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Abstract
In this paper, a brand-new adaptive fault-tolerant non-affine integrated guidance and control method based on
reinforcement learning is proposed for a class of skid-to-turn (STT) missile. Firstly, considering the non-affine char-
acteristics of the missile, a new non-affine integrated guidance and control (NAIGC) design model is constructed.
For the NAIGC system, an adaptive expansion integral system is introduced to address the issue of challenging
control brought on by the non-affine form of the control signal. Subsequently, the hyperbolic tangent function and
adaptive boundary estimation are utilised to lessen the jitter due to disturbances in the control system and the
deviation caused by actuator failures while taking into account the uncertainty in the NAIGC system. Importantly,
actor-critic is introduced into the control framework, where the actor network aims to deal with the multiple uncer-
tainties of the subsystem and generate the control input based on the critic results. Eventually, not only is the stability
of the NAIGC closed-loop system demonstrated using Lyapunov theory, but also the validity and superiority of the
method are verified by numerical simulations.

Nomenclature
LOS line of sight
V velocity
q pitch rate
nL normal accelerationl reference length
S reference area
m mass of the missile
Iyy moment of inertia around the pitch axis
Tα turning rate time constantr range along the LOS
Vr projections of relative velocities along to the LOS
Vλ projections of relative velocities orthogonal to the LOS
ATr projections of target acceleration along LOS
ATλ projections of target acceleration orthogonal to LOS
xM x-coordinate of the missile
yM y-coordinate of the missile
zM z-coordinate of the missile
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2 Wang et al.

xT x-coordinate of the target
yT y-coordinate of the target
zT z-coordinate of the target
STT skid-to-turn
IGC integrated guidance and control
FTIGC fault-tolerant integrated guidance and control
NAIGC non-affine integrated guidance and control
FTC fault-tolerant control
RL Reinforcement learning
RBFNN radial basis function neural network
BS-FTNAIGC backstepping fault-tolerant non-affine integrated guidance and control
ABE-FTNAIGC adaptive boundary estimation fault-tolerant non-affine integrated guidance and control
RBF-FTNAIGC radial basis function fault-tolerant non-affine integrated guidance and control

Greek symbol
α angle-of-attack
θ pitch angle
γM track angle
ρ the density of air
λ the LOS angle

1.0 Introduction
The integrated guidance and control (IGC) design method has gained significant attention since its ini-
tial proposal due to its ability to maximise the missile’s flight performance [1] and overall operational
effectiveness. By leveraging the coupling relationship between the guidance and control systems, it com-
bines the advantages of low design cost and robustness. Numerous research studies have been dedicated
to exploring this method by scholars. Several approaches have been studied for the design of integrated
guidance and control, including sliding mode control for designing sliding surfaces [2], optimal con-
trol methods [3], feedback linearisation [4], backstepping control method [5], adaptive control [6], and
active disturbance rejection control [7]. During the flight of the missile, various failures, such as rud-
der surface failures, sensor failures, and other mechanical failures, are commonly encountered in the
missile systems. Recent research works have focused on fault-tolerant control (FTC) challenges [8–10].
For instance, an adaptive barrier fast terminal sliding mode control method was proposed to mitigate
actuator failures in unmanned aerial vehicles [11]. In multi-intelligent systems with node failures and
switching topologies, a distributed adaptive fuzzy fault-tolerant control method has been suggested [12].
While there are few FTC-related studies in IGC systems, one literature review has addressed elevator
and rudder section failures within strict feedback IGC structures [10]. Asghar et al. [13] considered a
burned or broken tailplane failure and developed an IGC system for a ground-to-air missile. Zhao [14]
proposed a fault-tolerant control method for handling rudder surface effectiveness loss failures in the
vehicle.

Overall, the fault-tolerant integrated guidance and control (FTIGC) design method has attracted
extensive research efforts, and various approaches have been explored for the integrated guidance and
control system design. Nevertheless, the fault-tolerant controls discussed above are based on the trans-
formation of the vehicle model into an affine input form. The cases where each order of subsystem input
to the system is fully non-affine is not considered. In reality, the system is more realistic represented by
a non-affine projection. In addition, there is currently no fault-tolerant control design for the non-affine
form of the IGC model, with only the literature [15] considering non-affine aerodynamic characteris-
tics to build the IGC model of the STT missile. Undoubtedly, in practical engineering applications,
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many parameters of the missile flight and guidance system, such as torque, exhibit non-affine char-
acteristics. Therefore, in this paper, we aim to address the aforementioned problem by developing
a new NAIGC scheme for missiles that experience rapidly changing actuator failures and multiple
uncertainties from different sources. We describe the missile dynamics and interceptor target kine-
matics as a non-affine non-linear IGC system, which is more consistent with practical engineering
applications.

Reinforcement learning (RL) has gained significant attention as a learning control method due to
its ability to deal with unknown uncertainties and has been extensively researched in recent years [16–
20]. In Ref. [21], RL was introduced to address the distributed leader-follower output synchronisation
problem for linear heterogeneous systems with activities. Moreover, actor-critic structures are frequently
employed in reinforcement learning for uncertain systems [22, 23]. The critic network receives infor-
mation about the system from the task environment and gives a cost function to evaluate the control
performance. Based on the cost function, the actor network is used to generate the next control policy
for the actuator. Ouyang et al. [24] designed an actor-critic adaptive control method for tracking con-
trol of an uncertain elastic joint robot. The critical neural network was used to approximate the cost
function, while the actor neural network was used to handle system uncertainty and generate control
inputs for the actuator. Liu et al. [25] proposed an incremental reinforcement learning control method
with adaptive learning rate to improve the success rate of flight controllers. A distributed reinforce-
ment learning guidance strategy under angle-of-attack constraints was investigated in Ref. [26]. Pei
et al. [27] used the deep deterministic policy gradient algorithm to integrate guidance control into a
reinforcement learning framework to intercept targets using reinforcement learning-generated intelli-
gences, and numerically verified the effectiveness and robustness of the method. In the literature [28],
the IGC system was modeled as a reinforcement learning process based on a three degrees of freedom
motion model of the hypersonic vehicles in the longitudinal plane, and a proximal policy optimisation
algorithm-based IGC system was designed. It can be seen that the performance of reinforcement learn-
ing actor-critic is satisfactory for controlling the vehicle or guidance system. The model of the IGC
problem exhibits intricate nonlinear dynamics, encompassing non-linear relationships, non-affine terms
and uncertain disturbances. Simultaneously, the IGC problem necessitates a high level of certainty in
the control scheme, demanding precise system control in accordance with predetermined planning tra-
jectories. The reinforcement learning actor-critic approach has yet to be investigated for its applicability
when dealing with such complex models.

The sensor measurement bias, as well as the actuator effectiveness failure and bias failure generated
during the flight, can disturb the attitude control system, which makes the controller design more chal-
lenging. In addition, external disturbances and structural uncertainties should be considered, which can
also cause troubles during the controller design process. Inspired by the above, this paper will focus
on the FTIGC problem for a class of non-affine forms with structural uncertainties, actuator failures
and external disturbances in the NAIGC system. The main challenges of this paper are how to model
the NAIGC system and how to deal with the non-affine problem and various unknown uncertainties
and time-varying fault variations. By introducing an adaptive expansion integral system to deal with the
non-simulation problem and fully combining the reinforcement learning actor-critic architecture and the
approximation capability of radial basis function neural network (RBFNN), the unknown uncertainties
and fault problems can be well handled by using bounded adaptive control techniques. Compared with
existing results, the method proposed in this paper has the following contributions:

• To the best of the authors’ knowledge, the method applying actor-critic to the design of adaptive
fault-tolerant NAIGC is proposed for the first time and can be an effective solution of solving
multiple uncertainties.

