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Abstract
This paper proposed an elastodynamic modeling method combined with independent displacement coordinates
and substructure synthesis technology. Firstly, the connecting rod was discretized, and the elastodynamic control
equation for each element was established. The multipoint constraint element theory, linear algebra, and singularity
analysis were used to identify the globally independent displacement coordinates of the manipulator. On this basis,
the elastodynamic model using the substructure synthesis for the 3-PRS parallel manipulator (PM) was developed,
with its natural frequencies distribution in the regular workspace discussed. The comparison with the finite-element
results showed that the maximum error of the first three-order natural frequencies was within 1.03%, which verified
the correctness of the analytical model. The proposed elastodynamic model included all the kinematic constraints of
the manipulator without increasing the Lagrangian multiplier. The method is computationally efficient and assesses
the dynamic behaviors of the mechanism at the predesign phase.

1. Introduction
Parallel manipulators (PMs) have presented great commercial value in high-speed processing and sort-
ing due to their high stiffness, excellent dynamic performance, and reconfigurability [1]. The successful
commercial parallel robots include the Delta robot [2], Tricept robot [3], Z3 robot [4], and Exechon
robot [5].

The dynamic index is crucial for the performance evaluation of PMs, and excellent dynamic
performance ensures stability and accuracy under the high-speed operation of PMs. An analytical elasto-
dynamic model can identify regions in the workspace with poor dynamics, which vibrates the structure
extremely. Research on the dynamic modeling of PMs has undergone a transition from rigid-body
dynamics to elastic dynamics modeling. Initially, the model is established under the assumption that
all components are rigid bodies [6]. Typical rigid-body dynamic models include Kane’s method [7],
Lagrangian formulation [8], and recursive Newton–Euler formulation [9]. The flexibility of compo-
nents is considered in dynamic models to evaluate the natural frequency that represents the mechanism’s
ability to resist vibration. The most common elastodynamic models mainly include the finite-element
method (FEM), Lagrangian formula, and substructure synthesis. Zhu et al. [10] established the 3-TPT
PM’s elastodynamic model using the FEM. Palmieri et al. [11] analyzed the natural frequencies of a
PM through the FEM. The FEM, which can achieve higher calculation accuracy, is usually used for
components with irregular sectional shapes. However, the grid needs to be remeshed for each configura-
tion, which causes a high computational cost. Therefore, the FEM is often used to verify the theoretical
model at the prototype stage.

Mathieu et al. [12] used the Lagrangian formulation to establish the elastodynamic model of the delta
PM to analyze its natural frequency. Coralie et al. [13] analyzed the first 90-order natural frequencies
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Figure 1. Schematic diagram of the 3-RPS PM.

of the planar manipulator by establishing its elastic dynamic model with the Lagrangian formulation.
However, the aforementioned Lagrangian formulation requires additional Lagrangian multipliers and
constraint equations, which increases the number of unknown variables and computational cost [14].

Substructure synthesis technology establishes the dynamic equation of each open-loop substructure
and then assembles it into a complete dynamic model through the kinematic constraint equation. Zhang
et al. [15] analyzed the natural frequency distribution in the workspace by developing an elastodynamic
model of the 3-DOF 3PRS PM with substructure synthesis. Liu et al. [16] predicted the natural frequency
distribution in the workspace by developing the elastodynamic model of the 8-PSS PM. Wu et al. [17]
established the elastodynamic model of hybrid robots based on the substructure synthesis technology.
Lian et al. [18–19] investigated the natural frequency distribution in the workspace by elastodynamic
modeling in terms of the FEM and substructure synthesis technology. Shankar et al. [20] studied the first
natural frequency of a 2-DOF translational parallel robot. Furthermore, Hoevenaars et al. [21] analyzed
the natural frequency of a planar parallel robot combined with the Jacobian analysis and constraint
equations. Wu et al. [22–23] proposed bond graph modeling to investigate the natural frequency of PMs.

The above mentioned method requires additional Lagrange multipliers or simultaneous kinematic
constraint equations to avoid violating the kinematic constraint of the mechanism. The main contribu-
tion of the work is that the elastodynamic model is established based on the independent displacement
coordinates and substructure synthesis technology. It consists of all the kinematic constraints of the
manipulator and has achieved high computational efficiency without kinematic constraint equations or
Lagrangian multipliers.

The remainder of the work is organized as follows. The 3-RPS PM’s structure and kinematic analysis
are described in Section 2. Section 3 presents the elastodynamic modeling of the 3-RPS PM based on
the substructure synthesis technology. Section 4 shows the conclusions.

