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Fundamental solutions (Green’s functions) to Grad’s steady-state linearised 13-moment
equations for non-equilibrium gas flows are derived. The creeping microscale
gas flows, to which they pertain, are important to understanding the behaviour
of atmospheric particulate and the performance of many potential micro/nano
technologies. Fundamental solutions are also derived for the regularised form of
the steady-state linearised 13-moment equations, due to Struchtrup & Torrilhon
(Phys. Fluids, vol. 15 (9), 2003, pp. 2668–2680). The solutions are compared to
their classical and ubiquitous counterpart: the Stokeslet. For an illustration of their
utility, the fundamental solutions to Grad’s equations are implemented in a linear
superposition approach to modelling external flows. Such schemes are mesh free, and
benefit from not having to truncate and discretise an infinite three-dimensional domain.
The high accuracy of the technique is demonstrated for creeping non-equilibrium gas
flow around a sphere, for which an analytical solution exists for comparison. Finally,
to demonstrate the method’s geometrical flexibility, the flow generated between
adjacent spheres held at a fixed uniform temperature difference is explored.

Key words: low-Reynolds-number flows, micro-/nano-fluid dynamics

1. Introduction
Simulating low-speed dilute gas flow around microscale particulates has a raft

of potential applications: in health (e.g. modelling inhalation of fine particulate), in
security (e.g. predicting the transport of bacteria-laden aerosolized droplets) and in
atmospheric science (e.g. understanding the climatic impact of volcanic ash). The
fluid dynamics of individual particles in these cases can often be characterised as
having very low Reynolds number (due to both speed and scale) and a small, but
non-negligible, Knudsen number. The Knudsen number, Kn, the ratio of the mean
free path in the gas to some characteristic length scale (see (2.4), below), describes
the extent to which the flow is departed from local thermodynamic equilibrium.
Only for Knudsen numbers . 0.01 are the Navier–Stokes equations accurate (though
their applicability can be extended to higher Kn by a modification to the boundary
conditions). For Kn& 1.0, accurate simulation methods based on gas kinetic theory
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(e.g. Bird 1994; Naris & Valougeorgis 2005; Wu, Reese & Zhang 2014) begin to
become computationally tractable. Flows falling in between these approximate limits
(0.01 . Kn . 1) are described as being in the transition regime, and present a major
simulation challenge: being beyond the physical model of classical fluid dynamics,
but inaccessible (computationally speaking) to the accurate techniques developed from
kinetic theory. Airborne particles in the size range 0.1–5 µm, at sea-level pressures
(where the mean free path is ∼0.07 µm), lie in this transition regime.

While kinetic theory is the gold standard for accuracy in modelling flows across
the entire Kn range, numerical solutions of the Boltzmann equation (e.g. Wu et al.
2014) and its models (e.g. Naris & Valougeorgis 2005) are far more expensive
than continuum-fluid calculations (the Boltzmann equation is seven-dimensional, for
instance). In the transition regime, and for complex geometries (with no exploitable
symmetries) or for modelling a collection of suspended particles, such computations
are intractable. Stochastic solution techniques to the Boltzmann equation, such as the
direct simulation Monte Carlo method (DSMC) developed by Bird (1994), are also
prohibitively expensive for transitional Knudsen numbers at low speeds.

The development of continuum equations from moment approximations to the
Boltzmann equation are a potential route to accessing flows in the transition
regime. Benefitting from the computational efficiency of continuum methods,
while incorporating a physical model valid at higher Kn, moment methods offer
a best-of-both-worlds solution. Grad developed the original moment method of
approximation to the Boltzmann equation, expanding the distribution function using
Hermite polynomials, and deriving the 13-moment equations (Grad 1949; Chapman
& Cowling 1970). Struchtrup & Torrilhon (2003) proposed a regularisation of these
equations (the R13 equations), which overcome a number of issues, and have proven
successful in predicting a raft of canonical flows in the transition regime (Torrilhon
& Struchtrup 2004; Lockerby & Reese 2008; Taheri & Struchtrup 2010). For reviews
of recent progress in the development of moment methods the reader is referred to
Struchtrup (2005), Struchtrup & Taheri (2011), Torrilhon (2016).

Tractable numerical methods for three-dimensional external flows do not currently
exist for moment equations. The difficulty goes beyond the additional implementation
and computational complexity of these higher-order equations in three dimensions.
Finite-difference and finite-volume approaches (which have been implemented, for
example, in two-dimensional lid-driven cavity flow for the R13 equations (Rana,
Torrilhon & Struchtrup 2013)) are, in general, very difficult to apply to low-speed
external flows, because of the complexity of the meshing required (e.g. in suspensions
of particles) and the far reaching influence of any internal boundary (e.g. orders of
magnitude larger than the submerged body itself).

In Stokes flow analysis (Re→ 0, Kn= 0), sometimes referred to as creeping flow,
these problems are avoided by a class of technique that exploit the linearity of the
Stokes equations, which the Navier–Stokes equations reduce to in such conditions.
They are built on a fundamental solution to the Stokes equations, known as the
Stokeslet (so-called by Hancock (1953), but first derived by Lorentz (1897)). This
fundamental solution (a Green’s function for the Stokes equations) is the flow
response to a Dirac delta forcing term applied to the momentum equation. In the
most straightforward use, a flow field is represented by a superposition of Stokeslets
(positioned, say, inside a particle) that are given a combination of strengths chosen
to satisfy the same number of conditions at nodes on the boundary. This approach is
known as the method of fundamental solutions (MFS) or the superposition method,
amongst other names (Kupradze & Aleksidze 1964; Karageorghis & Fairweather
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1987; Fairweather & Karageorghis 1998; Young et al. 2006). Another use of the
Stokeslet (and its variants, e.g. the Blakelet and Rotlet) is within the related, but
more established, boundary integral method (Pozrikidis 1992; Ying, Biros & Zorin
2006; Veerapaneni et al. 2009). Both approaches have the advantage of having a flow
domain that is meshless, and a dimensionality that is reduced in order by one (a
finite boundary is discretized rather than an infinite volume). The Stokeslet is also in
itself of interest, as a fundamental solution to the Stokes equations, and can be used
to conveniently derive certain analytical results. What prevents such methods being
applied to higher Kn conditions is, of course, the validity of the Stokes equations
from which the Stokeslet is derived.