• A new type of non-affine integrated guidance and control design model is established for a class
of STT missile with actuator failures and multiple uncertainties and can be extended to other
aircraft with non-affine structures.
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• Benefiting from the combination of adaptive boundary, RBFNN, and actor-critic, the missile’s
ability to respond to actuator failures and formulation and preliminaries of target manoeuvers
problem can be greatly improved.

2.0 Problem formulation and preliminaries
2.1 Non-affine IGC model
Consider the following nonlinear longitudinal model of the missile where the gravity and the coupling
between the longitudinal and lateral channel are neglected:

α̇ = q + −0.5ρV2Scx(α) sin α + 0.5ρV2S (cz1(α) + cz2(α)Mm) cos α

mV

V̇ = 0.5ρV2Scx(α) cos α + 0.5ρV2S (cz1(α) + cz2(α)Mm) sin α

m

q̇ = 0.5ρV2Sl
(
cm1(α) + cm2(α)Mm + cδem δe

)
Iyy

(1)

θ̇ = q

ṅL = −nL + Vq

Tα
γM = θ − α

where cx, cz1, cz2, cm1, cm2, cm
δe denote the aerodynamic coefficients.

The kinematics of a planar missile intercept target can be described as [29]:

ṙ = Vr

V̇r = V2
λ

r
+ ATr − sin (λ− γM) nL

λ̇= Vλ

r
(2)

V̇λ = −VλVr

r
+ ATλ − cos (λ− γM) nL

Considering the actuator fault, u(t) is defined as the actuator inputs. Then the output of the actuator
fault is expressed as

δe = λδ (t) u (t)+ dδ (t) (3)

where dδ represents the error of the actuator malfunction. λδ represents the scale factor of the actuator
gain fault. Assume that dδ is a bounded unknown variable, λδ takes values in the interval [0,1]. According
to the corollary of Ref. [10], when Vλ → k0

√
r, where k0 > 0 is a constant, the direct hit can be obtained.

Thus by defining χ = Vλ − k0

√
r, we can obtain the time derivative of χ.

χ̇ = −VλVr

r
+ ATλ − cos (λ− γM) nL − k0Vr

2
√

r
(4)

Meanwhile, according to the kinetic eqnarrays of nL and q, we can obtain

ṅL = − nL

Tα
+ V

Tα
q

q̇ = ρV2Sl (cm1(α) + cm2(α)Mm)

2Iyy

+ ρV2Slcδem

2Iyy

δe (5)
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Figure 1. The relationship between the outer and inner loops of the guidance and control integration.

Define x1 = χ, x2 = nL, x3 = q and

f1 = −VλVr

r
− k0Vr

2
√

r
, g1 = cos (λ− γM) (1 +	b1) x2, d1 = ATλ

f2 = −nL

Tα
, g2 = V

Tα
(1 +	b2) x3, d3 = ρV2Slcδem

2Iyy

(1 +	b3) dδ (6)

f3 = ρV2Sl (cm1(α) + cm2(α)Mm)

2Iyy

, g3 = ρV2Slcδem

2Iyy

(1 +	b3) λδu

We can get the following non-affine system,

ẋ1 = f1 (t, x1)+ g1 (t, x1, x2)+ d1 (t)+	f1 (t, x1)

ẋ2 = f2 (t, x1, x2)+ g2 (t, x1, x2, x3)+	f2 (t, x1, x2)

ẋ3 = f3 (t, x1, x2, x3)+ g3 (t, x1, x2, x3, u)+ d3 (t)+	f3 (t, x1, x2, x3) (7)
y = x1

where xi ∈ Ri, i = 1, 2, 3 are system state variables. y = x1 is the system output.	f i and	bi, i = 1, 2, 3 are
the uncertainty caused by the measurement error, in fact, 	bi ∈ [−0.5,+0.5]. Obviously the integrated
design model of guidance control is a third-order non-affine system, and the relationship between the
outer and inner loops is shown schematically in Fig. 1.

Remark 1. The non-affine IGC model established in this paper is more general, and the aerodynamic
characteristics of the missile and the rate of change of deflection are considered in the form of non-affine
functions, so that each subsystem contains non-affine inputs, which has great reference significance for
practical engineering applications, but also makes the design of the controller more difficult.

The design goal of this paper is to design a class of RBFNN and actor-critic based adaptive con-
trollers such that the control converges to zero in the presence of multiple factors such as actuator failure,
simultaneous changes in unknown target acceleration, and coupled multi-source uncertainty, and that
the relevant gain parameters in the controllers converge with bounds.

In this article, the following assumptions are necessary:

Lemma 1. [30] The following inequality holds for any ε> 0 and z ∈ R, we have

0 ≤ |z| − z tanh
( z

ε

)
≤ κε (8)

where κ is a positive number satisfying κ= e−(κ+1), i.e., κ= 0.2785
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Lemma 2. [31] (Cauchy inequality) ‖ • ‖ is the Euclidean paradigm of the vector, i.e. ||x|| = √
xTx.

For ∀x, y ∈ Rm, the following inequality holds:∣∣∣∣xTy
∣∣∣∣≤ ||x|| ||y|| (9)

Lemma 3. [32] (Young inequality) Given normal numbers p and q that satisfy 1/p + 1/q = 1, to any
x, y ∈ and any ε> 0, the following inequality is true:

|xy| ≤ εp

p
|x|p + 1

qεq
|y|q (10)

Lemma 4. [33] The Lyapunov function V(t) with initial bounded condition V(0), if the derivative of V(t)
satisfies

V̇ (t)≤ −CVV (t)+ EV (11)
where CV and EV are positive constants, V(t) is bounded.

Lemma 5. [34] For any constant ε> 0 and any variable z ∈ R, the following relationship holds

|z|< z2

√
z2 + ε2

+ ε (12)

Assumption 1. There exist positive constants g and ḡ, the following inequality holds

ḡ ≥
∣∣∣∣
∣∣∣∣∂gi (x̄i+1)

∂xj

∣∣∣∣
∣∣∣∣≥ g, i = 1, . . . , n. j = 1, . . . , n + 1. (13)

where x̄i+1 = [x1, . . . , xi+1], i = 1, . . . , n.xn+1 = u

Remark 2. This assumption is introduced to make the whole system controllable.

2.2 Neural networks for approximation
In this paper, we require to approximate the system uncertainty and unknown cost functions. System
uncertainty is estimated using RBFNN, which is a three-layer network. The first layer is called the input
layer, the second layer is called the hidden layer. RBFNN generally contains only one hidden layer, and
the weights of all neurons from the input to the hidden layer are 1. The third layer is called the output
layer. In this paper, we use the following Gaussian function, denoted as φ(x), as the radial basis function:
μj is the function centroid of the j-th node of the hidden layer, and σ j is the width of the j-th node:

φ (x)= exp

(
−
∣∣∣∣x −μj

∣∣∣∣2
2σ 2

j

)
(14)

The final output is defined as

y =

m∑
j=1

wj

n∑
i=1

exp

(
−||xi−μj||2

2σ 2
j

)
m∑

j=1

n∑
i=1

exp

(
−||xi−μj||2

2σ 2
j

) = ŴT� (x) (15)

where x ∈ Rn and y ∈ R are the input and output of RBFNN, respectively. Ŵ = [w1,. . .,wn]T ∈m

denotes the output layer weight matrix, m represents the number of hidden nodes in the hidden layer.
�(x) = [�1(x),. . .,�m(x)]T , where:

�j (x)=

n∑
i=1

exp

(
−||xi−μj||2

2σ 2
j

)
m∑

j=1

n∑
i=1

exp

(
−||xi−μj||2

2σ 2
j

) (16)
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Figure 2. Integrated guidance and control design block diagram.

