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Abstract

We introduce a dual logarithmic residue map for hypersurface singularities and use it
to answer a question of Kyoji Saito. Our result extends a theorem of Lê and Saito by
an algebraic characterization of hypersurfaces that are normal crossing in codimension
one. For free divisors, we relate the latter condition to other natural conditions involving
the Jacobian ideal and the normalization. This leads to an algebraic characterization of
normal crossing divisors. As a side result, we describe all free divisors with Gorenstein
singular locus.

1. Introduction

Let S be a complex manifold and D be a (reduced) hypersurface D, referred to as a divisor in
the sequel. In the landmark paper [Sai80], Kyoji Saito introduced the sheaves of OS-modules
of logarithmic differential forms and logarithmic vector fields on S along D. Logarithmic vector
fields are tangent to D at any smooth point of D; logarithmic differential forms have simple poles
and form a complex under the usual differential. Saito’s clean algebraically flavored definition
encodes deep geometric, topological, and representation-theoretic information on the singularities
that is yet only partly understood. The precise target for his theory was the Gauß–Manin
connection on the base S of the semiuniversal deformation of isolated hypersurface singularities,
a logarithmic connection along the discriminant D. Saito developed mainly three aspects of his
logarithmic theory in [Sai80]: free divisors, logarithmic stratifications, and logarithmic residues.

A divisor is called free if the sheaf of logarithmic vector fields, or its dual, the sheaf
of logarithmic 1-forms, is a vector bundle; in particular, normal crossing divisors are free.
Not surprisingly, discriminants of isolated hypersurface singularities are free divisors (see
[Sai80, (3.19)]). Similar results were shown for isolated complete intersection singularities
(see [Loo84, § 6]) and space curve singularities (see [vS95]). Both the reflection arrangements and
discriminants associated with finite unitary reflection groups are free divisors (see [Ter80b]). More
recent examples include discriminants in certain prehomogeneous vector spaces (see [GMS11])
whose study led to new constructions such as a chain rule for free divisors (see [BC13, § 4]). Free
divisors can be seen as the extreme case opposite to isolated singularities: unless smooth, free
divisors have Cohen–Macaulay singular loci of codimension one. The freeness property is closely
related to the complement of the divisor being a K(π, 1)-space (see [Sai80, (1.12)] and [Del72]),
although these two properties are not equivalent (see [ER95]). Even in special cases, such as that
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of hyperplane arrangements, freeness is not fully understood yet. For instance, Terao’s conjecture
on the combinatorial nature of freeness for arrangements is one of the central open problems in
arrangement theory.

Much less attention has been devoted to Saito’s logarithmic residues, the main topic in this
paper. It was Poincaré who first defined a residual 1-form of a rational differential 2-form on C2

(see [Poi87]). Later, the concept was generalized by de Rham and Leray to residues of closed
meromorphic p-forms with simple poles along a smooth divisor D; these residues are holomorphic
(p−1)-forms on D (see [Ler59]). Residues of logarithmic differential forms along singular namely
normal crossing divisors first appeared in Deligne’s construction of the mixed Hodge structure
on the cohomology of smooth possibly non-compact complex varieties (see [Del71, § 3.1]); again
these residues are holomorphic differential forms. Notably, in Saito’s generalization to arbitrary
singular divisors D, the residue of a logarithmic p-form becomes a meromorphic (p − 1)-form
on D, or on its normalization D̃. Using work of Barlet [Bar78], Aleksandrov linked Saito’s
construction to Grothendieck duality theory: the image of Saito’s logarithmic residue map is the
module of regular differential forms on D (see [Ale88, § 4, Theorem] and [Bar78]). With Tsikh,
he suggested a generalization for complete intersection singularities based on multilogarithmic
differential forms depending on a choice of generators of the defining ideal (see [AT01]). Recently,
he approached the natural problem of describing the mixed Hodge structure on the complement
of certain divisors in terms of logarithmic differential forms (see [Ale12, § 8]). In Dolgachev’s work,
one finds a different sheaf of logarithmic differential forms which is a vector bundle exactly for
normal crossing divisors and whose reflexive hull is Saito’s sheaf of logarithmic differential forms
(see [Dol07]). Although his approach to logarithmic residues using adjoint ideals has a similar
flavor to ours, he does not reach the conclusion of our main Theorem 1.3 (see Remark 1.4).

While most constructions in Saito’s logarithmic theory and its generalizations have a dual
counterpart, a notion of a dual logarithmic residue associated to a vector field was not known
to the authors. The main motivation and fundamental result of this article is the construction
of a dual logarithmic residue (see § 3). This turned out to have surprising applications including
a proof of a conjecture of Saito that was open for more than 30 years. Saito’s conjecture is
concerned with comparing logarithmic residues of 1-forms, that is, certain meromorphic functions
on D̃, with holomorphic functions on D̃. The latter can also be considered as weakly holomorphic
functions on D, that is, functions on the complement of the singular locus Z of D, locally bounded
near points of Z. While any such weakly holomorphic function is the residue of some logarithmic
1-form, the image of the residue map can contain functions which are not weakly holomorphic.
The algebraic condition of equality was related by Saito to a geometric and a topological property
as follows (see [Sai80, (2.13)]).

