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A NOTE ON HOLOMORPHIC MATRIC AUTOMORPHIC
FACTORS WITH RESPECT TO A LATTICE
IN A COMPLEX VECTOR SPACE

Dedicated to the memory of Taira Honda

HISASI MORIKAWA

1. A holomorphic » X n-matric automorphic factor with respect to a
lattice L in C? means a system of holomorphic n X n-matrices {u,(2) |« c L}

such that
(1) det p,(z) = 0 everywhere on CY,
(2) U+ p(R) = p(Z + Bpe(2) (e, pe L) .

This is nothing else than the condition of a group action of L on C? X C*;
@ u) —> @+ a,p(Ru) (xel).

The quotient E, = C? X C*/L by this group action of L is a holomorphic

vector bundle of rank n over the complex torus C?/L. Holomorphic

vector bundles over the complex torus C?Y/L are always constructed by

this way, since holomorphic vector bundles over C? are trivial.
Denoting

0a(?) = p(2) 7 A (2) (e L)
we get a system of n X n-matric connections satisfying
(3) dw,(2) + 0,(R) N\ 0,(2) =0,
(4) 0e45(2) = 0,(2) + p(2) 'z + () (@, e L) .

In the present short note we shall characterize matric automorphic factors
{#.(®) | € L} such that
i) the associated vector bundle E, is simple and ii)
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12 + Pp. ()™ (e, pe L)
are constant matrices.
ProrosITION 1. Let {y(2)|lacL} be a holomorphic n X n-matric

automorphic factor with respect to a lattice L in C?, and let w(2) be the
integrable connections given by

0,(2) = ()7 'dp(2)  (ael).
Then following three conditions are equivalent each other,
(5) o) =2 A.dz, with constant matrices A,, el;1<£<yg).

(6) (@) = p,(0)exp {3 A2} with constant matrices A,, satisfying
[Aa[,Aah]:() (aeL,]-Sg’ hég),

(7)) pz + Pr2)™ (a, Be L) are constant matrices .
Proof. If we assume (5), we have v,(2) A 0,(2) = 0 and thus [4,, 4,,]

=0 (e,peL;1<4¢,h<g). By virtue of this commutativity, putting
f.2) = 1, (0) exp {3 A2}, we have

F(2) 7 f,(2) = 0,(2) = p(2) ' dp(2) (e lL).
Since 7,(0) = 1,(0), we have 7,(2) = p(2) (eeL). If we assume (6), then
tZ + Pp2)™ = 1 (0) exp {37 A,.}1.(0)  (a,8e L)
are constant matrices. Let us show (7) from (5). From the equation
d(p(z + P2 = 0 it follows
0,z + B) — 0,(2) = p(z + P 7'dp(z + B) — p () dp(2)
= 1,z + Pz + Pr.(?) . (2) =0,

and thus o,z + p) = w,(2) (a, e L). By virtue of compactness of C?/L
0,(2) can be written

0, (7) = 3 A, dz,
with constant matrices.
ProPOSITION 2. Let {¢,(0)|acL}, {A,,/ecL,1< ¢ < g} be two sys-
tems of constant m X n-matrices such that det p,(0) #0, [4,,A.,.]1=0

(@eL;1<4,h<g). Then {1 0)exp{d A2} aecL} is a holomorphic
n X n-matric automorphic factor with respect to L, if and only if
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(8) [Aiy Apl =0 (@, peL;1<4,h< 9,
(9) X Aa+,9,e = ﬂp(O)—lAae#p(O) + A,u (a, 19 € L; 1<4<9),
(10) [p(0) A, p(0), A, ] =0 (0, BeL;1<4,h<9) .

Proof. Assume that {,(2) = 1.(0)exp 3] A,2,)} is an automorphic
factor with respect to L. From the relations

ooz + (R =1, 0 =72 A.dz,
0,4 5(2) = 1(2)wp(2 + D (2) + 0. (2)
it follows
0_o1500) = 0_o1 (2 + @) = p_(2 + ) '0(Rp_(2 + @) + 0_(2 + @)

= 1,20, ()" + 0_ (2 + )
= (2,0 (2)" + 0_,(0) = ££,(0)0;(0)£,(0)" + w_,(0) ,

and thus

£a(0)7 (D0 (0) = 0,0, (0)"'(®)  (a, e L) .