This leads us to the main purpose of the current work: to derive the first
fundamental solutions to moment equations for low-speed non-equilibrium gas flows.
Specifically, fundamental solutions to the linearised moment equations originally
proposed by Grad (1949), and their regularised form due to Struchtrup & Torrilhon
(2003), for monatomic dilute gases.

The paper is structured as follows. In § 2, the fundamental solutions are derived. All
of the analytical solutions presented have been verified (using symbolic manipulation
software) as satisfying the governing equations, in each case. In § 3 these solutions are
compared, in particular to the Stokeslet. In § 4, to illustrate the utility of fundamental
solutions, an implementation of the MFS is described (using the fundamental solutions
to Grad’s linearised 13-moment equations). In § 5 this MFS scheme is applied to low-
speed non-equilibrium gas flow around a sphere (for which an analytical solution and
experimental data exist), and used to explore a new non-equilibrium gas configuration
(the flow generated by stationary adjacent spheres held at a fixed uniform temperature
difference) to demonstrate the approach’s geometrical flexibility. In § 6 conclusions are
drawn and future opportunities and challenges identified.

2. Derivation of fundamental solutions
Our starting point for this creeping flow analysis (i.e. having low speed and

negligible inertia) is the linearised steady-state conservation equations for mass,
momentum and internal energy:

∇̂ · v̂ = 0, (2.1a)

∇̂p̂+ ∇̂ · Ŝ = 0, (2.1b)

∇̂ · q̂= 0, (2.1c)

where v is the velocity field, p is the pressure, S is the stress tensor and q is the
heat-flux vector; hats denote dimensional quantities. The conservation equations have
been linearised around an equilibrium state, described by a constant density ρ̂e and
temperature T̂e and vanishing velocity, stress and heat-flux fields. The ideal gas law
linearised about these conditions is

p̂= ρ̂eθ̂ + ρ̂θ̂e, (2.2)

where θ̂e = R̂T̂e, and R̂ is the specific gas constant (θ̂ � θ̂e and ρ̂� ρ̂e). Constitutive
closures to (2.1b) and (2.1c), introduced later, relate v̂, θ̂ , Ŝ and q̂.

From here on, we non-dimensionalise variables using appropriate combinations of
ρ̂e, θ̂e and L̂ , e.g.:

v = v̂/

√
θ̂e, S = Ŝ/(ρ̂eθ̂e), r= r̂/L̂, q= q̂/[ρ̂eθ̂

3/2
e ], (2.3a−d)
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where L̂ is some characteristic length scale and r̂ is a three-dimensional position vector.
We take this opportunity to define a Knudsen number

Kn= λ̂e

L̂
=
√

π

2θe

µ̂e

ρ̂eL̂
, (2.4)

where λ̂e and µ̂e are the mean free path and dynamic viscosity at the equilibrium
state, respectively. As in Struchtrup & Torrilhon (2003), we define a scaled Knudsen
number, adopted purely for notational convenience:

Kn′ =√2/πKn. (2.5)

In §§ 2.1–2.6 we seek fundamental solutions to the conservation equations alongside
three forms of closure: Navier–Stokes–Fourier (§§ 2.1 and 2.4); Grad’s 13-moment
equations (§§ 2.2 and 2.5); and the regularised 13-moment equations (§§ 2.3 and 2.6).

In §§ 2.1–2.3 the fundamental solutions sought correspond to the steady-state flow
response of the fluid to a point body force:

∇ · v = 0, (2.6a)
∇p+∇ · S = fδ(r), (2.6b)
∇ · q= 0, (2.6c)

where δ is the Dirac delta function and fδ(r) represents a point force (f̂ = ρ̂eθ̂eL̂2f ) at
the origin (r= 0). If all flow variables tend to their equilibrium values as ‖r‖→∞
an analytical solution can be obtained – if the Navier–Stokes closure is adopted, this
solution is the Stokeslet (see § 2.1). To arrive at the simplest non-trivial solution, a
constant temperature is prescribed, such that (2.2) becomes p= ρ.

In §§ 2.4–2.6 the fundamental solutions sought correspond to the steady-state
response of the fluid to a point heat source:

∇ · v = 0, (2.7a)
∇p+∇ · S = 0, (2.7b)
∇ · q= g δ(r), (2.7c)

where g δ(r) represents a point heat source at the origin (ĝ= ρ̂eθ̂
3/2
e L̂2g). Again, it is

assumed that all flow variables tend to their equilibrium values as ‖r‖→∞. In these
cases, to be complementary to the solutions obtained in §§ 2.1–2.3, constant pressure
and stationary solutions are sought (which from (2.2) implies θ =−ρ).

The derivation of the Stokeslet in § 2.1 is well documented (see, e.g. Pozrikidis
1992; Lisicki 2013), but which we have included for completeness and to aid the
exposition of later derivations.

2.1. The Stokeslet
In this section we wish to find an isothermal solution to the conservation equations
(2.6) closed by the Navier–Stokes–Fourier constitutive relations:

S =−2Kn′∇v, (2.8a)
q=−(15/4)Kn′∇θ. (2.8b)
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Fundamental solutions to moment equations 417

The overline denotes the traceless and symmetrical component of the tensor, i.e. ∇v=
(1/2)(∇v+∇vT)− (1/3)I∇ · v, where I is the identity matrix. The solution we derive
in this section is the famous Stokeslet; a name coined by Hancock (1953). This term
is commonly used to refer to the velocity field, only; but for generality and clarity,
we use the phrase to encompass all variables in the solution (e.g. pressure and stress)
and denote these using the superscript ‘St’.

We start by determining the pressure field. The constant temperature (θ = 0) directly
provides solution to (2.6c) and (2.8b), i.e. qSt = 0. Now, combining the remaining
equations, (2.6a), (2.6b) and (2.8a), gives

∇p−Kn′1v = fδ(r), (2.9)

where 1 is the Laplacian. Taking the divergence of (2.9), and noting the commutative
property of the Laplacian and the divergence-free velocity field (2.6a), leads to:

1p= f · ∇δ(r). (2.10)

The well-known fundamental solution to Laplace’s equation, provides the useful
expression

δ(r)=−1
(

1
4π‖r‖

)
, (2.11)

which when substituted into (2.10) and commuting the Laplacian gives an explicit
expression for the pressure field generated by a point forcing (the Stokeslet pressure):

pSt = −f · ∇
(

1
4π‖r‖

)
, (2.12a)

= f · r
4π‖r‖3

. (2.12b)

Turning our attention to the velocity field, we substitute (2.11) and (2.12a) into (2.9):