Theorem 1.1 (Saito). For a divisor D in a complex manifold S, consider the following
conditions:

(A) the local fundamental groups of the complement S\D are Abelian;

(B) in codimension one, that is, outside of an analytic subset of codimension at least two in D,
D is normal crossing;

(C) the residue of any logarithmic 1-form along D is a weakly holomorphic function on D.

Then the implications (A) ⇒ (B) ⇒ (C) hold true.

Saito asked whether the converse implications in Theorem 1.1 hold true. The first one was
later established by Lê and Saito [LS84]; it generalizes the Zariski conjecture for complex plane
projective nodal curves proved by Fulton and Deligne (see [Ful80, Del81]).
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Theorem 1.2 (Lê–Saito). The implication (A) ⇐ (B) in Theorem 1.1 holds true.

Our duality of logarithmic residues turns out to translate condition (C) in Theorem 1.1 into
the more familiar equality of the Jacobian ideal and the conductor ideal. A result of Ragni
Piene [Pie79] proves that such an equality forces D to have only smooth components if it has
a smooth normalization. This is a technical key point which leads to a proof of the missing
implication in Theorem 1.1.

Theorem 1.3. The implication (B) ⇐ (C) in Theorem 1.1 holds true: if the residue of any
logarithmic 1-form along D is a weakly holomorphic function on D, then D is normal crossing
in codimension one.

Remark 1.4. The logarithmic stratification of S mentioned in the introduction consists of
immersed integral manifolds of logarithmic vector fields along D (see [Sai71, § 3]). Contrary to
what the terminology suggests, the resulting decomposition of S is not locally finite, in general.
Saito attached the term holonomic to this additional feature: a point in S is holonomic if a
neighborhood meets only finitely many logarithmic strata. Along any logarithmic stratum, the
pair (D,S) is analytically trivial which turns holonomicity into a property of logarithmic strata.
The logarithmic vector fields are tangent to the strata of the canonical Whitney stratification;
the largest codimension up to which all Whitney strata are (necessarily holonomic) logarithmic
strata is called the holonomic codimension (see [DM91, p. 221]).

Saito [Sai80, (2.11)] proved Theorem 1.3 for plane curves. If D has holonomic codimension at
least one, this yields the general case by analytic triviality along logarithmic strata (see [Sai80,
§ 3]). Under this latter hypothesis, Theorem 1.3 follows also from a result of Dolgachev
(see [Dol07, Corollary 2.2]). However, for example, the equation xy(x+ y)(x+ yz) = 0 defines a
well-known free divisor with holonomic codimension zero.

The preceding results and underlying techniques serve to address two natural questions: the
algebraic characterization of condition (C) through Theorem 1.3 raises the question about
the algebraic characterization of normal crossing divisors. Eleonore Faber was working on this
question at the same time as the results presented here were developed. She considered freeness
as a first approximation for being normal crossing and noted that normal crossing divisors satisfy
an extraordinary condition: the ideal of partial derivatives of a defining equation is radical. She
proved the following converse implications (see [Fab11, Fab12]).

Theorem 1.5 (Faber). Consider the following conditions:

(D) at any point p ∈ D, there is a local defining equation h for D such that the ideal Jh of
partial derivatives is radical;

(E) D is normal crossing.

Then the following hold:

(1) if D is free and satisfies condition (D), then the same holds for all irreducible components
of D;

(2) conditions (D) and (E) are equivalent if D is locally a plane curve or a hyperplane
arrangement, or if its singular locus is Gorenstein;

(3) condition (D) implies that D is Euler homogeneous;

(4) if D is free, then condition (C) implies that D is Euler homogeneous.

Motivated by Faber’s problem we prove the following result.
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Theorem 1.6. Extend the list of conditions in Theorem 1.1 as follows:

(F) the Jacobian ideal JD of D is radical;

(G) the Jacobian ideal JD of D equals the conductor ideal CD of the normalization D̃.

Then condition (F) implies condition (B). If D is a free divisor, then conditions (B), (F) and

(G) are equivalent.

Remark 1.7. Note that Jh is an OS-ideal sheaf depending on a choice of local defining equation

whereas its image JD in OD is intrinsic to D. However, by parts (3) and (4) of Theorem 1.5,

condition (D) implies condition (F) and equivalence holds if D is free.

We obtain the following algebraic characterization of normal crossing divisors.

