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Abstract

If μ is a smooth measure supported on a real-analytic submanifold of R2n which is not contained in any
affine hyperplane, then the Weyl transform of μ is a compact operator.
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1. Introduction

There has been long-standing interest in finding quantum or noncommutative ana-
logues of classical results in harmonic analysis. For example, the noncommutative
analogue of the Hausdorff–Young theorem (in greater generality) was proven by Kunze
[6] in 1958. Subsequently, there have been more developments in this direction (see
[17]). The Weyl transform is a quantum analogue of the Fourier transform. In an earlier
work [7], we proved an analogue of a result of Stein about the decay of the Fourier
transform of measures supported on a hypersurface of positive Gaussian curvature.
Here, we prove a weaker version of that result which applies to submanifolds of
arbitrary codimension.

Let f ∈ L1(Rn). The Fourier transform of f, denoted by f̂ , is given by

f̂ (ξ) =
∫
Rn

f (x)e−2πix·ξ dx, ξ ∈ Rn.

The Riemann–Lebesgue lemma [11, Theorem 1.2] states that if f ∈ L1(Rn), then

lim
|ξ|→∞

f̂ (ξ) = 0.

More generally, the Fourier transform of a finite Borel measure λ on Rn is given by

λ̂(ξ) =
∫
Rn

e−2πix·ξ dλ(x), ξ ∈ Rn.
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If λ is absolutely continuous with respect to the Lebesgue measure m on Rn, that is,
λ = f m for some f ∈ L1(Rn), then the formula above reduces to the usual definition of
the Fourier transform of f and

lim
|ξ|→∞

λ̂(ξ) = 0.

In general, the Fourier transform of a measure need not vanish at infinity. For example,
the Fourier transform of δ0, the Dirac measure, is identically equal to 1. However, the
decay of the Fourier transform of a measure can be deduced from certain curvature
properties of the support of the measure.

Suppose M is a smooth submanifold of Rn. By a smooth measure on M, we mean a
measure of the form μ = ψσ, where σ is the measure on M induced by the Lebesgue
measure on Rn and ψ is a smooth function on Rn whose support intersects M in a
compact set.

It is well known that if μ is a smooth measure on a hypersurface in Rn, n ≥ 2, whose
Gaussian curvature is nonzero everywhere, then

| μ̂(ξ)| ≤ A|ξ|(1−n)/2,

where A is a constant independent of ξ (see, for example, [10, Theorem 1, page 348]
and [5, Theorem 7.7.14]).

In [7], an analogue of this result for the Weyl transform was proved. LetH = L2(Rn)
and B(H) be the set of bounded operators onH . If f ∈ L1(R2n), the Weyl transform of
f is the operator W( f ) ∈ B(H) defined by

(W( f )ϕ)(t) =
∫
Rn

∫
Rn

f (x, y)eπi(x·y+2y·t)ϕ(t + x) dx dy.

More generally, if λ is a finite Borel measure on R2n, the Weyl transform of λ is the
operator W(λ) ∈ B(H) defined by

(W(λ)ϕ)(t) =
∫
R2n

eπi(x·y+2y·t)ϕ(t + x) dλ(x, y).

The Weyl transform can be expressed in terms of the canonical representation of
the Heisenberg group. Recall that the reduced Heisenberg group G is the set of triples

{(x, y, z) | x, y ∈ Rn, z ∈ C, |z| = 1}

with multiplication defined by

(x, y, z)(x′, y′, z′) = (x + x′, y + y′, zz′eπi(x·y′−y·x′)).

According to the Stone–von Neumann theorem [3, Theorem 1.50], there is a unique
irreducible unitary representation ρ of G such that

ρ(0, 0, z) = zI.
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[3] The Weyl transform 3

The standard realisation of this representation is on the Hilbert spaceH by the action

(ρ(x, y, z)ϕ)(t) = zeπi(x·y+2y·t)ϕ(t + x). (1.1)

Thus, the Weyl transform of λ may be expressed as

W(λ) =
∫
R2n
ρ(x, y, 1) dλ(x, y), (1.2)

where the integral is the weak integral as defined in [9, Definition 3.26].
The analogue of the Riemann–Lebesgue lemma for the Weyl transform is the fact

that W( f ) is a compact operator if f ∈ L1(R2n) (see, for example, [3, Theorem 1.30]
and [14, Theorem 1.3.3]). If λ is absolutely continuous with respect to the Lebesgue
measure m on R2n, that is, λ = f m for some f ∈ L1(R2n), then W(λ) reduces to the
usual definition of the Weyl transform of f and hence W(λ) is a compact operator.