Comparing the coefficients of z,dz, in the both sides of

exp {3° Az} D) Apdz, = 3 Apndz, exp {2 AnRs}
we have [A,,A4,,] =0 (¢,feL;1< 4, h<g). From the relation p,,,(2)
= u,(z + Pus(2) we have
/Ja+p(z) = #a+p(0) exp {Z Aa+ﬁezl}

= 1,(0) exp {Z Aaeﬂe}/‘ﬁ(o) exp {Z Aa+peze}

= 1.z + Py

= 1,(0) exp {37 A.(z, + B)}1(0) exp {35 Azi2i}

= 1,(0) exp {37 A.,B.}1,(0)

= exp {2 15(0) A, p1s(0)2} exp (3] Api2s} -

Hence, comparing the coefficients of 2, and 2,2, in the both sides of
exp {20 Aopird = €xp {20 1(0) 7 A, 115(0)2} exp {35 Api2s}

respectively, we have

Aa+ﬁl = ,Ug(o)_lAae/lp(O) + A,ee ’
Aa+ﬂlAa+ﬁh = ﬂp(o)_lAaeﬂﬁ(O)/l,e(O)—lAah/lﬁ(O)
+ #p(o)—lAaz‘Up(O)A,en + ﬂp(o)_lAan#p(O)Ap: + ApeApn
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and thus
Apzup(o)_lAan#p(O) = #ﬂ(o)_lAah/Jp(O)Apz .
Namely [4,, #,(0)7'A4 ,,1,(0)] = 0 (¢, fe L; 1< 4, h < g). Conversely if we
assume (8), (9), (10), then putting
1(2) = 1,(0) exp {3 A2} (we L),
we have
12 + Py(2)
= #a(o) exp {Z A, (z, + ﬂl)ﬂp(o)} exp {3, Aﬂ&zl}
= 11,(0) exp {27 A.iB}ps(0) exp {27 115(0) 1A, p15(0)2,} exp {37 A4 20}
= #«(O)#p(o) exp {Z (ﬂp(o)_lAaeﬂﬂ(O) + Apz)zz}
= tasp(0) €XD {4, 52} = pa15(2) -

COROLLARY 1.

£a(R) 7 115(2) T (2D p(2)

11
an =exp {2, (Aa+p¢ - Aw)“z - Z (Aa+ﬂ6 - Aa[)ﬁl} (a, Be L).

Proof. From the relation g,,,2) = p (2 + Bus(?) = p(z + )p(2) it

follows
L@ (2) = 1,(0)e15(0) exp {3 (p5(0)7 A p5(0) + APz}
= ,Ua(O)llp(O) exp {Z A, pzzz} ’
LR p(?) = 15(0)12,(0) exp {3 (1 (0) " A e, (0) + A2}
= (0, (0) exp {30 A..p2d} 5
£(0)125(0) €XD {37 11,(0) A1, (0) 8.}
= tter5(0) = £2(0)12,(0) €xp {3 12 (0)7'A ot (0)rs}
Hence

1.(2) 7 pp(2) T (R p(2)
= 1£,(0) 7" (0) 71, (0) 1£,(0)
= exP {2} #.(0)7 A popt (0, — 37 12,(0)7 A, p15(0) B}
= exP {2} (Auspr — Apda, — 25 (Auige — A}

COROLLARY 2. The matric group generated by {p(R)|laecL} is a
metabelian group whose derived group is a group of constant matrices.

This is an immediate consequence of Corollary 1.
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2. A holomorphic vector bundle is called to be simple, if its endo-
morphisms are scaler multiplications. The vector bundle associated with
{¢(®){a € L} is simple, if and only if scaler matrices are only holomorphic
matrices B(z) such that

Bz + a)p.(2) = p.(2)B(?) (ee L) .