1v = 1
Kn′

f · (I1−∇∇)
(

1
4π‖r‖

)
. (2.13)

We now choose an appropriate ansatz for v, guided by the right-hand side of (2.13):

v = 1
Kn′

f · (I1−∇∇)β(r), (2.14)

where β(r) is to be found. After substituting (2.14) into (2.13), and commuting the
Laplacian, we find

1β = 1
4π‖r‖ . (2.15)

Applying the Laplacian to both sides of (2.15), then substituting (2.11), leaves a
biharmonic equation for β with a Dirac delta function in the right-hand side:

11β =−δ(r). (2.16)

We can see immediately, then, that β is the fundamental solution to the biharmonic
equation:

β = ‖r‖
8π
. (2.17)
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Substitution of (2.17) back into the ansatz (2.14) gives the Stokeslet velocity field:

vSt = f
8π Kn′

·
(

I

‖r‖ +
rr
‖r‖3

)
. (2.18)

Finally, the Stokeslet stress tensor is obtained directly from the constitutive relation
(2.8a):

SSt = −2Kn′∇vSt, (2.19a)

= − f · r
4π

(
I

‖r‖3
− 3rr
‖r‖5

)
. (2.19b)

2.2. The Gradlet
We now find a solution to the conservation equations (2.6), but with the linearised
form of Grad’s 13-moment equations replacing the Navier–Stokes–Fourier closure:

S =−2Kn′∇v − 4
5 Kn′∇q, (2.20a)

q=− 15
4 Kn′∇θ − 3

2 Kn′∇ · S . (2.20b)

Adopting the naming convention of Hancock, we refer to the isothermal solution
of (2.6) and (2.20) as the Gradlet, and use a superscript ‘Gr’ to denote the various
components of the solution.

Given the conservation equations are unchanged by the introduction of an alternative
constitutive relation, a solution to the momentum equation (2.6b) is as derived in § 2.1,
i.e.

SGr = SSt, (2.21a)
pGr = pSt. (2.21b)

What remains is to find velocity and heat-flux vector fields to satisfy equations
(2.6a), (2.6c), (2.20a) and (2.20b). The heat flux comes directly from substitution of
(2.19b) and (2.21a) into (2.20b):

qGr = − 3
2 Kn′∇ · SSt, (2.22a)

= 3Kn′

8π
f ·
(

I

‖r‖3
− 3rr
‖r‖5

)
. (2.22b)

Note, this is an isothermal heat flux (since θ = 0): a heat flow generated by the
divergence of stress rather than a temperature variation.

Now we seek the associated velocity field. Substitution of (2.19a) and (2.21a) into
(2.20a) produces

∇vGr =∇vSt − 2
5∇qGr, (2.23)

which given the velocity and heat-flux fields must be divergence free ((2.6a) and
(2.6c)), gives us the Gradlet velocity:

vGr = vSt − 2
5 qGr, (2.24a)

= vSt − 3Kn′

20π
f ·
(

I

‖r‖3
− 3rr
‖r‖5

)
. (2.24b)
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2.3. The Reglet
In this section we consider the regularised form of Grad’s 13-moment closure, the
R13 equations (Struchtrup & Torrilhon 2003; Struchtrup 2005). In non-dimensional
and linearised form these are

S =−2Kn′∇v − 4
5 Kn′∇q+ 2

3 Kn′2(1S + 6
5∇∇ · S), (2.25a)

q=− 15
4 Kn′∇θ − 3

2 Kn′∇ · S + 9
5 Kn′21q. (2.25b)

Continuing Hancock’s naming convention, we refer to the isothermal solution of (2.6)
and (2.25) as the Reglet, denoting components of the solution using the superscript
‘Rg’.

As in § 2.2, the constitutive model does not modify the conservation laws, and thus
the Stokeslet solution for stress (2.21a) and pressure (2.21b) remain a solution to the
momentum equation (2.6b):

SRg = SSt, (2.26a)
pRg = pSt. (2.26b)

We start by finding the Reglet heat flux (qRg), which for convenience we decompose
into the Gradlet (qGr) and an additional component due to regularisation (q+):

qRg = qGr + q+. (2.27)

Substituting (2.21a), (2.22a) and (2.27) into (2.25b) gives:

1q+ − 5
9Kn′2

q+ =−1qGr. (2.28)

Combining equations (2.6b), (2.11) (2.12a), (2.21), (2.22a) gives

qGr =−3
2

Kn′f · (∇∇− I1)

(
1

4π‖r‖
)
, (2.29)

which we use to guide the following choice of ansatz for q+:

q+ =− 3
2 Kn′f · (∇∇− I1)(Φ(r)), (2.30)

where Φ(r) is to be found. Substitution of (2.29) and (2.30) into (2.28), and
combining with (2.11), gives

1Φ − 5
9Kn′2

Φ = δ(r). (2.31)

A quick inspection of (2.31) tells us that Φ is the fundamental solution to the
Helmholtz equation (which, again, is well known):

Φ =− e−γ ‖r‖

4π‖r‖ , (2.32)

where γ =√5/(3Kn′). Substituting this back into the ansatz of (2.30), and combining
with (2.27), yields an explicit expression for the heat-flux vector field:

qRg = qGr − 3Kn′

8π
e−γ ‖r‖f ·

[(
1+ γ ‖r‖ + γ 2‖r‖2

) ( I

‖r‖3
− 3rr
‖r‖5

)
+ 2γ 2rr
‖r‖3

]
. (2.33)
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To find the velocity field, we substitute (2.19a) and (2.21a) into (2.25a), to give

∇vRg =∇vSt − 2
5∇qRg + 16

15 Kn′∇∇ · SSt, (2.34)

where we have made use of the fact that 1SSt = 2∇∇ · SSt. Because the velocity and
heat-flux fields must be divergence free, and ∇ · (∇ · SSt)= 0, equation (2.34) allows
us to write

vRg = vSt − 2
5 qRg + 16

15 Kn′∇ · SSt. (2.35)

Finally, to arrive at the velocity field of the Reglet, we combine (2.22), (2.24a) and
(2.35):

vRg = vGr − 4Kn′

15π
f ·
(

I

‖r‖3
− 3rr
‖r‖5

)
+ 3Kn′

20π
e−γ ‖r‖f ·

[
(1+ γ ‖r‖ + γ 2‖r‖2)

(
I

‖r‖3
− 3rr
‖r‖5

)
+ 2γ 2rr
‖r‖3

]
.