The main result of [7] is the following theorem.

THEOREM 1.1. Suppose S is a compact connected smooth hypersurface in R2n, n ≥ 2,
whose Gaussian curvature is positive everywhere. Let μ be a smooth measure on S.
Then, W(μ) is a compact operator. Moreover, when n ≥ 6 and p > n,

W(μ) ∈ Sp(H),

where Sp(H) denotes the p-th Schatten class ofH .

Naturally, the question of what happens if we consider a submanifold of arbitrary
codimension arises.

Let M be a smooth m-dimensional submanifold of Rn, 1 ≤ m ≤ n − 1, and let μ be a
smooth measure on M. It is well known that if M is of finite type, that is, at each point,
M has at most a finite order of contact with any affine hyperplane, then

|μ̂(ξ)| ≤ A|ξ|−1/k,

where k is the type of M inside the support of ψ (see [10, Theorem 2, page 351]). In
particular,

lim
|ξ|→∞

μ̂(ξ) = 0. (1.3)

If we consider M to be a real-analytic submanifold of Rn, then the condition of
being of finite type is equivalent to M not lying in any affine hyperplane.

The main result of this paper is the following theorem, which is an analogue of (1.3)
for the Weyl transform of a smooth measure supported on a real-analytic submanifold
of finite type.

THEOREM 1.2. Suppose M is a connected real-analytic submanifold of R2n which is
not contained in an affine hyperplane. Let μ be a smooth measure on M. Then, W(μ)
is a compact operator.

In Section 2, we define and study the twisted convolution of finite Borel measures,
which is an essential tool required to prove the main result which we prove in Section 3.
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In Section 4, we prove that if n = 1, then the conclusion of Theorem 1.2 holds for a
submanifold of finite type without the additional assumption of real analyticity. This
also proves Theorem 1.1 partially for n = 1.

In [2], Edgar and Rosenblatt proved that the translates of a nonzero function in
Lp(Rn), n ≥ 2, are linearly independent if and only if p < 2n/(n − 1). In [13, 17], the
quantum translation of an operator was defined and it was shown that if X is a nonzero
Hilbert–Schmidt operator, then the quantum translates of X are linearly independent.
The motivation for quantum translation may be found in [13] (see also [15, 16]).

In [7], as an application of Theorem 1.1, it was shown that for n ≥ 6, there exists a
nonzero compact operator on L2(Rn) whose quantum translates are linearly dependent.
By using an argument similar to that in [7], Theorem 1.2 implies the following result.

THEOREM 1.3. There exists a nonzero compact operator T on L2(Rn) and distinct
elements (x1, y1), . . . , (x4n+1, y4n+1) ∈ R2n such that {(x1, y1) · T , . . . , (x4n+1, y4n+1) · T} is
a linearly dependent set, where (xi, yi) · T = ρ(xi, yi, 1)Tρ(xi, yi, 1)−1 is the quantum
translation of T by (xi, yi), i = 1, . . . , 4n + 1.

2. Twisted convolution

Recall that if f , g ∈ L1(R2n), the twisted convolution of f and g, denoted by f 
 g, is

f 
 g(x, y) =
∫
Rn

∫
Rn

f (x − x′, y − y′)g(x′, y′)eπi(x·y′−y·x′) dx′ dy′, (x, y) ∈ R2n.

Twisted convolution turns L1(R2n) into a noncommutative Banach algebra. It is well
known that the Weyl transform is an algebra homomorphism from L1(R2n) to B(H),
that is, W( f 
 g) = W( f )W(g) (see, for example, [3, page 26] and [14, page 16]).

DEFINITION 2.1. Let μ and ν be finite Borel measures on R2n. The twisted convolution
of μ and ν is the measure on R2n, denoted by μ 
 ν, given by

μ 
 ν(E) =
∫
R2n

∫
R2n
χE(x + x′, y + y′)eπi(x·y′−y·x′) dμ(x, y) dν(x′, y′),

where E is a Borel subset of R2n.

It follows from Definition 2.1 that if f ∈ C0(R2n), then∫
R2n

f (x, y) d(μ 
 ν)(x, y) =
∫
R2n

∫
R2n

f (x + x′, y + y′)eπi(x·y′−y·x′) dμ(x, y) dν(x′, y′).