It has been shown that for the smooth function, there exists an optimal weight [35], such that

f (x)= WT� (x)+ ε (x) (17)

where ε(x) is the approximation error, which can be made arbitrarily small by increasing the number of
nodes in the hidden layer.

Assumption 2. For the basic functions used for fitting in the actor-critic neural network mentioned later
�a(Za) and �J(Zc), they satisfy βa ≤ ||�a|| ≤ψ a,βJ ≤ ||�J|| ≤ψ J and for the derivatives of �a(Za) and
�J(Zc), they satisfy λa ≤ ||�̇a|| ≤ γa, λJ ≤ ||�̇J|| ≤ γJ. In addition, the derivatives of the estimation error
and the estimation error are bounded when using neural network fitting approximation simultaneously,
|εi(Z)| ≤ ςi,|ε̇i(Z)| ≤ ξi, where ςi,ξi are positive numbers.

3.0 Main results
To solve the problem of non-affine inputs in the system (7), an auxiliary integral system is introduced,
and as an auxiliary control input, the augmented system is expressed as

ẋ1 = f1 (t, x1)+ g1 (t, x1, x2)+ d1 (t)+	f1

ẋ2 = f2 (t, x1, x2)+ g2 (t, x1, x2, x3)+	f2

ẋ3 = f3 (t, x1, x2, x3)+ g3 (t, x1, x2, x3, u)+ d3 (t)+	f3 (18)
u̇ = uf

Remark 3. By adding an auxiliary integration system, the original third-order non-affine input system
is transformed into a fourth-order affine input system, which effectively overcomes the non-affine input
problem in the system (7).

The backpropagation design process, influenced by the non-affine input, consists of four steps, and
the actual control is given in Step 4, and the control box is shown in Fig. 2.

3.1 Design steps of the reinforcement learning adaptive fault-tolerant IGC method
Define the error variables as follows

z1 (t)= x1 (t)

z2 (t)= g1 (t)− g1d (19)
z3 (t)= g2 (t)− g2d

z4 (t)= g3 (t)− g3d
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where gid , i = 1, 2, 3 is the filtered signal of the virtual control law for the i-th subsystem. We introduce
a new variable gic obtained from

τiġid + gid = gic, gid (0)= gic (0) (20)

Remark 4. By introducing dynamic surfaces, the derivatives of the controllers in the simulation
programme can be transformed, which in turn reduces the complexity of the operations.

The boundary layer error is defined as

yi = gid − gic (21)

where gic is the virtual control law designed for the i-th subsystem. 0 < τi < 1, i = 1, 2, 3 is the filtering
time constant to be designed. Then combining Equations (20) and (21) we can obtain that

ẏi = ġid − ġic = −yi

τi

− ġic (22)

Furthermore, for the unknown nonlinear function, we define

θi = max

{
sup
t≥0

‖ Wi ‖ : i = 1, 2, 3

}
(23)

Let θ̂ be the estimations of θ . The corresponding estimation errors are defined as θ̃ = θ̂ − θ .

3.1.1 Step 1
Define D1 = supt ≥ 0||d1(t)||. Denote D̂1 as the estimate of D1. Moreover, assuming that the disturbance
error ε̄D1 estimated by the tanh function bounder is bounded:∣∣∣∣d1 − D̂1 tanh

(
z1

εD1

)∣∣∣∣≤ ε̄D1 (24)

where εD1 > 0 is a parameter to be designed. Combining Equations (18) and (21) and the first formula of
Equation (19), we can get that

ż1 = ẋ1 = f1 + z2 + g1c + y1 + d1 +	f1 (25)

Hence, it follows that

z1ż1 = z1 (f1 + z2 + g1c + y1 + d1 +	f1) (26)

RBFNN is introduced to approximate the nonlinearity 	f 1 in Equation (18). Obviously
	f 1 = W 1

T�1(x1) + ε	1 (1), ε	1 (x1) is the RBFNN estimation error with an upper bound εm1.
Based on Lemma 2, Lemma 3 and Lemma 5, we can obtain that

z1	f1 = z1W
T
1�1 (x1)+ z1ε	1 (x1)

≤ ∣∣∣∣WT
1

∣∣∣∣ ||z1�1 (x1)|| + ||z1|| εm1 ≤ θ1z1�̄11 + 1

2
z2

1 + 1

2
ε2

m1 (27)

�̄11 =
(

z1�
T
1 (x1) �1 (x1)√

z2
1�

T
1 (x1) �1 (x1)+ ε2

11

+ ε11

)

where ε11 > 0 is a parameter to be designed.

Remark 5. In this paper, in order to reduce the computational burden, so the upper bound of the neural
network weight parametrisation is used for adaptive compensation, or it can be solved directly with a
multi-dimensional vector without the upper bound, and the final controller as well as the form of the
adaptive update law are similar to this method.
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The virtual controller can be designed as follows

g1c = −k1z1 − θ̂1�̄11 − D̂1 tanh

(
z1

εD1

)
− f1 (28)

where k1 > 0 is a parameter to be designed.
Combining Equations (26)–(28), we can rewrite Equation (26) as

z1ż1 ≤ −k1z2
1 + z1 (z2 + y1)+ z1

(
d1 − D̂1 tanh

(
z1

εD1

))
− z1θ̃1�̄11 + 1

2
z2

1 + 1

2
ε2

m1 (29)

Define the adaptive update law of D̂1 is

˙̂D1 = ηD1 z1 tanh

(
z1

εD1

)
− ηD1σD1 D̂1 (30)

where ηD1 , σD1 > 0 are parameters to be designed.

3.1.2 Step 2
We define the cost function as follows

J (t)=
∫ T

0

c(t)dt =
∫ T

0

(g1 − g1d)2dt (31)

i.e, c =J̇.
Critic network: Due to the non-deterministic nature of the cost function, the neural network can be

used to estimate as

J(t) =�T
J�J (Zc)+ εJ (32)

where�J ∈ Rlc is the ideal critic network weight. lc represents the number of hidden nodes. εJ represents
the estimation error. Zc = [z2] is the input to the critic neural network. Define the estimate of the cost
function as

Ĵ (t)= �̂T
J�J (Zc) (33)

where �̂J is the actual critic network weight and we have �̃J = �̂J −�J with �̃J being the critic neural
network weight error. Then we define a critic error as

εcritic = c (t)+ �̂T
J �̇J (Zc) (34)

The function of the critic error can be designed as

Eritic = 1

2
ε2

critic (35)

In the framework of σ - modification, using the gradient descent method, we can obtain the update
law of �̂J as

˙̂
�J = −ηJ

∂Ecritic

∂�̂J

= −ηJ

∂Ecritic

∂εcritic
· ∂εcritic

∂�̂J

= −ηJεcritic�̇J (Zc)− σJηJ�̂J (36)

Actor network: with Equation (18), Equation (21) and the second formula of Equation (19), we can
get that