Theorem 1.8. For a free divisor with smooth normalization, any one of the conditions (A), (B),

(C), (F), or (G) implies condition (E).

Remark 1.9. The implication (F) ⇒ (E) in Theorem 1.8 improves Theorem A in [Fab12] (see

Remark 1.7), which is proved using [Pie79] like in the proof of our main result. Proposition C

in [Fab12] is the implication (C) ⇒ (E) in Theorem 1.8, for the proof of which Faber uses our

arguments.

As remarked above, free divisors are characterized by their singular loci being (empty or)

maximal Cohen–Macaulay. It is natural to ask when the singular locus of a divisor is Gorenstein.

This question is answered by the following theorem.

Theorem 1.10. A divisor D has Gorenstein singular locus Z of codimension one if and only

if D is locally the product of a quasihomogeneous plane curve and a smooth space. In particular,

D is locally quasihomogeneous and Z is locally a complete intersection.

Remark 1.11. Theorem 1.10 complements a result of Kunz–Waldi [KW84, Satz 2] saying that a

Gorenstein algebroid curve has Gorenstein singular locus if and only if it is quasihomogeneous.

2. Logarithmic modules and fractional ideals

In this section, we review Saito’s logarithmic modules, the relation of freeness and Cohen–

Macaulayness of the Jacobian ideal, and the duality of maximal Cohen–Macaulay fractional

ideals. We switch to a local setup for the remainder of the article.

Let D be a reduced effective divisor defined by ID = OS · h in the smooth complex analytic

space germ S = (Cn, 0). Denote by h : S → T = (C, 0) a function germ generating the ideal

ID = OS · h of D. We abbreviate by

ΘS := DerC(OS) = HomOS
(Ω1

S ,OS)

the OS-module of vector fields on S. Recall Saito’s definition [Sai80, § 1] of the OS-modules of

logarithmic differential forms and of logarithmic vector fields.

Definition 2.1 (Saito). We set

Ωp(logD) := {ω ∈ Ωp
S(D) | dω ∈ Ωp+1

S (D)},
Der(−logD) := {δ ∈ ΘS | dh(δ) ∈ ID}.
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These modules are stalks of analogously defined coherent sheaves of OS-modules (see
[Sai80, (1.3) and (1.5)]). It is obvious that each of these sheaves L is torsion free and normal,
and hence reflexive (see [Har80, Proposition 1.6]). More precisely, Ω1(logD) and Der(−logD)
are mutually OS-dual (see [Sai80, (1.6)]). Normality of a sheaf L means that L = i∗i

∗L where
i : S\Z ↪→ S denotes the inclusion of the complement of the singular locus of D. In the case of
L = Der(−logD), this means that δ ∈ Der(−logD) if and only if δ is tangent to D at all smooth
points. In addition, Ω•(logD) is an exterior algebra over OS closed under exterior differentiation
and Der(−logD) is closed under the Lie bracket.

Definition 2.2. A divisor D is called free if Der(−logD) is a free OS-module.

The definition of Der(−logD) can be rephrased as a short exact sequence of OS-modules

0 JD
oo ΘS

dhoo Der(−logD)oo 0oo (2.1)

where the Jacobian ideal JD of D is defined as the Fitting ideal

JD := Fn−1
OD

(Ω1
D) =

〈
∂h

∂x1
, . . . ,

∂h

∂xn

〉
⊂ OD.

Note that JD is an ideal in OD and pulls back to
〈
h, ∂h/∂x1, . . . , ∂h/∂xn

〉
in OS . We shall

consider the singular locus Z of D equipped with the structure defined by JD, that is,

OZ := OD/JD. (2.2)

Note that Z might be non-reduced. There is the following intrinsic characterization of free divisors
in terms of their singular locus (see [Ale88, § 1 Theorem] or [Ter80a, Proposition 2.4]).

Theorem 2.3. The following are equivalent:

(1) D is a free divisor;

(2) JD is a maximal Cohen–Macaulay OD-module;

(3) D is smooth or Z is Cohen–Macaulay of codimension one.

Proof. If dh(ΘS) does not minimally generate JD, then D ∼= D′×(Ck, 0), k > 0, by the triviality
lemma [Sai80, (3.5)]. By replacing D by D′, we may therefore assume that (2.1) is a minimal
resolution of JD as OS-module. Thus, the equivalence of (1) and (2) is due to the Auslander–
Buchsbaum formula. By Lemma 2.6 below, JD has height at least one and the implication
(2) ⇔ (3) is proved in [HK71, Satz 4.13]. 2

Corollary 2.4. Any D is free in codimension one.

Proof. By Theorem 2.3, the non-free locus of D is contained in Z and equals

{z ∈ Z | depth OZ,z < n− 2} ⊂ D.