(2.36)

2.4. The Thermal Stokeslet
In this section we find solutions to the conservation equations subject to a point
heat source, equations (2.7), rather than a point force. To be complimentary to the
Stokeslet, Gradlet and Reglet, derived above, in this and the following two subsections
we seek stationary isobaric fundamental solutions, i.e.

v = p= 0. (2.37)

For the Navier–Stokes–Fourier constitutive relations (2.8) we refer to the point
heat source solution as the Thermal Stokeslet and use the superscript ‘ThSt’ to
denote it (note, the solution has little to do with the Stokes equations, but this
naming convention provides consistency in differentiating the fundamental solutions
of §§ 2.1–2.3, corresponding to the steady-state response to a point force, from those
in §§ 2.4–2.6, corresponding to steady-state response to a point heat source).

The derivation of the Thermal Stokeslet begins by seeing that equations (2.7b) and
(2.8a) have the simple solution SThSt = 0, and (2.7c) and (2.8b) combine to give

15Kn′

4g
1θ =−δ(r). (2.38)

From this it apparent that θ is the fundamental solution to Laplace’s equation, i.e.

θThSt = g
15Kn′ π‖r‖ . (2.39)

On substitution of (2.39) back into (2.8b) we get the Thermal–Stokeslet heat flux:

qThSt = g r
4π‖r‖3

. (2.40)

2.5. The Thermal Gradlet
Now we solve the conservation laws with point heat source, equations (2.7), alongside
Grad’s linearised 13-moment closure (2.20), as introduced in § 2.2. We refer to the
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isobaric stationary fundamental solution we derive as the Thermal Gradlet, and use
the superscript ‘ThGr’ to denote it.

We start by combining (2.7b), (2.20b) and (2.37), which produces Fourier’s law
(2.8b); hence the temperature and heat flux of the Thermal Stokeslet can immediately
be identified as solutions:

θThGr = θThSt, (2.41a)
qThGr = qThSt. (2.41b)

What remains to be established is the thermal stress generated (i.e. the stress field that
arises, in this stationary flow, due to variations in heat flux). Substitution of (2.37),
(2.40) and (2.44b) into (2.20a), provides the stress tensor of the Thermal Gradlet:

SThGr = − 4
5 Kn′∇qThSt, (2.42a)

= −Kn′ g
5π

(
I

‖r‖3
− 3rr
‖r‖5

)
. (2.42b)

2.6. The Thermal Reglet
In this final subsection of derivation, we seek the isobaric and stationary solution to
(2.7) alongside the linearised R13 closure. We refer to this solution as the Thermal
Reglet and denote it by the superscript ‘ThRg’.

Equations (2.7b) and (2.37) ensure that the stress tensor is divergence free, thus the
linearised R13 relations (2.25) reduce to

S =− 4
5 Kn′∇q+ 2

3 Kn′21S, (2.43a)

q=− 15
4 Kn′∇θ + 9

5 Kn′21q. (2.43b)

Taking the divergence of (2.43a) tell us that 1q = 0, which reduces (2.43b) to
Fourier’s law (2.8b). As such, the temperature and heat flux of the Thermal Stokeslet
remain solutions:

θThRg = θThSt, (2.44a)
qThRg = qThSt. (2.44b)

We decompose the stress tensor of the Thermal Reglet (SThRg) into the Thermal
Gradlet (SThGr) and a component due to regularisation (S+):

SThRg = SThGr + S+, (2.45)

which with (2.42a) and (2.44), substitute into (2.43a) to give

3
2Kn′2

S+ −1S+ =1SThGr. (2.46)

Combining (2.7c), (2.11), (2.42a) and (2.44b), provides an alternate expression for the
Thermal Gradlet stress:

SThGr = 4g
5

Kn′
(
∇∇− 1

3
I1

)(
1

4π‖r‖
)
, (2.47)
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which we use to choose an appropriate ansatz for S+:

S+ = 4g
5

Kn′
(
∇∇− 1

3
I1

)
Ψ (r), (2.48)

where Ψ (r) is an unknown field. Substituting (2.47) and (2.48) into (2.46) gives

1Ψ − 3
2Kn′2

Ψ = δ(r). (2.49)

Because S+ has to be divergence free, 1Ψ must equal zero, which leaves

Ψ =−2Kn′2

3
δ(r), (2.50)

and tells us that S+= 0 for r 6= 0. As such, the Thermal–Reglet stress is equal to the
Thermal–Gradlet stress:

SThRg = SThGr. (2.51)

3. Comparison of fundamental solutions
In this section we compare the fundamental solutions derived in § 2 for each of the

three constitutive models; in § 3.1 we compare the isothermal, point force fundamental
solutions (the Stokeslet, Gradlet and Reglet) and then in § 3.2 the isobaric, stationary,
point heat source fundamental solutions (the Thermal Stokeslet, Thermal Gradlet and
Thermal Reglet).

3.1. Isothermal point force response
For each of the three constitutive models, the pressure and stress fields generated
by the point forcing are identical, and correspond to those associated with the
Stokeslet. The velocity field, however, is markedly different for the three models
(see (2.18), (2.24), and (2.36)); although evidently the Gradlet contains the Stokeslet,
and the Reglet contains the Gradlet (and thus the Stokeslet, too). It is also easy to
notice, that in the far field (i.e. as ‖r‖ � 1) all solutions reduce to the Stokeslet.
An equivalent observation being that as Kn′ → 0, the Stokeslet is reclaimed (as is
expected). Another noteworthy point is the presence of the decaying exponential
factor in the Reglet velocity (2.36), which is Knudsen-layer-like in form, though no
boundary exists in the fundamental solution. The factor is identical (in terms of the
spatial decay rate) to the exponential factor appearing in Knudsen-layer solutions of
the linearised R13 equations (Lockerby, Reese & Gallis 2005).

Figure 1 compares streamline plots of velocity responses of the Stokeslet (a), the
Gradlet (b) and the Reglet (c). (For the plots in this section the characteristic length
scale L has been set to the mean free path λe; thus Kn′= 1). What is most striking is
that, unlike for the Stokeslet where the x-component of the flow is positive everywhere
(i.e. has the same sign as the point force, indicated by the bold arrow at the origin),
the Gradlet and Reglet show regions of recirculation: a three-dimensional vortex-ring
structure is generated. Figure 2 provides a farther-field view. The Stokeslet velocity
streamlines are unchanged between figures 1(a) and 2(a), because the Stokeslet has
no intrinsic spatial scale. The Gradlet and Reglet, on the other hand, have a spatial
scale manifesting from the mean free path. As the field of view becomes much larger
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(a) (b) (c)
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FIGURE 1. (Colour online) Streamline plots of the velocity field generated by a point
force at the origin: a comparison of the Stokeslet (a, equation (2.18)), the Gradlet (b,
equation (2.24)) and the Reglet (c, equation (2.36)). Plots are in a plane containing the
point force (z=0), with a range ±1.8λe in the x and y directions. The bold arrow indicates
the direction of the point force.

