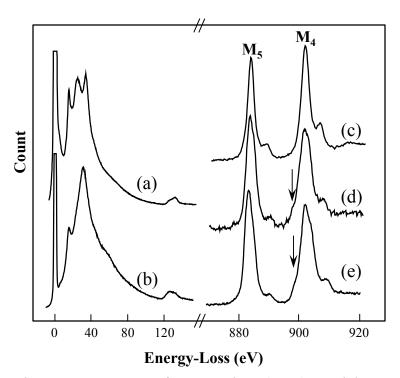
Electron Energy Loss Spectroscopy of CeO_{2-x} Nanoparticles

Lijun Wu, H.J. Wiesmann, A.R. Moodenbaugh, D.A. Fischer*, Yimei Zhu, and M. Suenaga

Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973 * National Institute of Standards and Technology, Gaithersburg, MD 20899

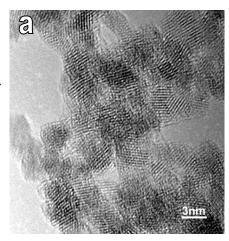

Ceria has been widely studied due to its applications, such as a catalyst in vehicle emissions system and an electrolyte material in solid oxide fuel cells. Recently, it has been reported that CeO_{2-x} nanoparticles exhibit lattice expansion and valence reduction of Ce ions with decreasing particle size^[1]. In this study, we use electron energy loss spectroscopy (EELS) to study the valence of Ce ions in CeO_{2-x} nanoparticles. The advantage of using EELS in a high resolution transmission electron microscope (TEM) is that the size and crystal structure of the individual particle is precisely determined. Other macro techniques require a substantial quantity of material with unavoidable variations in size.

The CeO_{2-x} nanoparticles were synthesized using thermal evaporation in a helium atmosphere. For comparison, micron-size CeO_2 and $Ce_2(WO_4)_3$ samples were prepared by grinding commercial powder. The EELS measurements were carried out in a 300 keV JEOL-3000FEG transmission electron microscope equipped with Gatan imaging filter.

Fig. 1(a-d) show the EELS spectra of micron-size CeO₂ and Ce₂(WO₄)₃ particles. The valences of Ce ions in micron-size CeO₂ and Ce₂(WO₄)₃ are nominally 4⁺ and 3⁺, respectively. The EELS spectra of Ce⁴⁺ and Ce³⁺ are quite different as shown in the figure, e.g. there are three peaks after zero loss in Ce⁴⁺, while only two peaks in Ce³⁺. A shoulder indicated by the arrow is present in the M₄ edge of Ce³⁺, but absent in the M₄ edge of Ce⁴⁺, and the tail in Ce⁴⁺ is higher than that in Ce³⁺. Moreover, the intensity of M₄ edge is higher than that of M₅ edge in Ce⁴⁺, reversed in Ce³⁺. We also performed x-ray absorption spectroscopy (XAS) for micron-size CeO₂ and Ce₂(WO₄)₃ at NSLS NIST/Dow U7A. The XAS spectra (Fig. 2) are similar to the corresponding EELS. However, with the higher energy resolution, a small peak indicated by the arrow before the M₄ edge in Ce³⁺ is resolved, and both M₄ and M₅ peaks in Ce³⁺ are split in the XAS spectra.

Fig. 3 shows the high resolution image and its corresponding electron diffraction pattern of the CeO_2 nanoparticles. In general, the particles are single crystals and their diameters 3 < d < 4 nm. Both lattice image and diffraction show that the particles are cubic with lattice constant 0.549 nm, which is consistent with that reported by Tsunekawa et al.^[1] EELS spectrum from a particle with d=3.4 nm is shown in Fig. 1(e). Comparing to the Ce^{3+} and Ce^{4+} , the spectrum of the nanoparticle is very close to that of Ce^{3+} as it has a similar shoulder indicated by the arrow at the M_4 edge and an M_4 edge intensity lower than that of the M_5 edge. This indicates that the valence of Ce ions in the nanoparticle is very close to Ce^{3+} . The quantitative measurement about the Ce^{3+}/Ce^{4+} ratio in CeO_{2-x} nanoparticles is underway.

This work is supported by Division of Materials Sciences, DOE, under DE-AC02-98CH10886. The NSLS is also supported by the DOE Div. Chem. Sciences. Certain commercial names are identified in this paper for purposes of clarity in presentation. Such identification does not imply endorsement by the National Institute of Standards and Technology.



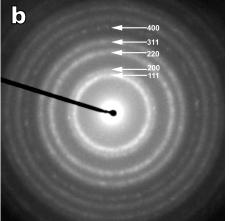

(a) (b) (b) Energy (eV)

Fig. 1. EELS spectra of CeO_2 and $Ce_2(WO_4)_3$ particles. (a,b) are the spectra of micron-size (a) CeO_2 and (b) $Ce_2(WO_4)_3$ particles for Energy 0 < E < 140 eV. (c-e) show the M_4 and M_5 edge of micron-size (c) CeO_2 , (d) micron-size $CeO_2(WO_4)_3$ and (e) nano-size CeO_2 particles with its d=3.4 nm. The arrows in (d) and (e) indicate the shoulder in $CeO_2(WO_4)_3$ and CeO_2 nanoparticles, respectively.

Fig. 2. XAS of micron-size (a) CeO_2 and (b) $Ce_2(WO_4)_3$ particles. Note, the arrow indicates the small peak before M_4 edge in $Ce_2(WO_4)_3$.

Fig. 3. High resolution image (a) and diffraction pattern (b) of CeO₂ nanoparticles. The size of CeO₂ particles varies from 3nm to 4nm. Both lattice image and diffraction show that the structure of CeO₂ nanoparticles is cubic with a=0.549nm.

Reference

[1] S. Tsunekawa et al., Phys. Rev. Lett. **85**, (2000) 3440.