2. Structure description and kinematic analysis of the 3-RPS PM
Figure 1 shows a 3-DOF 3RPS PM [24] that links the moving platform via the R-joint at point Bi to
the base through the spherical joint at point Ai. Each chain consists of upper and lower links with three
translational actuators. �A1A2A3 and �B1B2B3 are equilateral triangles (oA1 = oA2 = oA3 = r2, and OB1

= OB2 = OB3 = r1). The revolute joint’s axis is perpendicular to vector OBi and in the plane B1B2B3.
The physical and geometric parameters of the manipulator are as follows: material density ρ = 7820
kg/m3; shear modulus G = 77 GPa; moving platform’s thickness h = 20 mm; elastic modulus E = 200
GPa; link diameter di = 100 mm; r1 and r2 are 0.3 and 0.2 m, respectively.

https://doi.org/10.1017/S0263574723000723 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000723


2852 Yaping Gong and Junbin Lou

The global coordinate system, moving coordinate system, and limb coordinate system are respectively
attached at the base, moving platform, and limb, for kinematic analysis (see Fig. 1). Inverse kinematics
analysis of the mechanism is required to obtain the length of the connecting rod under a given end
position and posture of the mechanism, which is necessary for the dynamic performance evaluation of
the mechanism in the workspace.

According to the T&T angle [25], the rotation matrix from the moving system to the fixed system is
defined by:

R =
⎡
⎢⎣

c2ϕcθ + s2ϕ cϕcθsϕ − sϕcϕ cϕsθ

cϕcθsϕ − sϕcϕ s2ϕcθ + c2ϕ sϕsθ

−cϕsθ −sϕsθ cθ

⎤
⎥⎦ (1)

where θ and φ are the orientation angles of the mechanism about the x- and y-axes, respectively.
Equation (2) shows the relation between the orientation and position coordinates of the mechanism

end point: ⎧⎪⎪⎨
⎪⎪⎩

x = r2 (cθ − 1) c (2ϕ)

2

y = r2 (1 − cθ) s (2ϕ)

2

(2)

where x and y are the position coordinates of the point of the mechanism along the x- and y-axes,
respectively.

Closed-loop vectors are used to determine the inverse kinematics of the manipulator:

BiAi = Oo + RoAi − OBi (3)

Thus, the actuator length of the link can be obtained as Li = |BiAi|.

3. Elastodynamic model
Natural frequency, especially the fundamental frequency, is the main dynamic performance index of
PMs. The higher fundamental frequency leads to higher control bandwidth and better dynamic per-
formance. An accurate elastodynamic model should be established before exploring the 3-RPS PM’s
dynamic behaviors. Substructure synthesis technology is used to split the PM of a multi-closed-loop
system into multiple independent open-loop substructures to establish the dynamic equations of each
substructure separately. Finally, the substructures are assembled into a multi-closed-loop system through
the motion constraint equation to form a complete dynamic equation of the mechanism. The substruc-
ture synthesis is adopted as the dynamic modeling method in the work. The basic analysis process can
be found in ref. [15]. The assumptions are considered as follows for the dynamic modeling: the mov-
ing platform is considered as a rigid body, and other components are elastic bodies; joints are ideal
constraints and perfect rigid; the system satisfies the small deformation hypothesis and instantaneous
structure assumption; frictions are ignored. The work focuses on the natural frequency analysis instead
of the rigid motion of the mechanism (i.e., inertial force). However, a combination with the kinematic
constraint equation or the Lagrangian multiplier is required for the traditional dynamic modeling of
PMs, which hinders solving the dynamic model.

The identification of independent displacement coordinates for multi-body systems has always been
one of the challenges in the dynamic modeling of the PM. An identification method for independent
coordinates of the multi-body PM is established based on the multipoint constraint theory, linear algebra,
and singularity analysis. After that, the elastodynamic model of the PM is established by substructure
synthesis technology. It has high computational efficiency because simultaneous kinematic constraint
equations or increased Lagrange multipliers are not required.
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Figure 2. Spatial element beam.