(a)
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(c)
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2

4

–4

2–2–4 0 4

FIGURE 2. (Colour online) Streamline plots, as in figure 1, but with a farther-field view:
range ±4.25λe in the x and y directions.

than the mean free path, the velocity fields predicted by each constitutive relation tend
towards the Stokeslet.

In the absence of a temperature gradient, Fourier’s law (2.8b) does not predict a heat
flux. However, isothermal heat flux is a well-known rarefied gas effect (sometimes
called a mechanocaloric heat flux; Loyalka 1971), seen for example in low-speed
channel flows (Taheri & Struchtrup 2010). In figure 3, heat-flux streamlines of the
Gradlet (a; qGr) and the Reglet (b; qRg) are compared; both show a circulatory heat
flux, which, at the point of force, is in opposition to the direction of the velocity
fields and the force itself. A vortex-ring analogy can also be applied to describe
these heat-flux fields. The Gradlet shows a heat-flux ‘vortex ring’ with no core
region, whereas the Reglet predicts a heat-flux vortex ring with a clearly definable
diameter; approximately 4λe.

3.2. Isobaric point heat source response
In this section, we briefly compare the three solutions of the isobaric stationary
response to a point source of heat (the Thermal Stokeslet, Thermal Gradlet and
Thermal Reglet). All of the solutions describe a temperature that varies with ‖r‖−1,
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(a)
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FIGURE 3. (Colour online) Streamlines of the isothermal heat flux generated by a point
force at the origin (note, θ = 0): a comparison of the Gradlet (a, equation (2.22)) and the
Reglet (b, equation (2.33)). Plots are in a plane containing the point force (z= 0), with
a range ±2.7λe in the x and y directions. The bold arrow indicates the direction of the
point force.

and a radial heat flux that varies with ‖r‖−2. The major difference between the
solutions is in the prediction of a thermally generated stress field; the Thermal
Stokeslet predicts none.

Given the underlying symmetry, it is not surprising that the Thermal Gradlet and
Thermal Reglet stress fields (2.42b) and (2.51) can be described by a biaxial stress
state: a principal normal stress in the radial direction (σr) and a principal normal
stress in any perpendicular direction (σ⊥). The orientation of the maximum shear-
stress planes are found by a ±45◦ rotation of any radial plane (a plane containing the
radial axis) around that plane’s perpendicular axis. In the far field, both components
of the biaxial stress decay with ‖r‖−2; for the Thermal Gradlet and Thermal Reglet.
In these solutions, the ratio of the principal stress magnitudes is constant and equal
throughout the field: the radial normal stress is compressive (σr > 0), and three times
the magnitude of the perpendicular normal stress, which is tensional (σr < 0).

4. Superposition of the fundamental solutions
As a demonstration of the usefulness of the fundamental solutions derived in § 2,

we implement a simple superposition scheme (known as the MFS, amongst other
names; Fairweather & Karageorghis 1998; Young et al. 2006) for the prediction of
creeping external flows over arbitrary geometries (though the general approach is
valid for internal flows, too). The approach exploits the fact that, since the equations
are linear, a valid flow field can be generated by a superposition of any number and
distribution of the fundamental solution. We call the location of one fundamental
solution (where its origin lies) a singularity site. Placing these sites within a solid
object (as illustrated in figure 4) allows the degrees of freedom of each fundamental
solution (e.g. the magnitude and direction of f ) to be determined by satisfying
boundary conditions at nodes on the solid’s surface (boundary nodes); achieved
by solving a set of linear algebraic equations. In so doing, the dimensions of the
given problem are reduced from three to two, since the discretisation is performed
over the bounding surface not the flow volume. Furthermore, MFS is particular
convenient for external flows, since far-field equilibrium conditions are automatically
satisfied by each fundamental solution, and therefore also by any superposition of
them. The most notable drawback of the MFS is that singularity sites need to be
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Dilute gas

Singularity
sites

Boundary
nodes

Solid boundary

ith Stokeslet/
Gradlet/Reglet

Solid

Velocity at
the jth

boundary node

FIGURE 4. (Colour online) Illustration of the method of fundamental solutions (MFS).

placed in predetermined locations outside of the flow domain, introducing a degree
of arbitrariness to the solution. We remind the reader that the adoption here of MFS
is only for the purposes of providing a simple demonstration of the usefulness of the
fundamental solutions we have derived; even so, we will show that our results are
quite insensitive to the singularity site choice for the simple geometries we consider.
The MFS can be thought of as a convenient and instructive, less mathematically
rigorous, alternative to the boundary integral method (which also uses fundamental
solutions); a description of MFS is given in the undergraduate text on viscous flow by
Sherman, in the context of introducing the Stokeslet (Sherman 1990, pp. 282–283).

4.1. Implementation of the Gradlet–MFS
We use the subscript i to denote the ith of N singularity sites, and the subscript j
the jth of N boundary nodes; xs

i is the position of the ith singularity site and xb
j the

position of the jth boundary node. The vector from the ith singularity site to a position
x in the three-dimensional domain is then:

ri = x− xs
i , (4.1)

and the vector from the ith singularity site to the jth boundary node:

rij = xb
j − xs

i . (4.2)

In this demonstration we choose the Gradlet and Thermal Gradlet fundamental
solutions to construct global solutions. The R13 equations are known to have greater
accuracy, but for the purposes of a simple and clear demonstration the fundamental
solution to the original (unregularised) 13-moment equations has been used. Primarily,
this is due to greater complexity and number of R13 boundary conditions (Gu &
Emerson 2007; Rana & Struchtrup 2016). As such, this demonstration is the proof of
concept, leaving the implementation with the Reglet, Thermal Reglet and appropriate
boundary conditions, the focus of future work, as discussed in § 6.