Characterizing a simple vector bundle E, such that
g
()7 (2) = ;1 A, dz, (ael)
with constant matrices A,,, we need the following Clifford theorem,

CLIFFORD THEOREM. Let G be a group and H be a normal subgroup
of G. Let V be a vector space of finite dimension over a field which
is a simple G-module. Then there exists a vector subspace W which is
simple H-module and elements ¢, -+ Qims *+ s Gris * * *» Grm 0 G such that

V:(QIIWC—D“'@glmW)@"'®(g71W@"'®grmW)

and 9,W and g;;W are equivalent H-modules if and only if ¢ = j.

Proof. Let W be a vector subspace which is a simple H-module.
Since H is normal in G, the images gW (g9 € G) are simple H-modules,
and V is a sum of gW (geG). Hence there exist elements ¢, .-, 9,
of G such that

V=gW&- - -Dg,W.

Let {9y, -+, 9n} be the largest subset in {gi,---,g;} such that g, W
(1 < ¢4 < m) are equivalent to W. Then V is a direct sum of the images
of g W® ---®Dg,,W by elements of G. This completes the proof of
Clifford theorem.

LEMMA 1. Let G be o transitive abelian permutation group acting
on {1,2,.---,7}. Then |G| =r.

Proof. Let N be the stabilizer of letter 1. Then |G/N|=1r and G
acts on G/N. Two permutation groups (G,{1,2, ---,7}) and (G, G/N) are
isomorphic as permutation groups. Since G is abelian, N must be a
normal subgroup, and thus any element of N leaves invariant every letter
in {1,2, ---,7}. This shows |G| =|G/N|=r.
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THEOREM 1. Let {¢(?)|ae L} be a holomorphic n X n-matric auto-
morphic factor with respect to a lattice L in C? such that i)

@)@ = 33 Audz, (aeL)

with constant matrices A,,, ii) the associated vector bundle E, is simple.
Then there exist a sublattice M of L and a line bundle & over C'/M
such that [L: M] =n and E, is the direct image of ¥ with respect to
the natural isogeny C°/M — C9/L..

Proof. We use the following notations:
A:  the commutative matric algebra generated by A,, (ecL;1 <4< 9)
and identity matrix over C,
G: the group generated by {x(0), exp {3 A5} (a,feLl)} and
GL(n,C) N 4,
G,: the group generated by {exp {3 4.8} (¢, e L) and GL(n,C) N 4,

G={9eGlgT4,9=A4, (aecL;1<{< g}
L, ={BeL|p 0)A,u,0) =A, («aecL;1<4<9)}.

By virtue of (8),(9) and (11) G, is an abelian normal subgroup of G such
that G/G, is abelian, and G, is a normal subgroup containing G,. Hence
G/G, is abelian. If a constant matrix B satisfies

By, (0) = 4, (0B, BA,=A,B (eecLl,1<£4<L9),
then Bp,(2) = p.(?)B (x e L), because from Proposition 1
ta(?) = p(0) exp (33, A2} (ael).

Since E, is simple, such a matrix B must be a scaler matrix. This means
that G is an irreducible # X n-matric group. Let V be the vector space
of dimension non which G acts. Applying Clifford theorem to the pair
(G,G,), we get a system of inequivalent representations y,---,y, of
degree one of the abelian group G, such that the irreducible G-module
V decomposed into a direct sum of G,modules

V=V,®.---®V,
with properties that

dimVi:%(lgz‘sﬂ,
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900; = 1:(9)v; 90€Gpv,€V)) .

gince y, - -+, ¢, are inequivalent each other, the subspaces V,,.--,V, are
also G,-modules. Moreover, since G, is normal in G, G acts on the set
{1,..-,7} as follows

9V, = V,a(9) 9e®,

and the kernel of ¢ is G,. Since V is an irreducible G-module and G/G,
is abelian, by virtue of Lemma 1 we have |G/G,| = |¢(G)| = . Next we
shall show that V, (1 <i<g) are irreducible G,-modules. We assume
for a moment that at least one of G,-modules of {V,, ---, V,} is reducible,
then dimension of the linear hull of G, over C is less than

7‘(.11)2 = ﬁ .
r Va
Hence the dimension of the linear hull of G is less than »-n?/r = n’

This contradicts with the irreducibility of G-module V. Hence V,,-.-,V,
are irreducible G;-modules. From equations

Apipe = t(0)7 A (0) + Ay = pp(0)7'ALps(0) + Ay,
we observe that
L0 A, (0) = A,  (@eLl,1<4<9),
if and oly if
£a(0) A 1 (0) = Ay, (e, 1<4<L9).

