional tangent vector of the light path at Ε into its local rest space. 

It is natural to define the local celestial sphere of (E,U) to be all the unit vectors as a whole in its 
local rest space. We use the word "unit" here in order to remove one dimension and keep the direction 
only in the concept of the celestial sphere. Actually the observation is always taken as the event Ε 
when the photon arrives and only the velocity of the photon, which is different from U, is meaningful. 

One can also talk about the celestial sphere of an observer. It can be defined in the same way as 
above. It is moving together with the observer. Then one should define the correspondence between 
the vectors of the local celestial spheres at one instant and another. Different correspondences could 
represent diferent local reference frames. 

There is not much sense to talk about the stellar reference system in the local celestial sphere, in 
which the star light is changing from time to time. This is not only due to the aberration or parallax 
but also to the curvature of the spacetime. The invariant direction of the stars can only make sense 
in the barycentric celestial sphere described in the next subsection. 
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2.6 BARYCENTRIC CELESTIAL SPHERE 

The barycentric celestial sphere can be defined as the reference frame that takes the remote sources 
and the barycentre as its stationary observers. As in the previous subsection one dimension 
representing the distance from the barycentre has been suppressed. 

To include the barycentre in this definition is due to the fact that in relativity there would be 
different space and time separation for different Lorentz reference frames even though in a flat 
spacetime. 

In defining the barycentric celestial sphere, there is no restriction on the barycentric reference 
frame inside the solar system except the barycentre, but it does put some limitation on the barycentric 
reference frame to assure that the remote sources are stationary. Here and after we will consider the 
barycentric reference frame that meets this restriction only. 

3. Choice of the Coordinate System 

3.1 THE PROBLEM 

In solar system dynamics, the PPN metric is popularly adopted (Will 1981). The general form of a 
metric is 

d ^ ^ d t f d * " (2) 

and the coefficients of the PPN metric are estimated to be 

^ = - 1 + 0(2), £ o i = 0(3) 
(3) 

* H = 1 + 0 ( 2 ) . * , = 0<4), i*J. 

Here the Greek letters run from 0 to 3 and the Latin letters from 1 to 3. The PPN metric is quasi-
isotropic and its coordinate system is quasi-Cartesian. 

The coordinates appear in # μ ν only in their differences so that a rigid rotation of the space axes will 
not change # μ ν . Traditionally one should choose the direction of the mean equinox of J2000 to be xl 

axis and the mean equator of J2000 to be J C 1 * 2 plane. The curvature of the spacetime brings in problems 
to realize this tradition. Actually the equatorial and the ecliptic polices can only be defined locally 
at the Earth as two vectors and they do not have global definition. To solve this problem we should 
1) define a definite connection between the global coordinate system and the local tetrad centered 
at the Earth, 2) adjust the directions of the space base-vectors of the local tetrad according to the 
locally defined equinox and the equator, and then 3) make the corresponding adjustment of the space 
axes of the global coordinate system. 

3.2 THE CONNECTION BETWEEN THE GLOBAL AND THE LOCAL SYSTEM 

The connection constructed in the following holds not only for the local tetrad at the Earth, but also 
for that at any observer. It could be considered as the definition of the local tetrad when a global 
coordinate system is given. 
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At every event there is an instantaneous observer whose 4-velocity e ( 0 )is tangential to the f-axis 
of the global coordinate system and can be expressed as 

(4) 

The local celestial sphere, i.e. the local rest space, of Ot", e ( 0 )) can be the space expanded by three 
mutually orthogonal unit base vectors, e ( i ). They are also orthogonal to e ( 0 ) according to Section 2. 
We name this kind of tetrad, e ( a ), natural tetrad (NT) or natural frame after Murray (1983). Obviously 
there are infinitely possible choices of e ( i ), which are connected by rigid rotations. 

Soffel (1989, p. 77) recommended choosing 

(5) 

(6) 

where the 3x3 matrix 

Soffel pointed out that "if the metric # μ ν is diagonal the induced tetrad is simply given by 

(7) 

In the general case it is impossible to construct the relation between e ( m ) and d /dx? in a closed form 
based on (5) and (6). Also e ( 1 ) usually does not agree with 3 /dx1 and the plane generated by e ( 1 ) and 
e ( 2 ) does not coincide with that generated by 3 /dx1 and 3 /dx2. 