By Scheja [Sch64, Satz 5], this is an analytic set of codimension at least two in D. 2

We denote by Q(−) the total quotient ring. Then MD := Q(OD) is the ring of meromorphic
functions on D.

Definition 2.5. A fractional ideal (on D) is a finite OD-submodule of MD which contains a
non-zero divisor.
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Lemma 2.6. JD is a fractional ideal.

Proof. By assumption D is reduced, so OD satisfies Serre’s condition (R0). This means that
Z ⊂D has codimension at least one. In other words, JD 6⊆ p for all p ∈ Ass(OD) where the latter
denotes the set of (minimal) associated primes of OD. By prime avoidance, JD 6⊆

⋃
p∈Ass OD

p.
But the latter is the set of zero divisors of OD and the claim follows. 2

Proposition 2.7. The OD-dual of any fractional ideal I is again a fractional ideal I ∨ =
{f ∈MD | f ·I ⊆ OD}. The duality functor

−∨ = HomOD
(−,OD)

reverses inclusions. It is an involution on the class of maximal Cohen–Macaulay fractional ideals.

Proof. See [dJvS90, Proposition (1.7)]. 2

For lack of direct reference, we record the following consequence of the Evans–Griffith
theorem.

Lemma 2.8. Let R be a reduced Noetherian ring which satisfies Serre’s condition (S2) and which
is Gorenstein in codimension up to one. If its normalization R̃ is a finite R-module, then it is
reflexive.

Proof. Let C := HomR(R̃, R) denote the conductor. By finiteness of R̃, EndR(C) ⊆ R̃ and
equality holds since C is an R̃-ideal. By [BH93, Exc. 1.4.19], with R also C and hence R̃ satisfies
(S2). Indeed, for any p ∈ SpecR,

depth R̃p = depth EndRp(Cp)

> min{2, depthCp} = min{2, depth HomRp(R̃p, Rp)}
> min{2, depthRp}.

By [EG85, Theorem 3.6], this means that R̃ is a reflexive R-module as claimed. 2

3. Logarithmic residues and duality

In this section, we develop the dual picture of Saito’s residue map and apply it to find inclusion
relations of certain natural fractional ideals and their duals.

Let π : D̃ → D denote the normalization of D. Then MD = M
D̃

:= Q(O
D̃

) and O
D̃

is the
ring of weakly holomorphic functions on D (see [dJP00, Exercise 4.4.16.(3), Theorem 4.4.15]).
Let

Ωp(logD)
ρpD // Ωp−1

D ⊗OD
MD

be Saito’s residue map [Sai80, § 2] which is defined as follows: by [Sai80, (1.1)], any ω ∈ Ωp(logD)
can be written as

ω =
dh

h
∧ ξ
g

+
η

g
, (3.1)

for some ξ ∈ Ωp−1
S , η ∈ Ωp

S , and g ∈ OS , which restricts to a non-zero divisor in OD. Then

ρpD(ω) :=
ξ

g

∣∣∣∣
D

(3.2)
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is well defined by [Sai80, (2.4)]. We shall abbreviate ρD := ρ1
D and denote its image by

RD := ρD(Ω1(logD)).

Using this notation, condition (C) in Theorem 1.1, that the residue of any ω ∈ Ω1(logD) is
weakly holomorphic, can be written as O

D̃
= RD.

The following result of Saito [Sai80, (2.9)] can be considered as a kind of approximation
of our main result Theorem 1.3; in fact, it shall be used in its proof. Combined with his
freeness criterion [Sai80, (1.8)] it yields Faber’s characterization of normal crossing divisors in
Proposition B of [Fab12].

Theorem 3.1. Let Di = {hi = 0}, i = 1, . . . , k, denote irreducible components of D. Then the
following conditions are equivalent:

(1) Ω1(logD) =
∑k

i=1 OS(dhi/hi) + Ω1
S ;

(2) Ω1(logD) is generated by closed forms;

(3) the Di are normal and intersect transversally in codimension one;

(4) RD =
⊕k

i=1 ODi .

Example 3.2. The Whitney umbrella (which is not a free divisor) satisfies the conditions in
Theorem 1.1, but not those in Theorem 3.1.

The implication (3) ⇐ (4) in Theorem 3.1 will be used in the proof of Theorem 1.3 after a
reduction to nearby germs with smooth irreducible components. Its proof essentially relies on
parts (2) and (3) of the following examples.

Example 3.3.

(1) Let D = {xy = 0} be a normal crossing of two irreducible components. Then dx/x ∈
Ω1(logD) and

(x+ y)
dx

x
= y

d(xy)

xy
+ dx− dy

shows that

ρD

(
dx

x

)
=

y

x+ y

∣∣∣
D
.