(2.1)

Let f , g ∈ L1(R2n). Let m denote the Lebesgue measure on R2n. Let μ f = f m and
μg = gm. If E is a Borel subset of R2n, then
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μ f 
 μg(E) =
∫
R2n

∫
R2n
χE(x + x′, y + y′)eπi(x·y′−y·x′) dμ(x, y) dν(x′, y′)

=

∫
R2n

∫
R2n
χE(x + x′, y + y′)eπi(x·y′−y·x′) f (x, y)g(x′, y′) dm(x, y) dm(x′, y′)

=

∫
R2n
χE(x, y)

∫
R2n

eπi(x·y′−y·x′) f (x − x′, y − y′)g(x′, y′) dm(x′, y′) dm(x, y)

=

∫
R2n
χE(x, y)( f 
 g)(x, y) dm(x, y) = μ f 
 g(E).

Therefore, the two definitions of twisted convolution coincide for L1 functions.
Twisted convolution turns M(R2n), the set of finite Borel measures on R2n, into

a noncommutative Banach algebra. The following theorem shows that the Weyl
transform is an algebra homomorphism from M(R2n) to B(H).

THEOREM 2.2. Let μ and ν be finite Borel measures on R2n. Then,

W(μ 
 ν) = W(μ)W(ν).

PROOF. By (1.2) and (2.1),

W(μ 
 ν) =
∫
R2n
ρ(x, y, 1) d(μ 
 ν)(x, y)

=

∫
R2n

∫
R2n
ρ(x + x′, y + y′, 1)eπi(x·y′−y·x′) dμ(x, y) dν(x′, y′)

=

∫
R2n

∫
R2n
ρ(x + x′, y + y′, eπi(x·y′−y·x′)) dμ(x, y) dν(x′, y′) (by (1.1))

=

∫
R2n

∫
R2n
ρ((x, y, 1)(x′, y′, 1)) dμ(x, y) dν(x′, y′)

=

∫
R2n

∫
R2n
ρ(x, y, 1)ρ(x′, y′, 1) dν(x′, y′) dμ(x, y)

=

∫
R2n
ρ(x, y, 1)W(ν) dμ(x, y) = W(μ)W(ν). �

3. The proof

To prove Theorem 1.2, we need a result analogous to a result of Ragozin about the
absolute continuity of the convolution of measures supported on analytic submanifolds
of Rn (see [8, Theorem 5.1]). In particular, Ragozin proved the absolute continuity of
the convolution square of the surface measure on a compact analytic hypersurface of
R

n. Later, Thangavelu proved that the twisted convolution of the surface measure on
a unit sphere in R2n with itself is absolutely continuous with respect to the Lebesgue
measure on R2n (see [12, Proposition 4.3]).

The following theorem is an analogue of [8, Theorem 5.1] for twisted convolutions.
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THEOREM 3.1. Let M1, . . . , Mk be connected real-analytic submanifolds of R2n such
that Tp1 M1 + · · · + Tpk Mk = R

2n for some choice of points pi ∈ Mi, i = 1, . . . , k, where
Tpi Mi denotes the tangent space at pi of Mi. If μi is a smooth measure on Mi,
i = 1, . . . , k, then μ1 
 · · · 
 μk is absolutely continuous with respect to the Lebesgue
measure on R2n.

Let Σk : M1 × · · · ×Mk → R2n be the map given by Σk(p1, . . . , pk) = p1 + · · · + pk.
We need the following lemma to prove Theorem 3.1.

LEMMA 3.2. There exists a smooth function ϕk : M1 × · · · ×Mk → C such that, for a
Borel set E ⊆ R2n,

μ1 
 · · · 
 μk(E) = (ϕk μ1 × · · · × μk)(Σ−1
k (E)),

that is, μ1 
 · · · 
 μk is the push-forward of the measure ϕk μ1 × · · · × μk by Σk.

PROOF. We will prove the result by induction on k. First, consider k = 2. Observe that
by Definition 2.1,

μ1 
 μ2(E) = (ϕ2 μ1 × μ2)(Σ−1
2 (E)), (3.1)

where ϕ2 : R2n × R2n → C is given by ϕ2((x1, y1), (x2, y2)) = eπi(x1·y2−y1·x2).
Assume that there exists a function ϕk−1 : M1 × · · · ×Mk−1 → C such that

μ1 
 · · · 
 μk−1(E) = (ϕk−1 μ1 × · · · × μk−1)(Σ−1
k−1(E)).