We suggest an alternative choice of NT. By Gram-Schmidt orthonomalization (Horn and Johnson 
1985) we can construct a mutually orthogonal and normalized tetrad e: 

(8) 

(9) 

Keeping only up to 0(3) terms, they are 
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PT is the comoving tetrad with the observer. It should be considered as the coordinate system in 
which the astrometrists measure their optical data. Similarly to NT, there are infinitely possible PT. 
Astronomers have to choose one as conventional when processing their data. Formulae (9) - (13) 
are our recommendation. 

3.3 T H E ADJUSTMENT OF THE SPACE AXES 

The classical precession and nutation can be considered as the motion of the celestial pole with 
respect to a tetrad called a Fermi tetrad (FT) or Fermi frame at the Earth. FT is a tetrad that is centered 

(9, cont.) 

For time-orthogonal coordinate system go. are equal to zero, e ( 1 ) is along the direction d ldxl and 
e ( 2 ) is on the plane generated by d /dxl and d Idx1. Though it is quite complicated, Eq. (8) could 
be written in a closed form. 

Here and after the word "observer" will refer to a real observer. It may be in motion with respect 
to the background coordinate system. Let τ be its proper time, then its 4-velocity is 

(10) 

One would construct another tetrad, e ( a ), called proper tetrad (PT) or proper frame (Murray, 1983), 
which is centered at the instantaneous observer, (**, e ( o )), and is related to the above NT by a Lorentz 
transformation (Soffel, 1989): 

O D 

(12) 

where the Lorentz matrix is 

and 

(13) 
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at an observer oc*0*. Its time axis is e ( 0 ) and space axes could be realized by three gyroscopes that are 
mutually orthogonal. After correction of the relativistic precession, of which the main term is usually 
called geodetic precession, one can define the celestial equatorial pole in PT of the Earth. 

To define the celestial ecliptic pole is more difficult. During the construction of DE ephemerides 
as described by Standish (1980), a vector r χ dr/dt is defined as the direction of the normal of the 
instantaneous orbit plane of the Earth, where the components of r and dr/dt are XI and AX%T of the 
Earth respectively in a simplified PPN coordinate system. In the relativistic framework AX^DT could 
be replaced by the 4-velocity Ά^/ΆΤ that is coordinate system independent. But r or XL is coordinate 
system dependent. This fact shows the difficulty to define the ecliptic in a coordinate system 
independent way. We have not solved this problem. 

Now let us assume that the celestial equatorial and the ecliptic pole of epoch have been defined in 
the NT at (JC", e ( 0 )). One could determine the dynamic equinox and the equator of epoch in the very 
NT, then adjust e ( 1 ) along the direction of the equinox of epoch and e ( 2 ) on the equator of epoch. This 
adjustment is a rotation in the local rest space (the local celestial sphere) of Ot", e ( 0 )). Let Ρ be the 
orthogonal matrix representing the rotation for the adjustment of NT. In order to keep the relation 
between the local NT and the background coordinate system as described by Eq.(9), one has to rotate 
the background space axes. Let M represent the rotation matrix of the background system. It is 
necessary to find the relation between M and P. Within post-newtonian accuracy we found that 

M = P - P H + H ' P , (14) 

and 

P = M - H ' M + M H 

where 

H + H T = G - 1 , 

H' + H ' T = G ' - I , 

G = U j ) G' = ( g ,

u ) = M G M T 

and FF is the transposed matrix of H. In other words 

0 

(15) 

(16) 

H= h\2 U22 0 

1̂3 Ä23 U33 

(17) 

H' is defined by a similar formula. 
The elements of H and H ' are all in the magnitude of 0(2). Since the adjustment from the catalog 

equinox and equator to the dynamic equinox and equator is a very small quantity, which is usually 
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less than 071, one can neglect the difference between M and P. 
Eqs. (14) and (15) can also be used when the transformation of the coordinate system between 

different epochs is necessary. One important nature of Eqs. (14) and (15) is that the relation between 
M and Ρ is location dependent. Factually, Μ - Ρ depends on the metric coefficients, £ μ ν , which are 
functions of the location of the observer. Here we would like to point out that M is equal to Ρ exactly 
if goi = 0 and g.. = 0 (i Φ j), which implies that the background coordinate system is isotropic. The 
real metric in the solar system does not meet this demand but could satisfy it within a certain accuracy. 
We call the metric that nearly meets this condition quasi-isotropic metric and it is preferable. 