3.1. Elastodynamic equation of the unconstrained substructure
Ref. [26] showed that replacing the Euler–Bernoulli beam element with the Timoshenko beam ele-
ment will not significantly affect the stiffness performance of the PM. The work focuses on a dynamic
modeling method that combines global-independent generalized coordinates and substructure synthesis
techniques. Besides, the Euler–Bernoulli beam element is adopted to model the rod. For slender mem-
bers, the Euler–Bernoulli beam can be replaced by the Timoshenko beam element. Figure 2 shows the
Euler–Bernoulli beam element. When the rod is discretized into s elements, the elastodynamic equation
[17] of the rod is expressed as:

Meüi + Keui = f i (4)

where ui = [i�Bi, i�Bi, iuin, i, i�Ai, i�Ai]T and f i = [if T
Bi,

imT
Bi,

if T
in,i,

imT
in,i,

if T
Ai,

imT
Ai]

T are the element node
coordinate vector and the external load vector of the ith rod in the coordinate system Bi-xiyizi, respec-
tively; i�Ai(i�Ai) and i�Bi(i�Bi) are the linear (angular) displacement coordinates of nodes Ai and Bi in
the coordinate system Bi-xiyizi, respectively; iuin, i is the inner nodes of the ith rod; f Bi(mBi) and f Ai(mAi)
are the force (couple) acting on points Bi and Ai in coordinate system Bi-xiyizi, respectively; f in, i and
min, i are force and moment corresponding to the inner nodes, respectively.

The expressions of the elastodynamic equation of the rod in the global coordinate system are given
as follows:

M iÜ i + K iUi = Fi (5)

where M i = T iMeTT
i ; K i = T iKeTT

i ; Fi = T if i; Ui = T iui; T i is the transformation matrix:

T i = diag

⎡
⎣Ri, . . . , Ri︸ ︷︷ ︸

2(s+1)Ri

⎤
⎦ (6)

where Ri is the rotation matrix from limb (substructure) coordinate system Bi-xiyizi to global coordinate
system O-XYZ .

The elastodynamic equation for the substructure of the rigid moving platform in the global coordinate
system is expressed as follows:

MpÜp = Fp (7)

where Mp = Tp
oMpT

T
p , Tp is the transforming matrix, oMp is the moving platform’s mass matrix in

system o-xyz, Up = [�T
p , �T

p ]T, �p and �p are the global angular and linear displacement coordinates
of point o, respectively, Fp = [f T

p , mT
p ]T is external load at point o, and f p and mp represent force and

moment, respectively:
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oMp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mp

mp

mp 0

mpr2
2

4

0
mpr2

2

4
mpr2

2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Tp =
[

R 03

03 R

]
(9)

where mp is the mass of the moving platform and R is the rotation matrix from the moving system to
the global coordinate system.

3.2. Complete dynamic governing equation
According to the multipoint constraint element theory, Eq. (10) shows the compatibility equation
between the elastic deformation of point o of the moving platform and the linear displacement elastic
deformation of point Ai at the limb ends:

�Ai =
[
E3 [Aio×]

]
Up (10)

where �Ai is the linear displacement coordinates of point Ai and [Aio × ] is the antisymmetric matrix.
The elastodynamic equation of limbs and the moving platform can be expressed as follows:⎧⎨

⎩M iÜ + K iU = Fi

MpÜ = Fp

(11)

where U = [
�T

B1 �T
B1 uT

in,1 �T
A1 �T

B2 �T
B2 uT

in,2 �T
A2 �T

B3 �T
B3 uT

in,3 �T
A3 �T

p �T
p

]T is
the expanded displacement coordinates of the mechanism; K i and M i are the expanded stiffness and
mass matrices of the ith limb, respectively, Mp is the expanded mass matrix of the moving plat-
form, M i = HT

i M iHi; K i = HT
i K iHi; Fi = HT

i Fi; Mp = HT
p MpHp; Fp = HT

p Fp, and Hi and Hp are the
transformation matrices defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1 =

⎡
⎢⎢⎢⎣

E6 06×(18s+9)

0(6s−6)×6 E(6s−6)×(6s−6) 0(6s−6)×(12s+15)

03×(18s+9) J1

03×6s E3 03×(12s+12)

⎤
⎥⎥⎥⎦

H2 =

⎡
⎢⎢⎢⎣

06×(6s+3) E6 06×(12s+6)

0(6s−6)×(6s+9) E(6s−6)×(6s−6) 0(6s−6)×(6s+12)

03×(18s+9) J2

03×(12s+3) E3 03×(6s+9)

⎤
⎥⎥⎥⎦

H3 =

⎡
⎢⎢⎢⎣

06×(12s+6) E6 06×(6s+3)

0(6s−6)×(12s+12) E(6s−6)×(6s−6) 0(6s−6)×9

03×(18s+9) J3

03×(18s+6) E3 03×6

⎤
⎥⎥⎥⎦

Hp = [
06×(18s+9) E6

]

(12)

where J i = [ E3 [Aio × ] ].
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Equation (11) is transformed into the elastodynamic equation of the manipulator:

MÜ + KU = F (13)

where M = ∑3
i=1 M i + Mp; K = ∑3

i=1 K i; F = ∑3
i=1 Fi + Fp.