On the components D1 = {x = 0} and D2 = {y = 0} of the normalization D̃ = D1
∐
D2, this

function equals 1 and 0, respectively, and is therefore not in OD. By symmetry, this yields

RD = O
D̃

= OD1 × OD2 = J ∨
D

since JD = 〈x, y〉OD
is the maximal ideal in OD = C{x, y}/〈xy〉. This observation will be

generalized in Proposition 3.4.

(2) Conversely, assume that D1 = {h1 = x = 0} and D2 = {h2 = x+ym = 0} are two smooth
irreducible components of D. Consider the logarithmic 1-form

ω =
y dx−mxdy
x(x+ ym)

= y1−m
(
dh1

h1
− dh2

h2

)
∈ Ω1(log(D1 +D2)) ⊂ Ω1(logD).

Its residue ρD(ω)|D1 = y1−m|D1 has a pole along D1 ∩D2 unless m = 1. Thus, if O
D̃

= RD, then
D1 and D2 must intersect transversally.
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(3) Assume that D contains D′ = D1 ∪ D2 ∪ D3 with D1 = {x = 0}, D2 = {y = 0}, and

D3 = {x− y = 0}. Consider the logarithmic 1-form

ω =
1

x− y

(
dx

x
− dy

y

)
∈ Ω1(logD′) ⊂ Ω1(logD).

Its residue ρD(ω)|D1 = (−1/y)|D1 has a pole along D1 ∩D2 ∩D3 and, hence, O
D̃
( RD.

After these preparations, we shall now approach the construction of the dual logarithmic

residue. By definition, there is a short exact residue sequence

0 // Ω1
S

// Ω1(logD)
ρD // RD

// 0. (3.3)

Applying HomOS
(−,OS) to (3.3) gives an exact sequence

0 Ext1
OS

(Ω1(logD),OS)oo Ext1
OS

(RD,OS)oo ΘS
oo Der(−logD)oo 0oo (3.4)

The right end of this sequence extends to the short exact sequence (2.1). For the hypersurface

ring OD, the change of rings spectral sequence

Ep,q2 = ExtpOD
(−,ExtqOS

(OD,OS))⇒
p

Extp+qOS
(−,OS) (3.5)

degenerates because Ep,q2 = 0 if q 6= 1 and, hence,

Ext1
OS

(−,OS) ∼= E0,1
2
∼= HomOD

(−,OD) ∼= −∨. (3.6)

Therefore, the second term in the sequence (3.4) is R∨D. This motivates the following key technical

result of this paper, describing the dual of Saito’s logarithmic residue.

Proposition 3.4. There is an exact sequence

0 Ext1
OS

(Ω1(logD),OS)oo R∨D
oo ΘS

σDoo Der(−logD)oo 0oo (3.7)

such that σD(δ)(ρD(ω)) = dh(δ) · ρD(ω). In particular, σD(ΘS) = JD as fractional ideals.

Moreover, J ∨
D = RD as fractional ideals.

Proof. The spectral sequence (3.5) applied to RD is associated with

RHomOS
(Ω1

S ↪→ Ω1(logD), h : OS → OS).

Expanding the double complex HomOS
(Ω1

S ↪→ Ω1(logD), h : OS → OS), we obtain the following

1614

https://doi.org/10.1112/S0010437X13007860 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007860


Normal crossing properties of complex hypersurfaces

diagram of long exact sequences.

0

��

0

��
Ext1OS

(RD,OS)

0

��

HomOS
(Ω1

S ,OS)oo

h

��

HomOS
(Ω1(logD),OS)oo

h

��

0oo

Ext1OS
(RD,OS) HomOS

(Ω1
S ,OS)oo

��

HomOS
(Ω1(logD),OS)oo

��

0oo

��
HomOS

(Ω1
S ,OD)

��

HomOS
(Ω1(logD),OD)oo

��

R∨D
ρ∨Doo

α

��

0oo

0 Ext1OS
(Ω1(logD),OS)oo Ext1OS

(RD,OS)oo

��
0

(3.8)

We can define a homomorphism σD from the upper left HomOS
(Ω1

S ,OS) to the lower right R∨D
by a diagram chasing process and we find that δ ∈ ΘS = HomOS

(Ω1
S ,OS) maps to

σD(δ) = 〈hδ, ρ−1
D (−)〉|D ∈ R∨D

and that (3.7) is exact.
By comparison with the spectral sequence, one can check that α is the change of rings

isomorphism (3.6) applied to RD, and that α◦σD coincides with the connecting homomorphism
of the top row of the diagram, which is the same as the one in (3.4).

Let ρD(ω) ∈ RD where ω ∈ Ω1(logD). Following the definition of ρD in (3.2), we write ω in
the form (3.1). Then we compute

σD(δ)(ρD(ω)) = 〈hδ, ω〉|D = dh(δ) · ξ
g

∣∣∣∣
D

+ h · 〈δ, η〉
g

∣∣∣∣
D

= dh(δ) · ρD(ω) (3.9)

which proves the first two claims.
For the last claim, we consider the following diagram dual to (3.8).