This means that L, = {8|4,, (1 < ¢ < g) are scaler matrices}. This means
that there exist a constant matrix F and an irreducible representation
o of G, such that

o)

o(9:hg,)

FhF = (he@G),

o(97hg.,)

where ¢, = 1,0 1<i<7) and {w, --,a,} is a system of representa-
tives of G/G, in G such that 1°*=® =4 (1 <i< 7). Since p(9) (9,€ Gy
are scaler n/r X n/r-matrices, the set {p(y,(0))|fe L,} is an irreducible
set. In the previous note [1] we proved that a holomorphic %k X k-auto-
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morphic factor {v,(2)|fe N} with respect to a lattice N is written
vs(2) = vy(0)6,(2)  (BeN)

with scaler functions &,(2) and {v,(0)| 3e N} is an irreducible set of k X k-
matrices, then there exist a sublattice N, such that [N:NJ] =k and
v(2) (e N, are scaler matrices. Hence putting

”p(O) = P(#ﬂ(o)) ’ AM = a’ﬂlln s
v5(2) = v,(0) exp {2nv/ =13 a,2,} (Bely),

we find a sublattice M such that

[L: M =[L:LIL: M =72 =n
r
and »(2) (reM) are scaler matrices. Since o(y,(0)) (y € M) are scaler
matrices, p(z,,(0)70)x,,0)) (reM;1<¢<r) are also scaler matrices.
This means that there exists holomorphic scaler automorphic factors
{n®P@)}, « - -, {5 (2)} with respect to the lattice M such that

7 (2)
Fp@)F = . (reM)
7" (2)

and [L: M] =n. Let £%,...,%" Dbe line bundles over M correspond-
ing to {»*(2), - - -, {»"(2)}, respectively. Then we have isomorphisms of
vector bundles

go*(E#) ~POPD ... PEFw™ ,
0xp* () ~ 0 (FD)D - - D (£ ™),

where ¢*(F,) is the reciprocal image of E, and ¢.(¥) is the direct image
of ¥ with respect to ¢. Hence, if we put

yp(O) = p(/,tﬂ(O)) s Aﬂz = a’ﬁzln ’ ”ﬁ(z) = Vp(o) exp {Z a,uzz} ’

by virtue of the above result, we find a sublattice M such that [L: M]
=I[L:L]IL:M]=7r-n/r=n and y(2) (yeM) are scaler n/r X n/r-
matrices. Since p(x,(0)) (ye M) are scaler matrices, p(x,,(0)7",(0)s,,(0))
(eM;1<i¢<r) are also scaler matrices. This means that there exists
holomorphic scaler automorphic factors {y(z)|reM},---,{n"@)|y e M}
such that
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7];1) (Z)I n/r 0
F'uF = . reM).
0 7];” (Z)I n/r
Let #®, ..., 2™ Dbe the line bundles over C?/M associated to {{"(2) |y € M},

-+, {99(2) |y € M}, respectively. Then we have an isomorphism of vector
bundles

n/r

0x0*(E) ~ @ 2D ® - B ppy(£)

n/r

——
D Dlpps(Z™) D@ - - - @ ppy(L™))

where ¢*(E,) is the inverse image of E, and ¢,0*(F,) is the direct image
of ¢*(E,). Since E, is simple and rank ¢, (Z,?) =rankE, (1 <i<n),
E, must be isomorphic to one of ¢, (#®) (1 <¢<n). This completes the
proof of Theorem.

THEOREM 2. Let {¢,(2)|ae L} be a holomorphic n X n-automorphic
factor with respect to a lattice L in C?, such that i) the associated
vector bundle E, is simple and ii) p(z + Bu2)™" (o, e L) are constant
matrices. Then there exist a sublattice M of L and a line bundle & on
C’'/M such that E, is isomorphic to the direct image of £ with respect
to the natural isogeny C/M — C?/N.

Proof. This an immediate consequence from Theorem 1 and Propo-
gition 1.
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