According to the kinematic constraints of the mechanism, the linear displacement coordinates �Bi

and angular displacement coordinates �Bzi connected to the base are zero. They should be eliminated
from the expanded displacement coordinates in Eq. (13), as well as the corresponding rows and columns
of M and K:

MrÜr + KrUr = Fr (14)

where Ur is the generalized displacement coordinate of the manipulator with zero displacements
eliminated:

Ur = [
φBx1 φBy1 uT

in,1 �T
A1 φBx2 φBy2 uT

in,2 �T
A2 φBx3 φBy3 uT

in,3 �T
A3 �T

p �T
p

]T (15)

According to the kinematic constraint characteristic of the revolute joint, only one independent angu-
lar displacement coordinate exists. Based on the boundary conditions and multipoint constraint theory,
the constraint equations of the R-joints connected to the base can be expressed as follows:

{
i�Bi = 03×1

iφBxi = iφBzi = 0
(i = 1, 2, 3) (16)

Eq. (16) is transformed into the expression in the global coordinate system:

⎧⎪⎨
⎪⎩

�Bi = 03×1

φBzi = 0

φBxi = Ri(1,2)

Ri(2,2)
φByi

(i = 1, 2, 3) (17)

where Ri(j, k) is the jth row and the kth column of the matrix Ri.
If �Bxi is extracted as the independent angular displacement coordinates, the third equation of Eq.

(17) can be expressed as:

φByi =
Ri (2, 2)

Ri (1, 2)
φBxi (i = 1, 2, 3) (18)

The denominator of Eq. (18) is zero in some configurations, and the mapping equation determined by
Eq. (18) is singular in this case. Thus, �Byi is considered an independent angular displacement coordinate
of point Bi.

Accordingly, the independent generalized displacement coordinates of the mechanism are identified
as follows:

U = [
φBy1 uT

in,1 �T
A1 φBy2 uT

in,2 �T
A2 φBy3 uT

in,3 �T
A3 �T

p �T
p

]T (19)

Therefore, the mapping relationship between Ur and U is defined by:

Ur = QU (20)
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Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1(1,2)

R1(2,2)
01×(18s−1)

1 01×(18s−1)

0(6s−6)×1 E6s−6 0(6s−6)×(12s+5)

03×(6s−5) E3 03×(12s+2)

01×(6s−2)
R2(1,2)

R2(2,2)
01×(12s+1)

01×(6s−2) 1 01×(12s+1)

0(6s−6)×(6s−1) E6s−6 0(6s−6)×(6s+7)

03×(12s−7) E3 03×(6s+4)

01×(12s−4)
R3(1,2)

R3(2,2)
01×(6s+3)

01×(12s−4) 1 01×(6s+3)

0(6s−6)×(12s−3) E6s−6 0(6s−6)×9

03×(18s−9) E3 6

06×(18s−6) E6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

Finally, the complete dynamic governing equation is obtained as follows:

MÜ + KU = F (22)

where K=QTKrQ is the overall stiffness matrix and M = QTMrQ is the overall mass matrix.
Ref. [15] only considers the deformation coordination between the moving platform and limbs, and

the boundary conditions between limbs and the base are ignored by comparing the dynamic equation.
The combination of constraint equations and Lagrangian multipliers is considered in the dynamic equa-
tion in ref. [17]. The main contribution of the work is to eliminate the constraint equation and Lagrangian
multiplier from the dynamic equation, which is the essential difference from refs. [15, 17]. Meanwhile,
the obtained dynamic control equation is more concise. It considers all the kinematic constraints of the
mechanism, which can better simulate the constraints of the mechanism.

Manipulator’s natural frequency is calculated as follows:(
K − ω2

i M
)
�i = 0 (23)

where ωi and �i are the ith order circular frequency (rad/s) and corresponding mode of the manipulator,
respectively.

Hz is used to express the frequency of the manipulator in engineering [27]:

fi = ωi

2π
(24)

where f i is the ith order natural frequency (Hz) of the manipulator.