ż2 = ġ1 − ġ1d

= ∂g1

∂x1

ẋ1 + ∂g1

∂x2

ẋ2 − ġ1d (37)

= ∂g1

∂x1

(f1 + g1 + d1 +	f1)+ ∂g1

∂x2

(f2 +	f2 + z3 + y2 + g2c)− ġ1d

https://doi.org/10.1017/aer.2024.86 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.86


10 Wang et al.

Thus

z2ż2 = z2

(
∂g1

∂x1

(f1 +1 +d1 +	f1)+ ∂g1

∂x2

(f2 + z3 + g2c + y2 +	f2)− ẋ1d

)
(38)

By using Lemmas 2, 3 and 5, we have

z2	f1 = z2W
T
1�1 (x1)+ z2ε	1 (x1)

≤ ∣∣∣∣WT
1

∣∣∣∣ ||z2�1 (x1)|| + ||z2|| εm1 ≤ θ1z2�̄12 + 1

2
z2

2 + 1

2
ε2

m1 (39)

�̄12 =
(

z2�
T
1 (x1) �1 (x1)√

z2
2�

T
1 (x1) �1 (x1)+ ε2

12

+ ε12

)

where ε12 > 0 is a parameter to be designed. Based on the approximation of the neural network, the
uncertainty 	f 2 in Equation (18) is approximated as

	f2 (t, x1, x2)=�T
a�a (Za)+ εa (Za) (40)

where �a ∈ Rla is the ideal critic network weight with la denoting the number of hidden nodes,
Za = [x1,x2]T is the input to the actor neural network, and εa(Za) denotes the function reconstruction
error. Additionally, �̂a is the actual actor network weight, and �̃a = �̂a −�a, �̃a is the actor neural
network weight error. Then we design a actor error as

εactor = ∂g1

∂x2

�̃T
a�a (Za)+Ĵ (41)

We define the actor error function as

Eactor = 1

2
ε2

actor (42)

According to the gradient descent method, we can get the update law of �̂a as

˙̂
�a = −ηa

∂Eactor

∂�̂a

= −ηa

∂Eactor

∂εactor
· ∂εactor

∂�̂a

= −∂g1

∂x2

ηaεactor�a (Za) (43)

However, since �̃a is unknown, so that we let �̂a replace �̃a. Substituting Equation (41) into Equation
(43) yields

˙̂
�a = − ∂1

∂x2

ηa

(
∂g1

∂x2

�̂T
a�a (Za)+Ĵ

)
�a (Za) (44)

By introducing σ correction, Equation (44) can be rewritten as

˙̂
�a = −∂g1

∂x2

ηa

(
∂g1

∂x2

�̂T
a�a (Za)+Ĵ

)
�a (Za)− σaηa�̂a (45)

We design the following virtual controller

g2c = 1
∂g1

∂x2

⎛
⎝−k2z2 − ∂g1

∂x1

(
f1 + g1 + D̂1 tanh

(
z1
εD1

)
+ θ̂1�̄12

)
− ∂g1

∂x2

(
�̂T

a�a (Za)+ f2

)
− y1

τ1

⎞
⎠ (46)

where k2 > 0 is a parameter to be designed. With the aid of Equations (38)–(46) we know that

z2ż2 ≤ − k2z2
2 + ∂g1

∂x1

z2

(
d1 − D̂1 tanh

(
z1

εD1

))
− ∂g1

∂x1

z2θ̃1�̄12 + ∂1

∂x2

(z3 + y2)

− ∂g1

∂x2

z2�̃
T
a�a (Za)+ ∂g1

∂x2

z2εa (Za)+ 1

2
z2

2 + 1

2
ε2

m1 (47)
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3.1.3 Step 3
Define D3 = supt ≥ 0||d3(t)||, D̂3 is the estimate of D3. Furthermore, assuming that the disturbance error
ε̄D3 estimated by the tanh function bounder is bounded∣∣∣∣d3 (t)− D̂3 tanh

(
∂g2

∂x3

· z3

εD3

)∣∣∣∣≤ ε̄D3 (48)

where εD3 > 0 is a parameter to be designed. In view of Equations (18), (21) and the third formula of
Equation (19), we can get that

ż3 = ġ2 − ġ2d = ∂g2

∂x1

ẋ1 + ∂g2

∂x2

ẋ2 + ∂g2

∂x3

ẋ3 − ġ2d

= ∂g2

∂x1

(f1 + g1 + d1 +	f1)+ ∂g2

∂x2

(f2 + g2 +	f2) (49)

+ ∂g2

∂x3

(f3 + z4 + g3c + y3 + d3 +	f3)− ġ2d

Thus

z3ż3 = z3

(
∂g2
∂x1
(f1 + g1 + d1 +	f1)+ ∂g2

∂x2
(f2 + g2 +	f2)− ġ2d

+ ∂g2
∂x3
(f3 + z4 + g3c + y3 + d3 +	f3)

)
(50)

RBFNN is introduced to approximate the nonlinearity 	f 3 in Equation (18). Ideally
	f 3 = W 3

T�3(x1,x2,x3) + ε	3 (x1,x2,x3), and ε	3 (x1,x2,x3) is the RBFNN estimation error with an
upper bound εm3, then combining Lemmas 2, 3 and 5 yields

z3	f1 = z3W
T
1�1 (x1)+ z3ε	1 (x1)

≤ ∣∣∣∣WT
1

∣∣∣∣ ||z3�1 (x1)|| + ||z3|| εm1 ≤ θ1z3�̄13 + 1

2
z2

3 + 1

2
ε2

m1

�̄13 =
(

z3�
T
1 (x1) �1 (x1)√

z2
3�

T
1 (x1) �1 (x1)+ ε2

13

+ ε13

)

z3	f3 = z3W
T
3�3 (x1, x2, x3)+ z3ε	1 (x1, x2, x3) (51)

≤ ∣∣∣∣WT
3

∣∣∣∣ ||z3�3 (x1, x2, x3)|| + ||z3|| εm3 ≤ θ3z3�̄33 + 1

2
z2

3 + 1

2
ε2

m3

�̄33 =
(

z3�
T
3 (x1, x2, x3) �3 (x1, x2, x3)√

z2
3�

T
3 (x1, x2, x3) �3 (x1, x2, x3)+ ε2

33

+ ε33

)

where ε13 > 0, ε33 > 0 are parameters to be designed. Design the following control signals

g3c = 1
∂g2
∂x3

⎛
⎜⎜⎜⎜⎝

−k3z3 − ∂g2
∂x1

(
f1 + g1 + D̂1 tanh

(
z1
εD1

)
+ θ̂1�̄13

)
− ∂g2

∂x2

(
f2 + g2 + �̂T

a�a (Za)
)

− y2
τ2

− ∂g2
∂x3

(
f3 + θ̂3�̄33 + D̂3 tanh

(
∂g2
∂x3

· z3
εD3

))

⎞
⎟⎟⎟⎟⎠ (52)

where k3 > 0 is a parameter to be designed.
Combining Equations (50)–(52), it can be known that

z3ż3 ≤ −k3z2
3 + ∂g2

∂x3

z3 (z4 + y3)+ ∂g2

∂x1

z3

(
d1 − D̂1 tanh

(
z1

εD1

))

− ∂g2

∂x1

z3θ̃1�̄13 − ∂g2

∂x2 3

�̃T
a�a (Za)+ ∂g2

∂x2

z3εa (Za)− ∂g2

∂x3

z3θ̃3�̄33 (53)

+ ∂g2

∂x3

z3

(
d3 − D̂3 tanh

(
∂g2

∂x3

· z3

εD3

))
+ z2

3 + 1

2
ε2

m1 + 1

2
ε2

m3
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Define the adaptive update law of D̂1 as

˙̂D3 = ηD3

∂g2

∂x3

z3 tanh

(
∂g2

∂x3

· z3

εD3

)
− ηD3σD3 D̂3 (54)

where ηD3 , σD3 > 0 are parameters to be designed.