4. The Light Deflection 

4.1 THE PROBLEM 

To complete the construction of the celestial reference system a conventional procedure for data 
processing has to be founded. For optical observations the most important relativistic effect is the 
light deflection. Here we limit ourself to the discussion of this effect. 

Many works on the light deflection have been published. The following lists some of the recent 
publications. Murray (1981) derived his formulae within the post-newtonian accuracy. Epstein and 
Shapiro (1980), Fischbach and Freeman (1980) worked up to post-post-newtonian terms and later 
Xu et al. (1984) extended their results to the case that treats a source and an observer that are both 
inside the solar system. All of them dealt with a spherically symmetric metric only. Richter and 
Matzner (1982) demonstrated that knowledge about light propagation in the solar system to any 
given order requires knowledge of every term in the metric to that same order. They extended the 
PPN metric to a metric called parametrized post-lineal (PPL) metric by including the second-order 
relativistic contributions from the Sun into g... But they calculated the gravitational deflection of a 
photon in the equatorial plane of the Sun oniy. 

Being different from physicists, astronomers are not so interested in the total deflection of a light 
from a remote source to a remote observer. The most accurate observations are made on or near the 
Earth. This fact poses a problem. The two tangent vectors of the light path that are at the source and 
at the observer belong to different tangent spaces at different locations. There is no known definition 
of the angle between the two tangent vectors. Atkinson (1963) has pointed out that the relativistic 
effect in a stationary gravitational field with spherical symmetry can be calculated by pure Euclidean 
geometry. The real metric in the solar system is much more complicated. It is neither stationary nor 
spherically symmetric. When astronomers have to pursue higher precisions in their data processing, 
it is necessary to give a definition of the light deflection that can be followed in calculation for any 
case. 

4.2 THE DEFINITION OF THE LIGHT DEFLECTION 

Let P s and P 0 be the two 4-velocities of the light path from a source to an observer and let them 
be in the corresponding tangent spaces at two events, E s and E 0 , respectively. Here E s is the event 
that the source launched the photon; E 0 is the event that the observer received the same photon. It 
is evident that P s and P 0 are independent of coordinate systems and also of reference frames. 

Assume 7 to be a family of barycentric coordinate systems that imply the same barycentric 
celestial sphere as introduced in Section 2. Also, without loss of generality, we assume that they are 
all quasi-Cartesian coordinate so that the corresponding metric at infinity is Minkowsky metric and 

https://doi.org/10.1017/S0074180900086435 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900086435


107 

the base vectors, d Id t and d Id χ*, are all the same at infinity among this family. The coordinate 
resolution of P s and P 0 in one member of 7 are 

The 3-dimensional vector Pjd Idx* can be defined as the position of the source in the barycentric 
celestial sphere and it is coordinate system independent among 7 And P^d ldxl represents the 
observed direction by an instantaneous observer (E 0 , U'q) where U ' O is along the direction of d Idt. 
It is evident that P^d Jdx* is generally coordinate system dependent among 7, but it is coordinate 
system independent among a subset of 7, between which the transformation takes the form of Eq. 

Several authors (Soffel, 1989; Brumberg, 1989) calculated Pj- PQ\ Obviously it is coordinate 
system dependent among 7and even among its subset mentioned above because the spatial base, 
d /αχ*, at E 0 is generally different from one coordinate system to another. 