Using the expression derived earlier for the Gradlet velocity (2.24), the velocity field
generated by superposition of N Gradlets (one at each singularity site) is

v =
N∑

i=1

f i · (J(ri)+ K (ri)), (4.3)
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where

J = 1
8π Kn′

(
I

‖r‖ +
rr
‖r‖3

)
and K =−3Kn′

20π

(
I

‖r‖3
− 3rr
‖r‖5

)
. (4.4a,b)

The Oseen tensor, J, can be identified as the Stokeslet component of the Gradlet
velocity. Fields generated by the superposition of the Thermal Gradlets (one at each
of the same N sites) are obtained similarly, e.g. for temperature:

θ =
N∑

i=1

gi

15πKn′‖ri‖ . (4.5)

In summation, the N Gradlets and N Thermal Gradlets, describe a thermal flow field
that is defined by 4N degrees of freedom: the magnitude of gi and three components
of f i, for each of the N singularity sites. Once these unknowns are established, by
appropriate boundary conditions, the entire flow field is described.

4.2. Boundary conditions
We adopt the standard boundary conditions for Grad’s 13-moment equations, taken
from Gu & Emerson (2007), for diffusely reflecting boundaries and with nonlinear
and regularisation terms omitted. Evaluated at the jth boundary node, they read:

vj = vw,j −
√

π

2
nj · Sj · (I − njnj)− 1

5
qj · (I − njnj), (4.6a)

θj = θw,j − 1
2

√
π

2
nj · qj −

1
4

nj · Sj · nj, (4.6b)

where the subscript ‘w’ denotes a wall temperature/velocity boundary condition
(distinct from the gas temperature/velocity) and nj is the unit vector normal to the
solid surface at the jth boundary node.

Using the relevant expressions derived in §§ 2.2 and 2.4 for the Gradlet and Thermal
Gradlet, flow variables can be evaluated at the jth boundary node:

vj =
N∑

i=1

f i · (J(rij)+ K (rij)), (4.7a)

θj =
N∑

i=1

gi

15πKn′‖rij‖ , (4.7b)

Sj = 5
3Kn′

N∑
i=1

(f i · rij)K (rij)+ 4
3

N∑
i=1

giK (rij), (4.7c)

qj =−
5
2

N∑
i=1

f i · K (rij)+ 1
4π

N∑
i=1

girij

‖rij‖3
. (4.7d)

Substitution of (4.7) into (4.6), and evaluating at each of the N boundary nodes (i.e.
j= 1 to N), produces a system of 4N linear equations with 4N unknowns; this can be
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r

y

z

x

FIGURE 5. (Colour online) Coordinate system for flow around a sphere: α is the
polar angle, φ is the azimuthal angle and r (= ‖x‖) is the radial coordinate. Flow
direction is in z, and the sphere is centred at the origin, with its boundary at r = 1
(non-dimensionalisation is performed with the sphere radius â).

solved, for example, by lower–upper (LU) decomposition. In the simple calculations
presented in this paper we have adopted the default algorithms implemented in
MATLABr.

For unbounded external flows, as considered in the following sections, the
superposed solution automatically tends to an equilibrium stationary state in the
far field (v = S = q= θ = 0 as ‖x‖→∞). This is a convenient feature of MFS for
external flows.

5. Application to creeping non-equilibrium gas flows around spheres
In the following subsections we consider two configurations of spheres in creeping

flow, to demonstrate both the accuracy of the Gradlet–MFS and the geometrical
flexibility that the method affords. It is important to stress that the primary purpose
of this section is not to investigate or comment on the physical accuracy of moment
equations (a topic that is covered extensively, elsewhere: see Struchtrup & Taheri
2011; Torrilhon 2016) but to illustrate the numerical accuracy and convenience of
the MFS implementation of higher-order fundamental solutions. In short, it is about
verification not validation. Even so, in § 5.1.3 we will present a comparison with
experiment and results from kinetic theory, since they are readily available for this
case, and it is useful to know how the basic equations (Grad’s) perform; while noting
that the regularised (R13) equations are known to perform better.

5.1. Creeping flow around a single isothermal sphere
In this section we consider steady-state low-speed flow around a perfect sphere of
radius â; the sphere’s temperature is kept uniform and equal to that of the gas in the
far field (θw = 0); diffusely reflecting boundaries are assumed. The coordinate system
is illustrated in figure 5, where α is the polar angle, φ is the azimuthal angle and r
is the radial coordinate. We simulate a translating sphere in a fixed reference frame
(vw=[00−U∞]), with a stationary flow imposed at the far field (i.e. v= 0 as r→∞);
however, as is conventional, we present the results in a reference frame moving with
the sphere, as illustrated in figure 5 (i.e. vw = 0 and v = [0 0 U∞] as r→∞).
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For all results in the following sections, non-dimensionalisation has been performed
as described above, in (2.3), using the far-field temperature and density, and using the
sphere radius (L̂= â).

The sphere’s boundary nodes are located at:

α = iπ/(Nα + 1), (5.1a)
φ = 2π( j− 1)/Nφ, (5.1b)

r= 1, (5.1c)

and at the two poles, where i is the polar node index (i = 1 to Nα) and j is the
azimuthal node index ( j= 1 to Nφ). In total there are N= (NαNφ + 2) boundary nodes.

There are an equal number of singularity sites located inside the sphere. These
points are defined by (5.1a) and (5.1b), but with r = 0.2 (i.e. they are radially inset
from the surface). We will investigate the effect of this choice in § 5.1.3.

For the purposes of verification, we compare our numerical results for the
isothermal sphere flow to an analytical solution derived by Young (2011). As we
have done, Young adopted the linearised form of Grad’s 13-moment equations (2.20)
and used boundary conditions equivalent to those presented in (4.6).