3.3. Natural frequency verification and distribution in the regular workspace
The MPC184 element is used to simulate the perfect rigid S- and R- joints. In this paper, two config-
urations are used based on whether the mechanism is circular symmetry [29] to verify the theoretical
model (Case 1: z = 4.9 m, φ= 0◦, and θ = 0◦; Case 2: z = 4.9 m, φ= 10◦, and θ = -12◦). Figure 3 shows
the line chart between the relative error and the number of elements s, and ei is the relative error of the
ith natural frequency between the theoretical method and the FEM. Increasing the number of elements
does not significantly improve the calculation accuracy of the first-order natural frequency. Even if the
rod is discretized into only one element, an acceptable calculation accuracy of 0.18% for case 1 and
0.36% for case 2 can be obtained. When the number of elements increases to three, the third-order nat-
ural frequency achieves an acceptable convergence accuracy of 1.03% for case 1 and 0.77% for case 2,
and the fourth- to sixth-order natural frequencies quickly converge to 2.94, 3.41, and 3.41% for the case
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Table I. Natural frequencies comparison between the FEA and analytical model of the 3-RPS PM.

Case Method f 1 f 2 f 3 f 4 f 5 f 6

Case 1 FEA 114.87 114.88 195.15 629.39 698.11 698.11
Theoretical 115.02 115.02 197.16 647.89 721.92 721.92
Error (%) 0.13 0.13 1.03 2.94 3.41 3.41

Case 2 FEA 109.12 118.20 199.12 588.36 696.39 732.01
Theoretical 109.44 118.75 200.65 606.07 720.21 761.73
Error (%) 0.29 0.47 0.77 3.01 3.31 3.90

Figure 3. Line chart between relative error and the number of elements. (a) case 1 and (b) case 2.

1, 3.01, 3.31, and 3.90% for case 2, respectively. Therefore, the number of rod elements is considered
as three in the work.

Table I shows that the maximum errors of the fourth-, fifth-, and sixth-order natural frequencies
are 3.01, 3.41, and 3.90%, respectively. However, the maximum errors of the first three-order natural
frequencies are within 1.03%. Especially, the maximum error of the first-order natural frequency is
only 0.29%, which verifies the correctness of the analytical model. Figures 4–5 show the finite-element
analysis results for cases 1 and 2, respectively. Compared with the computational cost of the finite-
element model in 6.16 s, the theoretical model proposed in the work only takes 0.82 s, which saves
86.69% of the computational cost. Note that the moving platform shown in Figs. 4–5 is considered the
elastic body with the elasticity modulus close to the rigid body to ensure the quality of the graphics. The
ANSYS Workbench code is uploaded to support the correctness of the proposed theoretical model1.

The constraints of the 3-RPS PM are considered as follows to analyze the regular workspace of the
mechanism: ⎧⎪⎨

⎪⎩
Lmin ≤ Li ≤ Lmax

|αi| ≤ αmax

|βi| ≤ βmax

(25)

where Lmax = 1 m and Lmin = 0.2 m are the upper and lower limits of the actuator, αi and βi the rotation
angles of the spherical and revolute joints, and αmax and βmax is the maximum rotation angle of spherical
and revolute joints.

The polar coordinate method [28] is used to obtain the regular workspace, namely the circular trun-
cated cone composed of the largest inscribed circle in each layer of the reachable workspace. The

1URL: https://pan.baidu.com/s/1IzzbWlrJA56FencvObPNOg?pwd=oe93, password: oe93.
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Figure 4. Finite-element analysis of case 1. (a)–(f): f1–f6..

Figure 5. Finite-element analysis of case 2. (a)–(f): f1–f6..
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Figure 6. Distribution of the first three natural frequencies of the 3-RPS PM in the regular workspace.

distribution of natural frequencies are circularly symmetrical (Fig. 6), which is consistent with the struc-
ture of the manipulator. Besides, the increased platform height decreases the natural frequency of the
mechanism. Therefore, the 3-RPS PM should work at a low height to improve its dynamic performance.

4. Conclusions
A 3-RPS PM was used as an example to propose an elastodynamic modeling and natural frequency anal-
ysis method based on the substructure synthesis method in this work. Multipoint constraint theory, linear
algebra, and singularity analysis were used to identify the global independent displacement coordinates
of the manipulator. After that, the elastodynamic model of the 3-PRS PM was established with substruc-
ture synthesis technology. The dynamic model including all kinematic constraints of the manipulator
could achieve high solution efficiency because kinematic constraint equations or Lagrangian multipli-
ers were not required. Compared with the FEA results, the maximum errors of the first three-order
and first-order natural frequencies were less than 1.03 and 0.29%, respectively. The natural frequencies
were circularly symmetric in the regular workspace and decreased with the increased platform height.
The dynamic displacement response will be studied to improve the elastodynamics modeling, and some
experiments will be conducted to verify the effectiveness of the proposed model in the future work.
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