Then,

((μ1 
 · · · 
 μk−1) 
 μk)(E)

=

∫
R2n

∫
R2n
χE(x + xk, y + yk)eπi(x·yk−y·xk) d(μ1 
 · · · 
 μk−1)(x, y) dμk(xk, yk)

=

∫
R2n
· · ·
∫
R2n

[χE(x1 + · · · + xk, y1 + · · · + yk)eπi((x1+···+xk−1)·yk−(y1+···+yk−1)·xk)

· ϕk−1((x1, y1), . . . , (xk−1, yk−1))] dμ1(x1, y1) · · · dμk(xk, yk)

= (ϕk μ1 × · · · × μk)(Σ−1
k (E)),

where ϕk : M1 × · · · ×Mk → C is given by

ϕk((x1, y1), . . . , (xk, yk)) = ϕk−1((x1, y1), . . . , (xk−1, yk−1))eπi((x1+···+xk−1)·yk−(y1+···+yk−1)·xk).
�

Theorem 3.1 now follows by the argument in [8, Theorem 5.1]. Here, we give a
more streamlined proof using the co-area formula.

PROOF OF THEOREM 3.1. Let M1, . . . , Mk be connected real-analytic submanifolds of
R

2n. Then, M1 × · · · ×Mk is a connected real-analytic manifold. Let τ(M1×···×Mk) denote
the Riemannian measure on M1 × · · · ×Mk.

Observe that Σk is an analytic map. Let pi ∈ Mi, i = 1, . . . , k be such that
Tp1 M1 + · · · + Tpk Mk = R

2n. Then, the rank of Σk is 2n at the point (p1, . . . , pk).
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Therefore, the critical set of Σk is a proper analytic subvariety of M1 × · · · ×Mk and
hence has τ(M1×···×Mk) measure zero.

If μi is a smooth measure on Mi, i = 1, . . . , k, then μ1 × · · · × μk is a smooth measure
on M1 × · · · ×Mk and so ϕk μ1 × · · · × μk is a smooth measure on M1 × · · · ×Mk.

The proof of Theorem 3.1 now follows from the following lemma. �

LEMMA 3.3. Let M and N be Riemannian manifolds. Let τ and ν denote the
Riemannian measures on M and N, respectively. Let μ = ψτ be a smooth measure on
M. Suppose f : M → N is a differentiable map. If f is a submersion everywhere except
on a set of τ-measure zero, then the push-forward of μ by f is absolutely continuous
with respect to ν.

PROOF. Let Z = {x ∈ M | f is not a submersion at x}. Then, τ(Z) = 0 and so μ(Z) = 0.
LetJ f denote the normal Jacobian of f, that is, the absolute value of the determinant of
d f restricted to the orthogonal complement of its kernel. Then, J f is strictly positive
on the set of regular points of f, that is, on M \ Z.

Let f∗μ denote the push-forward of μ by f. For x ∈ N, let σx denote the Riemannian
measure on the manifold f −1(x). Let U ⊆ N be a Borel set. By the co-area formula (see
[1, page 159]),

f∗μ(U) = μ( f −1(U)) = μ( f −1(U) \ Z)

=

∫
f −1(U)\Z

dμ =
∫

f −1(U)\Z
ψ dτ

=

∫
U\ f (Z)

∫
f −1(x)

ψ(y)
J f (y)

dσx(y) dν(x),

that is,

d f∗μ
dν

(x) =
∫

f −1(x)

ψ(y)
J f (y)

dσx(y),

and so f∗μ is absolutely continuous with respect to ν. �

We need the following lemma to prove Theorem 1.2.

LEMMA 3.4. Let M be a connected real-analytic submanifold of R2n. Assume that M
is not contained in any affine hyperplane. Then, there exist points p1, . . . , pk ∈ M such
that Tp1 M + · · · + Tpk M = R

2n.

PROOF. Suppose
∑

p∈M TpM � R2n. Then, there exists a hyperplane Y in R2n such that∑
p∈M TpM ⊆ Y .
Fix p ∈ M. Let q ∈ M. Since M is connected, there exists a differentiable map

ξ : [0, 1]→ M such that ξ(0) = p and ξ(1) = q. By the fundamental theorem of
calculus,

q = p +
∫ 1

0
ξ̇(t) dt.

https://doi.org/10.1017/S0004972724000881 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000881


8 M. Mishra and M. K. Vemuri [8]

Since ξ̇(t) ∈ Y for t ∈ [0, 1] and Y is closed, it follows that q ∈ p + Y . This implies that
M is contained in the affine hyperplane p + Y , which is a contradiction.

Hence,
∑

p∈M TpM = R2n. By the Steinitz exchange lemma, there exist finitely many
points p1, . . . , pk ∈ M such that Tp1 M + · · · + Tpk M = R

2n. �

By possibly adding one more point, we can assume that the integer k obtained in
Lemma 3.4 is even.