5.1.1. Young’s analytical solution
The analytical solution derived by Young (2011) is for the general case of a

conducting sphere within both a uniform flow and a temperature gradient. In this
section we consider the specific solution pertaining to a monatomic gas, purely
diffusive surfaces, an infinitely conducting sphere (producing a uniform temperature)
and a uniform far-field temperature. These conditions correspond to the following
values for the coefficients used in Young’s paper: Ktc = 3/4, Cm = 1, Ce = 15/8,
Λ→∞. The solution is then:

ur =U∞

(
1+ Bp

r
− 1+ Bp

r3

)
cos α, (5.2a)

uα =−U∞

(
1+ Bp

2r
+ 1+ Bp

2r3

)
sin α, (5.2b)

θ = U∞Bt

r2
cos α, (5.2c)

where

Bp =− 60π+ 345πKn+ 450(1+π)Kn2

40π+ 270πKn+ 18(25π+ 18)Kn2 + 648Kn3
, (5.3)

Bt =−
√

π/2
30Kn2 + 180(1+ 1/π)Kn3

20π+ 135πKn+ 9(25π+ 18)Kn2 + 324Kn3
, (5.4)

and the standard Knudsen number Kn (see (2.4)) is based on the sphere radius.
The dimensional drag force F̂d (taken from equation (32b) of Young’s paper) is as
follows (two typographical errors have been corrected – a missing parenthesis in the
denominator and a missing Kn in the first parenthesis of the numerator):

F̂d = 6πµ̂â

[
(1+ 2Kn) (1+ 15

4 Kn)+ 15
2π

Kn2

(1+ 3Kn)
(
1+ 15

4 Kn+ 9
π

Kn2
)− ( 3

4 + 9Kn) 6
5π

Kn2

]
. (5.5)

Note, it was Goldberg (1954) who first attempted this solution, but his derivation
contained errors.
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FIGURE 6. (Colour online) Radial variation of: (a) radial velocity at α = 0; (b) polar
velocity at α = π/2; and (c) temperature at α = 0. Comparison of Young’s analytical
solution (· · ·) to the Gradlet–MFS solution with N = 66 boundary nodes (—), for three
Knudsen numbers (Kn = 0, 0.2, and 1). Note, the surface of the sphere is at r = 1 and
all plots are non-dimensional and normalised with the far-field velocity U∞.

5.1.2. Velocity and temperature profiles
In figure 6 we compare velocity and temperature profiles from equation (5.2)

with predictions from the Gradlet–MFS for a range of Kn; simulation parameters
are given in the caption. For all cases, the agreement between the analytical and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

60
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.606


430 D. A. Lockerby and B. Collyer

numerical solution is accurate to within the resolution of the image; the convergence
characteristics of the numerical to the analytical solution are explored in § 5.1.3.
Each of the calculations presented were computed in less than a second on a single
2.5 GHz Intel Core i7 processor.

Figure 6(a) is a plot of the radial component of velocity (ur) against r at α=0 (refer
to figure 5 for the coordinate system). At the downstream pole of the sphere (r = 1,
α= 0), the impermeability condition creates a stagnation point for all Kn. The extent
of the downstream influence is significant for all cases, but, perhaps intuitively, it is
reduced with increasing Kn. However, even at Kn= 0.2, only at 130 radii downstream
of the sphere does the velocity reach 1 % of the far-field velocity. This highlights
a common difficulty in simulating external creeping flow within finite domains, i.e.
the domain has to be very large; a problem that techniques based on fundamental
solutions avoid. Figure 6(b) shows the polar component of velocity (uα) against r at
α =π/2. The non-zero velocity at the sphere’s surface (r= 1) for Kn> 0 is velocity
slip, which increases with Kn, as expected.

Figure 6(c) shows the radial temperature variation at α= 0. (Note, θ = 0 at α=π/2,
because of the symmetry of the geometry and the linearity of the equations). The
generation of a temperature variation around an isothermal translating sphere (held at
the same temperature as the far field) is a counter-intuitive non-equilibrium gas effect;
a manifestation of the stress and heat-flux coupling described by Grad’s family of
equations. This effect has been observed in linearised R13-equation (Torrilhon 2010)
and Boltzmann-equation (Takata, Sone & Aoki 1993) solutions to the same problem.

5.1.3. Drag predictions and numerical convergence
Adopting the MFS here is for convenience and simplicity; fundamental solutions

could be implemented in more accurate methods (e.g. the boundary integral method).
Nonetheless, we briefly consider the convergence characteristics of the Gradlet–MFS
in this section. As a measure of global error (ε), we use the closeness of the numerical
prediction of total drag force to the analytical value (5.5):

ε =
∣∣∣∣Fd,MFS − Fd

Fd

∣∣∣∣ , (5.6)

where Fd,MFS is the drag force predicted by the Gradlet–MFS, obtained simply by
summing the force strengths of the individual Gradlets:

Fd,MFS =
N∑

i=1

f i · iz, (5.7)

where iz is a unit vector in the flow direction. Figure 7 shows the dependence of error
on the number of boundary nodes, for four different singularity site locations. The
result indicates very high accuracy, and rate of convergence, for all cases; even when
the singularities sites are translated (in the x-direction) relative to the boundary nodes,
breaking the symmetry of the numerical solution. The results also illustrate that higher
accuracy is obtained when the singularity sites are further away from the boundary
nodes; this is at the expense of poorer conditioning of the equation system to solve.

As explained above, determining the physical accuracy of Grad’s family of
equations is not the focus of this paper. Even so, having now established the
numerical accuracy of the Gradlet–MFS, it is useful perspective to compare the
drag force predictions to first-order slip analysis (Basset’s slip solution; Basset 1888),
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FIGURE 7. (Colour online) Numerical error of Gradlet–MFS drag prediction, ε, against
number of boundary nodes, N. Four singularity site distributions are used: sites located
on the surface of an origin-centred sphere with radius a = 0.2 (–∗–), a = 0.3 (–◦–) and
a= 0.4 (–A–); and sites located on the surface of a sphere centred at x= [0.1, 0, 0] with
radius a= 0.2 (–+–).

more accurate results (from kinetic theory; Sone & Aoki 1977) and experimental data
(Millikan 1923; Allen & Raabe 1982); figure 8 shows normalised drag force against
Kn. Grad’s linearised 13-moment equations show a major improvement on the Stokes
drag prediction (FS), and a significant improvement to first-order slip flow analysis
(Basset’s solution). However, the solution remains some way from both kinetic theory
and experiment. There are two points to make, here: (i) implementation with Reglets
(which would introduce a Knudsen-layer contribution) will improve the prediction
further (as seen by Torrilhon 2010); (ii) an advantage of Grad’s family of equations
lies in being able to explore qualitative flow behaviour in configurations that are more
complex than an isothermal and translating sphere (particularly arising from heat flux
and stress coupling). This second point is illustrated in the following section.

5.2. Flow generated between adjacent stationary spheres of fixed temperature
To illustrate the geometrical flexibility that an implementation of the fundamental
solution affords, we consider the creeping flow between two identical stationary
spheres (with centres fixed 2.5 sphere radii apart), held at different uniform
temperatures (having a difference 1θ ). Note, in Stokes flow, no mass flow is generated
by the temperature difference, because heat flux and stress are uncoupled.