0

��

0

��
0 // HomOS

(ΘS ,OS) //

h

��

HomOS
(Der(−logD),OS) //

h

��

Ext1OS
(JD,OS)

0

��
0 // HomOS

(ΘS ,OS) //

��

HomOS
(Der(−logD),OS) //

��

Ext1OS
(JD,OS)

0 //J ∨
D

β

��

dh∨
// HomOS

(ΘS ,OD) //

��

HomOS
(Der(−logD),OD)

Ext1OS
(JD,OS) // 0
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As before, we construct a homomorphism ρ′D from the upper right HomOS
(Der(−logD),OS) to

the lower left J ∨
D such that β ◦ ρ′D coincides with the connecting homomorphism of the top

row of the diagram, where β is the change of rings isomorphism (3.6) applied to JD. By the

diagram, ω ∈ Ω1(logD) = HomOS
(Der(−logD),OS) maps to

ρ′D(ω) = 〈hω, dh−1(−)〉|D ∈J ∨
D

which gives a short exact sequence

0 // Ω1
S

// Ω1(logD)
ρ′D //J ∨

D
// 0 (3.10)

similar to the sequence (3.3). Using (3.1) and (3.9), we compute

ρ′D(ω)(δ(h)) = ρ′D(ω)(dh(δ)) = 〈hω, δ〉|D = ρD(ω) · dh(δ) = ρD(ω) · δ(h)

for any δ(h) ∈ JD where δ ∈ ΘS . Hence, ρ′D = ρD and the last claim follows using (3.3) and

(3.10). 2

Corollary 3.5. There is a chain of fractional ideals

JD ⊆ R∨D ⊆ CD ⊆ OD ⊆ O
D̃
⊆ RD

in MD where CD = O∨
D̃

is the conductor ideal of π. In particular, JD ⊆ CD.

Proof. By Lemma 2.6, JD is a fractional ideal contained in R∨D by Proposition 3.4. By

[Sai80, (2.7), (2.8)], RD is a finite OD-module containing O
D̃

and, hence, a fractional ideal.

The remaining inclusions and fractional ideals are then obtained using Proposition 2.7. 2

Corollary 3.6. If D is free, then JD = R∨D as fractional ideals.

Proof. If D is free, then the Ext-module in the exact sequence (3.7) disappears and σD becomes

surjective. Then the claim is part of the statement of Proposition 3.4. 2

By Corollary 3.5, the inclusion O
D̃
⊂ RD always holds. For a free divisor D, the case of

equality is translated into more familiar terms by the following corollary.

Corollary 3.7. If D is free, then RD = O
D̃

is equivalent to JD = CD.

Proof. By the preceding Corollary 3.6 and the last statement of Proposition 3.4, the freeness

of D implies that RD and JD are mutually OD-dual. By Lemma 2.8 and the definition of the

conductor, the same holds true for O
D̃

and CD. The claim follows. 2

4. Algebraic normal crossing conditions

In this section, we prove our main Theorem 1.3 settling the missing implication in Theorem 1.1.

We begin with some general preparations.

Lemma 4.1. Any map φ : Y → X of analytic germs with Ω1
Y/X = 0 is an immersion.
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Proof. The map φ can be embedded in a map Φ of smooth analytic germs:

Y �
� //

φ

��

T

Φ
��

X �
� // S

Setting Φi = xi ◦Φ and φi = Φi + IY for coordinates x1, . . . , xn on S and IY the defining ideal

of Y in T , we can write Φ = (Φ1, . . . ,Φn) and φ = (φ1, . . . , φn) and hence

Ω1
Y/X =

Ω1
Y∑n

i=1 OY dφi
=

Ω1
T

OTdIY +
∑n

i=1 OTdΦi
. (4.1)

We may choose T of minimal dimension so that IY ⊆ m2
T and hence dIY ⊆ mTΩ1

T . Now (4.1)

and the hypothesis Ω1
Y/X = 0 show that Ω1

T =
∑n

i=1 OTdΦi + mTΩ1
T which implies that

Ω1
T =

∑n
i=1 OTdΦi by Nakayama’s lemma. But then Φ and hence φ is a closed embedding as

claimed. 2

Lemma 4.2. If JD = CD and D̃ is smooth then D has smooth irreducible components.

Proof. By definition, the ramification ideal of π is the Fitting ideal

Rπ := F 0
O
D̃

(Ω1
D̃/D

).

As a special case of a result of Ragni Piene [Pie79, Corollary 1 and Proposition 1] (see also

[OZ87, Corollary 2.7]),

CDRπ = JDO
D̃
.