PROOF OF THEOREM 1.2. Let M̃ = {−p | p ∈ M}. Then, M̃ is a connected real-analytic
submanifold of R2n. Observe that if p ∈ M, TpM = T(−p)M̃. Therefore, by Lemma 3.4,

Tp1 M + T(−p2)M̃ + · · · + Tpk−1 M + T(−pk)M̃ = R2n. (3.2)

Let μ be a smooth measure on M. Let μ̃ denote the push-forward of μ by the map
which sends p ∈ M to −p. Then, by Theorem 3.1 and (3.2), it follows that (μ 
 μ̃)k/2

is absolutely continuous with respect to the Lebesgue measure on R2n. Therefore,
W((μ 
 μ̃)k/2) is a compact operator.

Observe that W(μ̃) = W(μ)∗, where W(μ)∗ is the adjoint of the operator W(μ). By
Theorem 2.2,

W((μ 
 μ̃)k/2) = (W(μ)W(μ̃))k/2 = (W(μ)W(μ)∗)k/2.

Since W(μ)W(μ)∗ is self-adjoint and (W(μ)W(μ)∗)k/2 is compact, it follows that
W(μ)W(μ)∗ is compact. By the polar decomposition, it follows that W(μ) is
compact. �

4. Curve in R2

In this section, we prove the following result, which states that if n = 1, the
assumption of real analyticity can be removed from Theorem 1.2.

THEOREM 4.1. Suppose M ⊆ R2 is a connected smooth hypersurface of finite type. Let
μ be a smooth measure on M. Then, W(μ) is a compact operator.

We need the following lemma to prove this theorem.

LEMMA 4.2. Let γ : [a, b]→ R2 be a finite type unit-speed simple smooth curve. Let
δ : [c, d]→ R2 be a unit-speed simple smooth curve. Let μ and ν be smooth measures
on Im(γ) and Im(δ), respectively. Then, μ 
 ν is absolutely continuous with respect to
the Lebesgue measure on R2.

PROOF. Let E ⊆ R2 be a Borel set. Then, by (3.1),

μ 
 ν(E) = (ϕ2 μ × ν)(Σ−1
2 (E)),

where Σ2 : Im(γ) × Im(δ)→ R2 is the map given by Σ2(γ(s), δ(t)) = γ(s) + δ(t). Define
S : [a, b] × [c, d]→ R2 by

S(s, t) = γ(s) + δ(t).
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Let T = {(s, t) ∈ [a, b] × [c, d] | γ̇(s) = ±δ̇(t)}. Observe that T is the critical set of S. We
claim that T has area zero. Suppose T has a positive area. Then, by Fubini’s theorem,
there exists t ∈ [c, d] such that the set Z = {s ∈ [a, b] | γ̇(s) = ±δ̇(t)} has positive length.
By the Lebesgue differentiation theorem [4, Theorem 3.21], there exists s′ ∈ [a, b] such
that s′ is a point of density of Z. Then, there exist distinct sj ∈ Z such that the sequence
{sj} converges to s′, and so the sequence {γ̇(sj)} converges to γ̇(s′). Let�v be a unit vector
in R2 perpendicular to δ̇(t). Then,

〈γ̇(sj) , �v〉 = 〈±δ̇(t) , �v〉 = 0, j = 1, 2, . . . .

Hence, all the coefficients in the Taylor expansion of 〈γ̇(s) , �v〉 about s = s′ are zero.
This contradicts the fact that γ is a curve of finite type. Therefore, T has area zero.

Since Im(γ) and Im(δ) are smooth submanifolds of R2, it follows that Im(γ) × Im(δ)
is a smooth submanifold of R4. Let τ denote the Riemannian measure on Im(γ) ×
Im(δ). Since γ × δ is a smooth map and the set T has area zero, it follows that (γ × δ)(T)
has τ-measure zero.

Observe that (γ × δ)(T) is the critical set of Σ2. The proof now follows from
Lemma 3.3. �

PROOF OF THEOREM 4.1. Suppose M ⊆ R2 is a hypersurface of finite type. Let μ
be a smooth measure on M. Let μ̃ denote the push-forward of μ by the map which
sends p ∈ M to −p. It follows from Lemma 4.2 that μ 
 μ̃ is absolutely continuous with
respect to the Lebesgue measure on R2. Therefore, W(μ 
 μ̃) is compact. Observe that
W(μ̃) = W(μ)∗. By Theorem 2.2,

W(μ 
 μ̃) = W(μ)W(μ̃) = W(μ)W(μ)∗.

Since W(μ)W(μ)∗ is compact, it follows by the polar decomposition that W(μ) is
compact. �
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