Figure 9 shows temperature contour plots on a plane running through the centre
of both spheres (y= 0) at various Kn. (For consistency with our previous definitions,
the Knudsen number is based on sphere radius a; arguably, it could be based on
the sphere separation distance, a/2, doubling Kn). The contours show that, as to be
expected, the temperature jump at the sphere surfaces (the difference between the gas
temperature at the surface and the temperature of the surface itself) increases with Kn,
resulting in smaller gradients in the temperature field.

Figure 10 shows the velocity field generated between the two spheres (note, there
is no velocity field for Kn= 0). The flow field in figure 10(a) might, at first glance,
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FIGURE 8. (Colour online) Normalised drag force versus Knudsen number. Comparison
of Basset’s slip solution (Basset 1888) (— · —); Young’s solution of Grad’s linearised
13-moment equations, equation (5.5) (——); the Gradlet–MFS with N = 66 boundary
nodes (·); the kinetic theory solution due to Sone & Aoki (1977) (– –); and the
experimental data of Millikan (1923) fitted by Allen & Raabe (1982) (∗).
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FIGURE 9. (Colour online) Temperature contours (at y= 0) around adjacent and identical
stationary spheres having a fixed and uniform temperature difference 1θ : (a) Kn = 0;
(b) Kn = 0.1; (c) Kn = 0.5. The spheres are centred at x = [0, 0, ±1.25]; length scale
non-dimensionalisation and Kn definition uses the sphere radii (i.e. L̂ = â). Temperature
contour values are normalised with 1θ/2. The number of boundary nodes used in each
case is N = 396 (198 for each sphere).

be attributed to a thermal creep (also known as thermal transpiration: the tendency of
mass to be transported in the direction of surface gradients of temperature.) However,
thermal creep would tend to move the gas in a direction from cold to hot locations
(positive in z); so thermal creep is not the explanation. Instead, this is likely the
flow response to a thermally generated stress, known as a thermal stress flow (see
Sone 2002, for a range of interesting thermal stress flow configurations which run
in opposition to thermal creep flows). As the Knudsen number increases further,
something even more interesting happens: the flow around the spheres switches
direction (at around Kn = 0.2); see figure 10(b). This switch occurs at a Knudsen
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FIGURE 10. (Colour online) Velocity field (at y= 0) generated between stationary spheres
having a fixed and uniform temperature difference: (a) Kn = 0.1; (b) Kn = 0.5. See
figure 9 caption for other details. Glyph lengths are normalised to the maximum velocity
magnitude for each figure.

number that is low enough for us to be confident that Grad’s equations are at least
qualitatively accurate. The reason for the switch in direction with increasing Kn can
be explained by the weakening of temperature gradients (discussed above) leading to
lower gradients in heat flux, and thus lower thermally generated stresses. Temperature
gradients along the surface, on the other hand, appear to increase with Kn, so that
thermal creep eventually dominates, and the flow is reversed. However, the surface
temperature gradients tend to zero at the poles of each sphere, meaning thermal creep
will always be negligible there. This explains the existence of a region near the poles
of the spheres that appears to remain driven by thermally generated stress, moving
mass from hot to cold. The combined effect of the counter-flowing thermal creep and
thermal stress effects is a recirculating flow field. A similar competition of thermal
stress and thermal creep is discussed in Mohammadzadeh, Rana & Struchtrup (2015)
in the context of lid-driven cavity flow.

Figure 11 shows the total drag force on the two spheres against Kn (the force on
each sphere is equal, and in the same direction; there is no attractive or repulsive
component). The calculations have been performed with different numbers of boundary
nodes, to demonstrate the solution’s convergence.

6. Conclusions and future work
Fundamental solutions to Grad’s steady-state linearised 13-moment equations,

and their regularised equivalent, have been derived. Any linear partial differential
operator, with constant coefficients, has a fundamental solution (according to the
Malgrange–Ehrenpreis theorem). So, finding fundamental solutions, in the way we
have illustrated, offers a new approach to solving higher-order continuum equations for
low-speed non-equilibrium gas flows, in general. For example, fundamental solutions
can be found to the steady linearised Burnett equations (Chapman & Cowling 1970),
and their many variants. Future work can also include finding fundamental solutions to
R13-equation extensions for hard sphere molecules (Struchtrup & Torrilhon 2013) and
diatomic gas mixtures (Gupta, Struchtrup & Torrilhon 2016). Potentially, even, going
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FIGURE 11. (Colour online) Total non-dimensional force on identical, adjacent and
stationary spheres generated by a difference in sphere temperature (1θ̂ ), against Knudsen
number (based on sphere radii). Gradlet–MFS solutions with N = 132 (– –), N = 204 (—)
and N = 292 (· · ·) total boundary nodes.

beyond 13 moments, to the steady linearised regularised 26-moment equations (Gu
& Emerson 2009), and other moment-equation families; e.g. the maximum entropy
moment equations (McDonald & Groth 2013) and Eu’s equations (Myong 2004).

As an illustration of the utility of such fundamental solutions, in the context of
creeping rarefied flow modelling, we have implemented the Gradlet and Thermal
Gradlet into a method of fundamental solutions (a linear superposition scheme).
When applied to flow around a sphere, the scheme showed very fast convergence to
a published analytical solution with increasing boundary nodes. A typical simulation
presented in this paper (involving approximately 70 boundary nodes) is computed in
less than a second on a modern laptop (in this case, using a single 2.5 GHz Intel Core
i7 processor). Despite the numerical accuracy, a comparison with experimental data
illustrates, as is known, that though Grad’s equations are able to capture qualitative
phenomena beyond classical models (for instance mechanocaloric heat flux), they
are not quantitatively accurate for transitional Knudsen numbers. Since the linearised
R13 equations are formally accurate to higher Kn, the natural next step, now the
concept is proven, is to implement the Reglet and Thermal Reglet, with appropriate
boundary conditions (Gu & Emerson 2007; Rana & Struchtrup 2016), into a method
of fundamental solutions.

In § 5.2 the geometrical flexibility afforded by using a superposition of fundamental
solutions has been demonstrated, by exploring the flow between two adjacent spheres
(held at different uniform temperatures). In the longer term, implementation with
more efficient methods than the MFS, such as the boundary integral method (see
Pozrikidis 1992), will allow multiple interacting particles to be simulated, each,
potentially, with moving boundaries (e.g. deforming droplets); these are simulations
that are becoming increasingly tractable with the boundary integral method (Ying
et al. 2006; Veerapaneni et al. 2009).
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