3.1.4 Step 4
In view of eqnarray Equations (18), (21) and the forth formula of Equation (19), we have

ż4 = ġ3 − ġ3d

= ∂g3

∂x1

ẋ1 + ∂g3

∂x2

ẋ2 + ∂g3

∂x3

ẋ3 + ∂g3

∂u
u̇ − ġ3d

= ∂g3

∂x1

(f1 + g1 + d1 +	f1)+ ∂g3

∂x2

(f2 + g2 +	f2) (55)

+ ∂g3

∂x3

(f3 + g3 + d3 +	f3)+ ∂g3

∂u
uf − ġ3d

Thus

z4ż4 = z4

[
∂g3

∂x1

(f1 + g1 + d1 +	f1)+ ∂g3

∂x2

(f2 + g2 +	f2)+ ∂g3

∂x3

(f3 + g3 + d3 +	f3)+ ∂g3

∂u
uf − ġ3d

]
(56)

With the aid of Lemmas 2, 3 and 5, it is obvious that

z4	f1 = z4W
T
1�1 (x1)+ z4ε	1 (x1)

≤ ∣∣∣∣WT
1

∣∣∣∣ ||z4�1 (x1)|| + ||z4|| εm1 ≤ θ1z4�̄14 + 1

2
z2

4 + 1

2
ε2

m1

�̄14 =
(

z4�
T
1 (x1) �1 (x1)√

z2
4�

T
1 (x1) �1 (x1)+ ε2

14

+ ε14

)

z4	f3 = z4
T
3�3 (x1, x2, x3)+ z4ε	3 (x1, x2, x3) (57)

≤ ∣∣∣∣WT
3

∣∣∣∣ ||z4�3 (x1, x2, x3)|| + ||z4|| εm3 ≤ θ3z4�̄34 + 1

2
z2

4 + 1

2
ε2

m3

�̄34 =
(

z4�
T
3 (x1, x2, x3) �3 (x1, x2, x3)√

z2
4�

T
3 (x1, x2, x3) �3 (x1, x2, x3)+ ε2

34

+ ε34

)

where ε14 > 0, ε34 > 0 are parameters to be designed. Select the final actual control law uf as

uf = 1
∂g3
∂u

⎛
⎜⎝− ∂g3

∂x1

(
f1 + g1 + D̂1 tanh

(
z1
εD1

)
+ θ̂1�̄14

)
− ∂g3

∂x2

(
f2 + g2 + �̂T

a�a (Za)
)

− ∂g3
∂x3

(
f3 + g3 + D̂3 tanh

(
∂g2
∂x3

· z3
εD3

)
+ θ̂3�̄34

)
− k4z4 − y3

τ3

⎞
⎟⎠ (58)

where k4 > 0 is a positive parameter to be designed.
In view of Equations (56)–(58), it can be known that

z4ż4 ≤ −k4z2
4 + z2

4 − ∂g3

∂x1

z4θ̃1�̄14 − ∂g3

∂x2

z4�̃
T
a�a (Za)

+ ∂g3

∂x2

z4εa (Za)− ∂g3

∂x3

z4θ̃3�̄34 + 1

2
ε2

m1 + 1

2
ε2

m3 (59)

+ ∂g3

∂x1

z4

(
d1 − D̂1 tanh

(
z1

εD1

))
+ ∂g3

∂x3

z4

(
d3 − D̂3 tanh

(
∂g2

∂x3

· z3

εD3

))
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Last but not least, we select the following adaptive update laws of θ̂ 1 and θ̂ 3

˙̂
θ1 = η1

(
z1�̄11 + ∂g1

∂x1

z2�̄12 + ∂g2

∂x1

z3�̄13 + ∂g3

∂x1

z4�̄14

)
− η1σ1θ̂1

˙̂
θ3 = η3

(
∂g2

∂x3

z3�̄33 + ∂g3

∂x3

z4�̄34

)
− η3σ3θ̂3 (60)

where η1, η3 > 0 are the gains of the adaptive update laws and σ 1, σ 3 > 0 are parameters to be designed.

3.2 Analysis of stability

Theorem 1. Considering the NAIGC system (7) in the presence of actuator faults and unknown uncer-
tainties, the controller (58), the parameter update laws (30), (54), the gradient descent update laws (36),
(45) and the adaptive update law (60). Suppose that Assumptions 1, 2 are satisfied, and the error of the
hyperbolic tangent function estimation disturbance is bounded. Then the following conclusions hold

• The output guidance strategy of the system eventually converges to near zero, i.e., precision
guided interception can be achieved.

• The boundedness of all signals can be guaranteed and the tracking error converges to zero.

We construct the Lyapunov function

V =
∑4

i=1

1

2
z2

i +
∑3

i=1

1

2
y2

i +
∑
i=1,3

1

2ηi

θ̃ 2
i +

∑
i=1,3

1

2ηDi

D̃2
i + 1

2
�̃T

aη
−1
a �̃a + 1

2
�̃T

J η
−1
J �̃J (61)

Combining Equations (22), (29), (53), (59) we can take the derivative of V (t) as

V̇ = z1ż1 + z2ż2 + z3ż3 + z4ż4 + y1ẏ1 + y2ẏ2 + y3ẏ3 + 1

2
z2

1 + 1

2
z2

2 + z2
3 + z2

4

+ 1

ηD1

D̃1
˙̂D1 + 1

ηD3

D̃3
˙̂D3 + 1

η1

θ̃1
˙̂
θ1 + 1

η3

θ̃3
˙̂
θ3 + �̃T

aη
−1
a

˙̂
�a + �̃T

J η
−1
J

˙̂
�J

≤ −k1z2
1 − k2z2

2 − k3z2
3 − k4z2

4 −
(
∂g1

∂x2

z2 + ∂g2

∂x2

z3 + ∂g3

∂x2

z4

) (
�̃T

a�a (Za)− εa

)

+ z1

(
d1 − D̂1 tanh

(
z1

εD1

))
+
(
∂g1

∂x1

z2 + ∂g2

∂x1

z3 + ∂g3

∂x1

z4

)(
d1 − D̂1 tanh

(
z1

εD1

))

+ ∂g2

∂x3

z3

(
d3 − D̂3 tanh

(
∂g2

∂x3

· z3

εD3

))
+ ∂g3

∂x3

z4

(
d3 − D̂3 tanh

(
∂g2

∂x3

· z3

εD3

))
(62)

−
(

z1�̄11 + ∂g1

∂x1

z2�̄12 + ∂g2

∂x1

z3�̄13 + ∂g3

∂x1

z4�̄14

)
θ̃1 −

(
∂g2

∂x3

z3�̄33 + ∂g3

∂x3

z4�̄34

)
θ̃3

+ z1 (z2 + y1)+ ∂g1

∂x2

z2 (z3 + y2)+ ∂g2

∂x3

z3 (z4 + y3)+ �̃T
aη

−1
a

˙̂
�a + �̃T

J η
−1
J

˙̂
�J + 2ε2

m1 + ε2
m3

− y2
1

τ1

− ġ1cy1 − y2
2

τ2

− ġ2cy2 − y2
3

τ3

− ġ3cy3 + 1

ηD1

D̃1
˙̂D1 + 1

ηD3

D̃3
˙̂D3 + 1

η1

θ̃1
˙̂
θ1 + 1

η3

θ̃3
˙̂
θ3

According to Lemma 1, we can obtain that

z1d1 ≤ |z1d1| ≤ D1

(
z1 tanh

(
z1

εD1

)
+ κεD1

)
∂g2

∂x3

z3

(
d3 − D̂3 tanh

(
∂g2

∂x3

· z3

εD3

))

