Unlocking the Potential of Simalikalactone D as an Anticancer Agent in Ethnically Diverse Breast Cancer Populations

Annelis O. Sanchez-Alvarez ${ }^{1}$, Prof. Pablo E. Vivas-Mejia ${ }^{2}$ and Prof. Claudia Ospina ${ }^{3}$
${ }^{1}$ Comprehensive Cancer Center-UPR; ${ }^{2}$ Medical Science CampusUPR and ${ }^{3}$ Inter American University of Puerto Rico, Bayamon

OBJECTIVES/GOALS: This project focuses on investigating the potential of Simalikalactone D (SKD) as an anticancer agent, exploring the mechanisms underlying SKD's induction of cell death, and assessing the impact of SKD on diverse breast cancer cell lines. Also, it Investigates the compound's mechanisms of action beyond caspase 3 -dependent pathways. METHODS/STUDY POPULATION: Three breast cancer cell lines were used: SKBR3, MDA-MB-231, and MDA-MB-468. Two triple-negative breast cancer cell lines are included to address cancer disparities across diverse ethnic backgrounds. Viability assays were conducted to determine half-maximal inhibitory concentrations (IC50). Caspase 3 activity assay was performed to evaluate apoptosis as a possible cell death pathway. Wound healing and colony formation assays are used to assess cell migration and clonogenic capacity. Proteomic analysis and phosphoarray analysis are planned for a deeper understanding of SKD's anticancer properties, as well as testing for caspase 3 independent pathways. RESULTS/ANTICIPATED RESULTS: SKD demonstrated substantial cytotoxicity against all three breast cancer cell lines. IC50 values for SKBR3, MDA-MB-231, and MDA-MB-468 were $60.0 \mathrm{nM}, 65.0 \mathrm{nM}$, and 116 nM , respectively. SKD induces cell death via caspase 3 -independent pathways. Further experiments are needed to confirm and elucidate the molecular pathways being impacted. SKD inhibited cancer cell migration and clonogenic potential, suggesting it can reduce tumor growth and metastatic tendencies. DISCUSSION/SIGNIFICANCE: The study highlights SKD's cytotoxicity across diverse breast cancer cell lines. It underscores the mechanism of action, a caspase 3 independent pathway. These findings hold promise for the development of innovative anticancer treatments and emphasize the importance of exploring varied cellular responses to mitigate global cancer disparities.

97

BUILD EXITO: a successful collaborative training program for STEM undergraduates to improve workforce diversity De'Sha Wolf ${ }^{1,2}$, Thomas Keller ${ }^{2}$, Matt Honore ${ }^{1}$, Shandee Dixon ${ }^{1}$ and Cynthia Morris ${ }^{1}$
${ }^{1} \mathrm{OHSU}$ and ${ }^{2}$ Portland State University

OBJECTIVES/GOALS: To truly improve health equity and accessibility, we must develop a diverse and inclusive workforce. The BUILD EXITO program developed as a collaboration between a network of undergraduate programs and a CTSA hub and now has become a sustainable resource that will outlive NIH funding. We will disseminate our successful model. METHODS/STUDY POPULATION: The BUILD EXITO program has completed 10 years of NIH funding, a partnership between OCTRI and