By hypothesis, this becomes

CDRπ = CD

since CD is an ideal in both OD and O
D̃

. As CD ∼= O
D̃

(see [MP89, Proposition 3.5.iii)]), it

follows that Rπ = O
D̃

and hence that Ω1
D̃/D

= 0.

Since D̃ is normal, irreducible and connected components coincide. By localization to

a connected component D̃i of D̃ and base change to Di = π(D̃i) (see [Har77, Ch. II,

Proposition 8.2A]), we obtain Ω1
D̃i/Di

= 0. Then the normalization D̃i → Di is an immersion by

Lemma 4.1 and hence Di = D̃i is smooth. 2

We are now ready to prove our main results.

Proof of Theorem 1.3. In codimension one, D is free by Corollary 2.4 and hence JD = CD by

Corollary 3.7 and our hypothesis. Moreover, D̃ is smooth in codimension one by normality. By

our language convention, this means that there is an analytic subset A ⊂ D of codimension at

least two such that, for p ∈ D\A, JD,p = CD,p and D̃ is smooth above p. From Lemma 4.2 we

conclude that the local irreducible components Di of the germ (D, p) are smooth. The hypothesis

RD = O
D̃

at p then reduces to the equality RD,p =
⊕

ODi . Thus, the implication (3) ⇐ (4) in

Theorem 3.1 yields the claim. 2
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Proof of Theorem 1.6. In order to prove that (F) implies (B), we may assume that Z is
smooth and hence defined in S by two of the generators h, ∂1(h), . . . , ∂n(h). Then the triviality
lemma [Sai80, (3.5)] shows that D is either smooth or D ∼= C × (Cn−2, 0) and C ⊂ (C2, 0)
a plane curve. We may therefore reduce to the case of a plane curve. Then the Mather–Yau
theorem [MY82] applies (see [Fab12, Proposition 9] for details).

Now assume that D is free and normal crossing in codimension one. By the first assumption
and Theorem 2.3, Z is Cohen–Macaulay of codimension one and, in particular, satisfies Serre’s
condition (S1). By the second assumption, Z also satisfies Serre’s condition (R0). Then Z is
reduced, and hence JD is radical, by Serre’s reducedness criterion. This proves that (B) implies
(F) for free D.

The last equivalence then follows from Theorems 1.1 and 1.3 and Corollary 3.7. 2

Proof of Theorem 1.8. By Theorems 1.1, 1.3, and 1.6, we may assume that JD = CD. Then
Lemma 4.2 shows that the irreducible components Di = {hi = 0}, i = 1, . . . ,m, of D are smooth,
and hence normal. It follows that

RD = O
D̃

=
m⊕
i=1

O
D̃i

=
m⊕
i=1

ODi .

By the implication (1) ⇐ (4) in Theorem 3.1, this is equivalent to

Ω1(logD) =

m∑
i=1

OS
dhi
hi

+ Ω1
S . (4.2)

On the other hand, Saito’s criterion [Sai80, (1.8), Theorem. i)] for freeness of D reads

n∧
Ω1(logD) = Ωn

S(D). (4.3)

Combining (4.2) and (4.3), it follows immediately that D is normal crossing (see also [Fab12,
Proposition B]):

Considered as an OS-module and modulo Ωn
S , the left-hand side of (4.3) is, due to (4.2),

generated by expressions

dhi1 ∧ · · · ∧ dhik ∧ dxj1 ∧ · · · ∧ dxjn−k

hi1 · · ·hik
, (4.4)

1 6 i1 < · · · < ik 6 m, 1 6 j1 < · · · < jn−k 6 n > k,

whereas the right-hand side of (4.3) is generated by

dx1 ∧ · · · ∧ dxn
h1 · · ·hm

.

In order for an instance of (4.4) to attain the denominator of this latter expression, it must

satisfy k = m and, in particular, m 6 n. Further, comparing numerators, dh1 ∧ · · · ∧ dhm ∧
dxj1 ∧ · · · ∧dxjn−m must be a unit multiple of dx1∧ · · · ∧dxn. In other words, choosing i1, . . . , im
such that {i1, . . . , im, j1, . . . , jn−m} = {1, . . . , n},

∂(h1, . . . , hm)

∂(xi1 , . . . , xim)
∈ O∗S .

By the implicit function theorem, h1, . . . , hm, xj1 , . . . , xjn−m is then a coordinate system and

hence D is a normal crossing divisor as claimed. 2
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5. Gorenstein singular locus

In this section, we describe the canonical module of the singular locus Z in terms of the module
RD of logarithmic residues. Then, we prove Theorem 1.10.

The complex of logarithmic differential forms along D relative to the map h : S → T :=
(C, 0) defining D is defined as Ω•(log h) := Ω•(logD)/(dh/h)∧Ω•−1(logD) (see [dGMS09, § 22]
or [DS12, Definition 2.7]).