≤ −D̃3

∂g2

∂x3

z3 tanh

(
∂g2

∂x3

· z3

εD3

)
+ D3κεD3 (63)
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Consequently, the sixth and eighth items of Equation (62) satisfy the following inequality

z1

(
d1 − D̂1 tanh

(
z1

εD1

))
≤ −D̃1z1 tanh

(
z1

εD1

)
+ D1εD1

∂g2

∂x3

z3

(
d3 − D̂3 tanh

(
∂g2

∂x3

· z3

εD3

))
≤ −D̃3

∂g2

∂x3

z3 tanh

(
∂g2

∂x3

· z3

εD3

)
+ D3κεD3 (64)

Combining Assumption 1 and Equations (24), (48), the seventh and ninth items of Equation (62)
satisfy

(
∂g1

∂x1

z2 + ∂g2

∂x1

z3 + ∂g3

∂x1

z4

)(
d1 − D̂1 tanh

(
z1

εD1

))
≤ 1

2
ḡ2z2

2 + 1

2
ḡ2z2

3 + 1

2
ḡ2z2

4 + 3

2
ε̄2

D1

∂g3

∂x3

z4

(
d3 − D̂3 tanh

(
∂g2

∂x3

· z3

εD3

))
≤ 1

2
ḡ2z2

4 + 1

2
ε̄2

D3
(65)

With Equations (64), (65) and the update laws (30), (43), (36), (54), Equation (62) can be rewritten
as

V̇ ≤ −k1z2
1 − k2z2

2 − k3z2
3 − k4z2

4 − σa�̃
T
a �̂a − σJ�̃

T
J �̂J + 1

2
z2

1 + 1

2
z2

2 + z2
3 + z2

4

− σD1 D̃1D̂1 + D1κεD1 − σD3 D̃3D̂3 + D3κεD3 + 1

2
ḡ2z2

2 + 1

2
ḡ2z2

3 + 1

2
ḡ2z2

4 + 1

2
ḡ2z2

4

− σ1θ̃1θ̂1 − σ3θ̃3θ̂3 + z1 (z2 + y1)+ ∂g1

∂x2

z2 (z3 + y2)+ ∂g2

∂x3

z3 (z4 + y3)

− y2
1

τ1

− ġ1cy1 − y2
2

τ2

− ġ2cy2 − y2
3

τ3

− ġ3cy3 + 2ε2
m1 + ε2

m3 + 3

2
ε̄2

D1
+ 1

2
ε̄2

D3
(66)

−
(
∂g1

∂x2

z2 + ∂g2

∂x2

z3 + ∂g3

∂x2

z4

)
�̃T

a�a (Za)+
(
∂g1

∂x2

z2 + ∂2

∂x2

z3 + ∂g3

∂x2

z4

)
εa

− ∂g1

∂x2

(
∂g1

∂x2

�̂T
a�a (Za)+Ĵ

)
�̃T

a�a (Za)− εcritic�̃
T
J �̇J (Zc)

In view of inequality 2ab � a2 + b2 and Assumption 1 we have

z1 (z2 + y1)+ ∂g1

∂x2

z2 (z3 + y2)+ ∂g2

∂x3

z3 (z4 + y3)

≤ z2
1 +

(
1

2
+ ḡ2

)
z2

2 +
(

1

2
+ ḡ2

)
z2

3 + 1

2
z2

4 + 1

2
y2

1 + 1

2
y2

2 + 1

2
y2

3 (67)

According to Lemma 3, we can get that

−ġ1cy1 ≤ y2
1

2τ1

+ τ1 |ġ1c|2

2

−ġ2cy2 ≤ y2
2

2τ2

+ τ2 |ġ2c|2

2
(68)

−ġ3cy3 ≤ y2
3

2τ3

+ τ3 |ġ3c|2

2
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Substituting Equations (67), (68) into Equation (66) yields that

V̇ ≤ −
(

k1 − 3

2

)
z2

1 −
(

k2 − 1 − 3

2
ḡ2

)
z2

2 −
(

k3 − 3

2
− 3

2
ḡ2

)
z2

3 −
(

k4 − 3

2
− ḡ2

)
z2

4

−
3∑

i=1

(
1

2τi

− 1

2

)
y2

i − ∂g1

∂x2

(
∂g1

∂2

�̂T
a�a (Za)+Ĵ

)
�̃T

a�a (Za)− εcritic�̃
T
J �̇J (Zc)

−
(
∂g1

∂x2

z2 + ∂g2

∂x2

z3 + ∂g3

∂x2

z4

)
�̃T

a�a (Za)+
(
∂g1

∂x2

z2 + ∂g2

∂x2

z3 + ∂g3

∂x2

z4

)
εa

− σa�̃
T
a �̂a − σJ�̃

T
J �̂J − σD1 D̃1D̂1 − σD3 D̃3D̂3 − σ1θ̃1θ̂1 − σ3θ̃3θ̂3 (69)

+ D1κεD1 + D3κεD3 + 3

2
ε̄2

D1
+ 1

2
ε̄2

D3
+
∑3

i=1

τi

2
|ġic|2 + 2ε2

m1 + ε2
m3

Based on Assumption 2, we can know that ||�a|| ≤ψ a, ||�J || ≤ψ J . The sixth term of Equation (69)
can be calculated that

− ∂g1

∂x2

(
∂g1

∂x2

�̂T
a�a (Za)+Ĵ

)
�̃T

a�a (Za)

= −
(
∂g1

∂x2

)2

�̃T
a�a (Za) �̂

T
a�a (Za)− ∂g1

∂x2

�̃T
a�a (Za) �̂

T
J�J (Zc)

= −
(
∂g1

∂x2

)2

�̃T
a�a (Za) �

T
a�a (Za)−

(
∂g1

∂x2

)2

�̃T
a�a (Za) �̃

T
a�a (Za)

− ∂g1

∂x2

�̃T
a�a (Za) �

T
J�J (z2)− ∂g1

∂x2

�̃T
a�a (Za) �̃

T�J (Zc) (70)

≤ 1

2
ḡ2
(
�̃T

a�a (Za)
)2 + 1

2
ḡ2
(
�T

a�a (Za)
)2 + ḡ

(
�̃T

a�a (Za)
)2

+ 1

2
ḡ
(
�T

J�J (c)
)2 + 1

2
ḡ
(
�̃T

J�J (Zc)
)2

≤ 1

2
ḡ2ψ 2

a

∣∣∣∣∣∣�̃a

∣∣∣∣∣∣2 + 1

2
ḡ2ψ 2

a ||�a||2 + ḡψ2
a

∣∣∣∣∣∣�̃a

∣∣∣∣∣∣2 + 1

2
ḡψ 2

J ||�J||2 + 1

2
ḡψ 2

J

∣∣∣∣∣∣�̃J

∣∣∣∣∣∣2

Based on Assumption 2, we can know that ||�̇J || ≤ γJ , |ε̇J | ≤ ξJ . The seventh term of Equation (69)
holds