Astronomers possibly would not like to define Pj - P0\ as the light deflection. The problem is 
that the spacial base, d Idx1, is neither orthogonal nor normal and P0

l P0\ is generally not equal to 
1. On this kind of base one can not introduce the spherical equatorial coordinates, the right ascension 
and the declination. A more natural and practical definition we suggest here is the following. Firstly, 
construct NT at every event over the spacetime, which is related to the local base, d Idx*, by a set 
of defined formulae. Here and after we use e ( o t )(E) to denote the NT at event E. Resolving the vectors 
P s and P 0 with respect to e ( o t )(E s ) and e ( a ) (E 0 ) respectively, we have 

p * = ^°e(o)(E^ - «je@(Ei) ( 1 9 ) 

Po = « c b ) ( E o ) - ^ ( E o ) 

and njnj = n0

l n0

l = 1 because the measured light speed in a local inertial frame is equal to 1. Then 
we define the light deflection as ns* - n 0 ' and the angle between the two directions as 

Δθ= l n s x n s l 

This is a pure Euclidean definition when the two NT are fictitiously coincided with each other. 
Actually this definition is a new version of that described by Murray (1981, 1986) but in a more 
general case and in a more clear and definite way. 

It is evident that ns

l - and ΔΘ both are coordinate system dependent. They depend on the choice 
of NT and the choice of the barycentric coordinate system. We should choose NT to assure that 
e ( a )(E s) coincides with the base vectors at E s : d Idx*. With this limitation the natural tetrads are 
restricted in a family called Ot here and after. The natural tetrads recommended by Soffel (1989) 
or by this paper in Eq. (9) both meet this demand. To be consistent with Section 3, we recommend 

0 8 ) 

(1). 

(20) 

[ ns\ ns

2, ns

3 ]T, 
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that defined in Eq. (9). 
It has to be mentioned that the angle between two light directions from two sources is coordinate 

system independent whether at infinity or at the observer. Therefore the correction of the light 
deflection of this angle is also coordinate system independent. In astronomical practice one needs 
to do the correction of the observational data one by one so that the discussion in this section is 
necessary. 

The above definition has been applied to the Schwarzschild metric. We found that the formulae 
for the light deflection in isotropic coordinates is much simpler than that in the standard coordinates. 

In Murray's paper (1981) the formulae forthe light deflection in these two coordinates are the same. 
This is due to the fact that his definition of the natural frame brings in the same tetrads for these two 
coordinates and is different from ours, but it would not be the same in the general case. We do not 
think that one definition is superior to another solely so far as the light deflection is concerned. The 
most important thing is that the position of the source in the barycentric celestial sphere after the 
correction of the light deflection and other system effects is unique and invariant. To this end any 
selection of the barycentric coordinate system among the family J and any definition of the natural 
tetrad among the family ίλ£ is allowed. 

5. Conclusions 

Our main conclusions are 
1) Astronomers should have an agreement on the implication of "reference system", "reference 

frame" and "coordinate system". We suggest that the terminology of astronomers should be close 
to that of physicists if possible. It is proper to distinguish the physical aspect "reference frame" from 
the mathematical aspect "coordinate system". We suggest that a "reference system" include these 
two components and a recommended procedure of data processing, a set of constants and theories 
that are involved. 

2) Astronomers should have an agreement on the relation between the barycentric coordinate 
system and the local natural tetrad in order to keep a consistent procedure of data processing. We 
recommend that defined in Eqs. (8) and (9). 

3) The barycentric quasi-isotropic coordinate is preferable because the adjustment rotation of the 
space axes in the global and the local system will be almost the same just as in the classical case and 
the calculation of the light deflection is simpler as well. 

4) We suggest that the light deflection be defined as follows. When a barycentric coordinate 
system is chosen, the 4-velocity of a photon at an event can be projected into the local space in the 
local NT to get a 3-vector. The light deflection is the difference between the direction cosines of the 
two 3-vectors, at the source and at the observer, in their corresponding NT. It also could be described 
as that the angle between them when the two corresponding NT are fictitiously moved to coincide 
with each other. 
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Discussion 

TURYSHEV: The author tells us only about his concept of the description. I would like to ask him about 
the calculation in a real situation, such as for the solar system. 

Xu: Please read our full paper which will be published in the proceedings. 

KOPEJKIN: It is very difficult to use the local tetrad approach for a description of the gravitational field 
of the solar system. For example, in the construction of the geocentric coordinate system, 
we must take into account the gravitational field of the Earth. Therefore, in my opinion, it 
is better to use coordinate systems which are not local in the tetrad sense. 

Xu: For description of the motion of the celestial bodies we cannot use the tetrad approach and you 
are correct. But for the description of the observational data, which are the events at the 
station, the local (tetrad) approach is adequate and enough. 
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