Proposition 5.1. The OZ-module Rh := RD/OD fits into an exact square.

0

��

0

��

0

��
0 // OS

h //

dh
��

OS
//

dh
h
��

OD
//

��

0

0 // Ω1
S

//

��

Ω1(logD)
ρD //

��

RD
//

��

0

0 // Ω1
S/T

//

��

Ω1(log h) //

��

Rh
//

��

0

0 0 0

If D is free, then Z is Cohen–Macaulay with canonical module ωZ = Rh; in particular, Z is
Gorenstein if and only if RD is generated by 1 and one additional generator.

Proof. We set ω∅ := 0 in case D is smooth and assume Z 6= ∅ in the following. The exact square
arises from the residue sequence (3.3) using the Snake lemma. Dualizing the short exact sequence

0 //JD
// OD

// OZ
// 0,

one computes

Ext1
OD

(OZ ,OD) = J ∨
D/OD = RD/OD = Rh. (5.1)

which shows that Rh is an OZ-module. If D is free then, by Theorem 2.3, Z is Cohen–Macaulay
of codimension one and ωZ = Rh by (5.1). 2

Part (1) of the following proposition can also be found in Faber’s thesis (see [Fab11,
Proposition 1.29]).

Proposition 5.2. Let D be a free divisor. Then the following statements hold true:

(1) dh/h is part of an OS-basis of Ω1(logD) if and only if D is Euler homogeneous;

(2) dh/h is part of an OS-basis of Ω1(logD) if and only if 1 is part of a minimal set of OD-
generators of RD;

(3) RD is a cyclic OD-module if and only if D is smooth.

Proof. (1) This is immediate from the existence of a dual basis and the fact that
χ ∈ Der(−logD) is an Euler vector field exactly if 〈χ, dh/h〉 = χ(h)/h = 1. Then χ can be
chosen as a member of some basis.
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(2) We may assume that D ∼= D′ × S′ with S′ = (Cr, 0) implies r = 0. Indeed, a basis

of Ω1(logD) is the union of bases of Ω1(logD′) and Ω1
S′ . This assumption is equivalent to

Der(−logD) ⊆ mSΘS , where mS denotes the maximal ideal of OS . Dually, this means that no

basis element of Ω1(logD) can lie in Ω1
S .

Consider a basis ω1, . . . , ωn of Ω1(logD) with ω1 = (dh/h) and set ρi := ρD(ωi) for

i = 1, . . . , n. If ρ1 = 1 is not a member of some minimal set of generators of RD, then

ρ1 =
∑n

i=2 aiρi with ai ∈ mS . Thus, the form ω′1 := ω1 −
∑n

i=2 aiωi can serve as a replacement

for ω1 in the basis. But, by construction, ρD(ω′1) = 0 which implies that ω′1 ∈ ΩS by (3.3). This

contradicts our assumption on D.

Conversely, suppose that dh/h is not a member of any OS-basis ω1, . . . , ωn of Ω1(logD).

Then, by Nakayama’s lemma, there are ai ∈ mS such that dh/h =
∑n

i=1 aiωi. Applying ρD, this

gives 1 = ρD(dh/h) =
∑n

i=1 aiρi ∈ mDRD. Again by Nakayama’s lemma, this means that 1 is

not a member of any minimal set of OD-generators of RD.

(3) If RD
∼= OD, then also JD

∼= OD by Corollary 3.6, then D must be smooth by Lipman’s

criterion [Lip69]. Alternatively, it follows that Jh + OS · h = OS and hence also Jh = OS

(see Remark 1.7); so D is smooth by the Jacobian criterion. 2

As observed by Faber [Fab12, Remark 54], condition (2) of Proposition 5.2 is satisfied given

RD = O
D̃

(see Theorem 1.5.(4)).

Proof of Theorem 1.10. Assume that Z is Gorenstein of codimension one in D. The preimage

J ′
D of JD in OS is then a Gorenstein ideal of height two. As such, it is a complete intersection

ideal by a theorem of Serre (see [Eis95, Corollary 21.20]), and hence generated by two of the

generators h, ∂1(h), . . . , ∂n(h). As in the proof of Theorem 1.6, the triviality lemma [Sai80, (3.5)]

shows that D is either smooth or D ∼= C× (Cn−2, 0) and C ⊂ (C2, 0) a plane curve. Then also C

has Gorenstein singular locus and is hence quasihomogeneous by [KW84]. Alternatively, the last

implication follows from Propositions 5.1 and 5.2 using that quasihomogeneity of C follows from

Euler homogeneity of C by Saito’s quasihomogeneity criterion [Sai71] for isolated singularities.

Finally, D is quasihomogeneous and Z is a complete intersection. The converse is trivial. 2
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