− εcritic�̃
T
J �̇J (Zc)= −

(
�T

J �̇J (Zc)+ ε̇J + �̂T
J �̇J (Zc)

)
�̃T

J �̇J (Zc)

= −�T
J �̇J (Zc) �̃

T
J �̇J (Zc)− ε̇J�̃

T
J �̇J (Zc)−

(
�T

J + �̃T
J

)
�̇J (Zc) �̃

T
J �̇J (c)

= −2�T
J �̇J (Zc) �̃

T
J �̇J (Zc)− ε̇J�̃

T
J �̇J (Zc)− �̃T

J �̇J (Zc) �̃
T
J �̇J (Zc) (71)

≤ ∣∣∣∣−�T
J �̇J (Zc)

∣∣∣∣2 +
∣∣∣∣∣∣�̃T

J �̇J (Zc)

∣∣∣∣∣∣2 −
∣∣∣∣∣∣�̃T

J �̇J (Zc)

∣∣∣∣∣∣2 + 1

2

∣∣∣∣∣∣�̃T
J �̇J (Zc)

∣∣∣∣∣∣2 + 1

2
(−ε̇J)

2

≤ 1

2
γ 2

J

∣∣∣∣∣∣�̃J

∣∣∣∣∣∣2 + γ 2
J ||�J||2 + 1

2
ξ 2

J
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Based on Assumption 2, we can know that |εa| ≤ ςa. The eighth and ninth items of Equation (69) can
be formulated that

−
(
∂g1

∂x2

z2 + ∂g2

∂x2

z3 + ∂g3

∂x2

z4

)
�̃T

a�a (Za)+
(
∂g1

∂x2

z2 + ∂g2

∂x2

z3 + ∂g3

∂x2

z4

)
εa

≤ ḡ
(∣∣∣z2�̃

T
a�a (Za)

∣∣∣+ ∣∣∣z3�̃
T
a�a (Za)

∣∣∣+ ∣∣∣z4�̃
T
a�a (Za)

∣∣∣+ (|z2| + |z3| + |z4|) · |εa|
)

≤ ḡ

(
z2

2 + z2
3 + z2

4 + 3

2
ψ 2

a

∣∣∣∣∣∣�̃a

∣∣∣∣∣∣2 + 3

2
ς 2

a

)
(72)

Considering the following inequality

−σa�̃
T
a �̂a ≤ −σa

2

∣∣∣∣∣∣�̃a

∣∣∣∣∣∣2 + σa

2
||�a||2

−σJ�̃
T
J �̂J ≤ −σJ

2

∣∣∣∣∣∣�̃J

∣∣∣∣∣∣2 + σJ

2
||�J||2

−σD1 D̃1D̂1 ≤ −1

2
σD1 D̃2

1 + 1

2
σD1 D2

1

−σD3 D̃3D̂3 ≤ −1

2
σD3 D̃2

3 + 1

2
σD3 D2

3 (73)

−σ1θ̃1θ̂1 ≤ −1

2
σ1θ̃

2
1 + 1

2
σ1θ

2
1

−σ3θ̃3θ̂3 ≤ −1

2
σ3θ̃

2
3 + 1

2
σ3θ

2
3

Combining Equations (70)–(73), we can finally draw the following conclusion

V̇ ≤ −
(

k1 − 3

2

)
z2

1 −
(

k2 − 1 − ḡ − 3

2
ḡ2

)
z2

2 −
(

k3 − 3

2
− ḡ − 3

2
ḡ2

)
z2

3 −
(

k4 − 3

2
− ḡ − ḡ2

)
z2

4

−
∑3

i=1

(
1

2τi

− 1

2

)
y2

i − 1

2

(
σa − 5ḡψ 2

a − ḡ2ψ 2
a

) ∣∣∣∣∣∣�̃a

∣∣∣∣∣∣2 − 1

2

(
σJ − γ 2

J − ḡψ2
J

) ∣∣∣∣∣∣�̃∣∣∣∣∣∣2

−
∑
i=1,3

1

2
σDi D̃

2
i −

∑3

i=1

1

2
σiW̃

T
i W̃i (74)

≤ −CVV + EV

where

CV = min

⎧⎪⎪⎨
⎪⎪⎩

2
(
k1 − 3

2

)
, 2
(
k2 − 1 − ḡ − 3

2
ḡ2
)

, 2
(
k3 − 3

2
− ḡ − 3

2
ḡ2
)

, 2
(
k4 − 3

2
− ḡ − ḡ2

)
,(

1
τ1

− 1
)

,
(

1
τ2

− 1
)

,
(

1
τ3

− 1
)

, ηa

(
σa − 5ḡψ2

a − ḡ2ψ 2
a

)
, ηJ

(
σJ − γ 2

J − ḡψ2
J

)
,

ηD1σD1 , ηD3σD3 , η1σ1, η3σ3

⎫⎪⎪⎬
⎪⎪⎭

EV = D1κεD1 + D3κεD3 + 3

2
ε̄2

D1
+ 1

2
ε̄2

D3
+
∑
i=1,3

1

2
σDi D

2
i

+
(
σa

2
+ 1

2
ḡ2ψ 2

a

)
||�a||2 + 3

2
ḡς 2

a +
(
σJ

2
+ 1

2
ḡψ 2

J + γ 2
J

)
||�J||2 + 1

2
ξ 2

J

+
3∑

i=1

τi

2
|ġic|2 +

∑
i=1,3

1

2
σiθ

2
i + 2ε2

m1 + ε2
m3 (75)

https://doi.org/10.1017/aer.2024.86 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.86


The Aeronautical Journal 17

Table 1. Target location in different situations

Target location The range along theline of sight (LOS) Line-of-sight angle
Case 1 xT = 6, 000, yT = 7, 000 r(0) = 9, 219.54m λ= 0.86rad
Case 2 xT = 7, 000, yT = 8, 000 r(0) = 10, 630.14m λ= 0.85rad
Case 3 xT = 8, 000, yT = 9, 000 r(0) = 12, 041.59m λ= 0.84rad

Table 2. The actuator failures in different situations

λδ dδ

Case 1 λδ = 1 dδ = 0.01
Case 2 λδ = 0.95 + 0.01cos (6.28∗t) dδ = 0.01sin (3.14∗t)
Case 3 t > 2, λδ = 0.5 + 0.01cos (3.14∗t) t > 2, dδ = 0.02sin (6.28∗t)

t > 4, λδ = 0.4 + 0.02sin (6.28∗t) t > 4, dδ = 0.01cos (3.14∗t)

Table 3. The target accelerations in different situations

ATλ ATr

Case 1 ATλ = 10 ATr = 5
Case 2 ATλ = 10 + 5sin (6.28∗t) ATr = 15sin (3.14∗t)
Case 3 t > 2, ATλ = 20 + 5sin (6.28/0.22∗t) t > 2, ATr = 15sin (62.8∗t)

t > 4, ATλ = 15 + 2sin (1/0.22∗t) t > 4, ATr = 10sin (10∗t)

According to Lemma 4, V (t) is bounded. Hence, the parameters in V (t) are bounded. Furthermore,
the control signals are convergent and bounded so that we can draw the conclusion that the NAIGC
system is stable. The proof is completed.

4.0 Simulation
In this paper, the validity and effectiveness of the proposed method are verified by numerical simulations.
The effectiveness of the proposed method is verified by designing simulations considering the time-
varying maneuver acceleration of the target and the time-varying actuator failure of the missile flight
control. The robustness of the proposed method is also verified by comparing it with actor-critic without
reinforcement learning.

The initial conditions of the missile kinematic eqnarrays and the initial velocity of the target are
given in Ref. [10]. The aerodynamic and body parameters of the missile are given in Ref. [10] and
the angle of the elevator is limited to [−30◦,30◦]. The initial position of the missile is set as follows:
x(0) = 0m, y(0) = 0m. The flight path angle of the target is initialised γT (0) = 0. The initial conditions for
the actuator fault output are as follows: λδ(0) = 1, u(0) = 0, dδ(0) = 0. The initial values for the adaptive
parameters and neural network related parameters in the control step are as follows:

D̂1(0) = 10, D̂3(0) = 0, θ̂1(0) = θ̂2(0) = θ̂3(0) = 0

�̂a (0)= [0.2, 0.6, −0.3, 0.1, −0.5, 0.8, 0.15, −0.23, 0.35]

�̂J (0)= [0.3, 0.1, −0.7, 0.5, −0.64, 0.28, 0.85, −0.23, 0.35, −0.11, −0.92]

Different initial positions of the targets under different conditions, different actuator failures, different
time-varying target maneuver acceleration ATr and ATλ. Specific parameters are shown in Tables 1, 2
and 3, respectively. The control gain is set to k1 = 5, k2 = 20, k3 = 40, k4 = 150; The parameters of the
bounders of the tanh function are chosen as εD1 = 500, εD3 = 100; The parameters of the actor-critic
network weight gradient descent update law are chosen as ηa = 0.1, σ a = 50, ηJ = 0.1, σ J = 50. The
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Figure 3. Simulation profiles for Case 1. (a) The x coordinates of missile and target. (b) The y coor-
dinates of missile and target. (c) The guide variable χ. (d) The normal acceleration nL of missile. (e)
The pitch rate q of missile. (f) The actuator output δe. (g) The estimate of the upper bound of the inter-
ference norm D1. (h) The estimate of the upper bound of the interference norm D3. (i) The paradigm of
the parameter θ 1 estimate. (j) The paradigm of the parameter θ 3 estimate. (k) The actor network weight
norm. (l) The critic network weight norm.

parameters of the adaptive update law are chosen as ηD1 = 0.01, σ D1 = 20, ηD3 = 0.001, σ D3 = 1e4,
η1 = 0.001, σ 1 = 50, η3 = 5e − 7, σ 3 = 10; The parameters of the filter are chosen as
τ1 = 0.2, τ2 = τ3 = 0.1, The other parameters are c0 = 0.1, ε11 = ε12 = ε13 = ε33 = ε14 = ε34 = 1.

The simulation results for Case 1, Case 2 and Case 3 are shown in Figs 3, 4 and 5, respectively. The
horizontal coordinates of the missile and the target in the two-dimensional plane are shown in Figs 3(a),
4(a) and 5(a). The vertical coordinates of the missile and the target in the two-dimensional plane are
shown in Figs 3(b), 4(b) and 5(b). Figures 3(c), 4(c) and 5(c) show the system output y (guide variable
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Figure 4. Simulation profiles for Case 2. (a) The x coordinates of missile and target. (b) The y coor-
dinates of missile and target. (c) The guide variable χ. (d) The normal acceleration nL of missile. (e)
The pitch rate q of missile. (f) The actuator output δe. (g) The estimate of the upper bound of the inter-
ference norm D1. (h) The estimate of the upper bound of the interference norm D3. (i) The estimate of
the parameter θ 1. (j) The estimate of the parameter θ 3. (k) The actor network weight norm. (l) The critic
network weight norm.

χ). Figures 3(d), 4(d) and 5(d) display the normal acceleration nL of the missile. Moreover, Figs 3(e), 4(e)
and 5(e) show the pitch rate q of missile. The actuator outputs with validity faults and deviation faults
are depicted in Figs 3(f), 4(f) and 5(f). The estimate of the upper bound of the interference norm D1, D3

are given in Figs 3(g), (h), 4(g), (h), 5(g) and (h). The paradigms of the estimate of the parameter θ 1 and
θ 3 are shown in Figs 3(i), (j), 4(i), (j), 5(i) and (j). The weight paradigms for actor-critic neural network
are depicted in Figs 3(k), (l), 4(k), (l), 5(k) and (l). In conclusion, the results show that the interception
strategy χ converges to zero and maintains accurate hit-kill interception even when the target possesses
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Figure 5. Simulation profiles for Case 3. (a) The x coordinates of missile and target. (b) The y coor-
dinates of missile and target. (c) The guide variable χ. (d) The normal acceleration nL of missile. (e)
The pitch rate q of missile. (f) The actuator output δe. (g) The estimate of the upper bound of the inter-
ference norm D1. (h) The estimate of the upper bound of the interference norm D3. (i) The estimate of
the parameter θ 1. (j) The estimate of the parameter θ 3. (k) The actor network weight norm. (l) The critic
network weight norm.

time-varying acceleration and the missile has an actuator fault. As a result, the effectiveness of the
proposed method can be verified.

At the same time, we compare the proposed control method of this paper with the backstepping
fault-tolerant non-affine integrated guidance and control (BS-FTNAIGC) method, the adaptive bound-
ary estimation fault-tolerant non-affine integrated guidance and control (ABE-FTNAIGC) method, and
the radial basis function fault-tolerant non-affine integrated guidance and control (RBF-FTNAIGC)
method. The initial conditions are as follows : the relative distance between projectile and target
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Figure 7. Actuator output δe.

along line of sight (LOS) r(0) = 10, 816.654m, the angle between LOS and the horizontal reference
line λ= 0.588rad, the target location xT = 9, 000, yT = 6, 000, the target acceleration ATr = 5sin (45∗t),
ATλ = 10 + 4sin (7.8/0.022∗t). The actuator faults happen at t > 2s with λδ = 0.8, dδ = 0.05 and at t > 4s
with λδ = 0.6, dδ = 0.12. Other initial conditions are the same as above. The specific comparison is as
follows: Fig. 6 displays the system output in the four methods of the NAIGC system. The actuator fault
outputs in the four methods of the NAIGC system are shown as Fig. 7. According to the simulation
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results, it can be seen that the output of the controller and the control target of this paper are finally
stable and convergent. At the same time, the overshoot and oscillation of the control method in this
paper are smaller. Compared with other methods, the control method proposed in this paper can make
the variables more quickly stable, and the steady-state error after stability is smaller. It can be seen that
the actor-critic RBFNN has great advantages in the application of non-affine IGC systems.

5.0 Conclusion
In this paper, the NAIGC system is established for a class of STT missile with actuator failures, tar-
get acceleration variations and coupling multi-source uncertainties. The non-affine problem of the
established model can be solved by the newly introduced integral expansion system. By introducing
hyperbolic tangent function, RBFNN and reinforcement learning actor-critic neural network architec-
ture, different adaptive laws and gradient descent update laws are constructed, which can reduce the
deviation of actuator fault and target acceleration change, and effectively compensate the influence
of multi-source uncertainty. Therefore, this paper not only designs a non-affine IGC model which is
more suitable for practical application, but also pro-poses a new control method to apply reinforcement
learning actor-critic to NAIGC, which can achieve accurate hit guidance. Finally, the effectiveness and
superiority of the proposed method are verified by numerical simulation. In the future, we will study 3D
IGC and add constraints.
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