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SCHRODINGER OPERATORS WITH MAGNETIC
AND ELECTRIC POTENTIALS

YU KAIQI

In the present paper, we consider Schrodinger operators which are formally given
N

by P = - X) (Sj - iaj)'+V in L2 (RN) . In Section 2 and 3 we prove that P has a
i=i

regularly accretive extension which is a self-adjoint extension of P and it is the only
self-adjoint realisation of P in L3(iZw) when a satisfies a = (ai, aj, •• • , OJV) 6
£?oc ( # " ) " . ^ real-valued, 1 ^ j ^ N, V € L,loe (fiw) , real-valued and the
negative part V_ := max(0, -V) satisfys JRfr V_ \ip\* dx ^ d ||Vy»|j2 + C3 \\<pf

(p £ H1-i(RN), with constants 0 ^ Ci < 1, Cj ^ 0 independent of V. In
Section 4, we prove that P is essential self-adjoint on CQ° (-R )̂ when a, V satisfy
a e Llc(R

N)N, div a 6 L?oc(fl") ; V = Vt + V2, V real-valued, Vt e L? o c (^) .
% = 1, 2, Vi(a!) ^ - C |a:|2, for z 6 ^ with C ^ 0 and 0 ^ V, 6 A"AT .

1. INTRODUCTION

In the present paper, we consider Schrodinger operators which are formally given by
N —

P = — 5^ (t?j — io,-) + F , where V is an electric potential and a — (ai, ,
is a singular magnetic vector potential. In solid state physics, this corresponds to a

simple one-electron model of a crystal in a magnetic field, the (short-range) potential

V describing impurities of the crystal (Reed and Simon [5, Vol.IV, Section VII.16]).

Schrodinger operators with magnetic vector potentials have been studied exten-

sively (Leinfelder and Simader [4], Simon [9], Simader [7], Hinz and Stolz [2] and the

references given therein). In Section 2 and 3, we make the general assumption s

(1.1) ~a = (oi, a2, •• • , aN) 6 tfoc(R
N)N, aj real-valued, 1 ^ j ^ N,

(1.2) V 6 Llc(R
N), real-valued,

the negative part V_ := max(0, —V) satisfying

(l.o)

with constants 0 ^ C\ < 1, C2 ̂  0 independent of V.
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300 Yu kaiqi [2]

Since Cg°(RN) is dense in F 1 ' 2 ^ ) and Vl/2 is a closed operator from L2(RN) into
L2(RN) as a multiplication operator, (1.3) can be written

(1.3)' /
JRN

Condition (1.3) or (1.3)' is for example satisfied if V_ £ KN (in fact, C\ may be zero
in this case), where

(1.4) KN = \ V e Llc(R
N) : ]imwN,,(V) = 0 \,

(1.5) «jv,t(V) = sup / |y(i/)| |c - yl2"^ dy, for t > 0 and N > 3.
t e n " «/|x—»|<t

For JV = 2, |a; — y\ ~ has to be replaced by log |s — y\~ in Equation (1.5); for

N = 1, .fiOv coincides with £joc(/Z) (compare [1] for these definitions).

Now we define a sesquilinear form h— in the Hilbert space L2 (RN) by

(1.6) fer v (« , «)

for w, u from

(1.7) DfeJ ={ue L2(RN) : (0,- - « , > G

where (9j — i a ^ u is denned in the sense of distribution. A— is symmetric semi-

bounded, densely defined and closed, this is shown in [4] for V ^ 0. To accommodate

V- , it is important to note that (compare [4, Equation (3.6)])

(1.8) di \u\ < |(fl, - t a > | u e

where V+ — V + V_. Hence, if (1.3) holds, V_ has relative form bound Ci < 1 with

respect to A— and [3, Theorem VI-1.33] applies.

Let H— denote the self-adjoint and semibounded operator associated with h^ ,
a,v J r a,v

by [3, Theorem VI-2.1]. Instead of HOlv, we write -A+V. Then # - y is a self-adjoint

realisation of P in L2(RN) in the sense of form and D(H-- \ = {u G L2(RN) :
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{dj-iaj)u £ L2(RN), \V\1/2u £ L2(RN), Pu £ L2(RN)}, where P acts on u in the
distribution sense.

In Section 2, we consider the regularly accretive extension of P, which is also a
self-adjoint extension of P. We point out that when a, V satisfy (1.1)-(1.3), P has
a regularly accretive extension F-~ and F-* = 17— (Theorem 2.2 and Theorem

2.3). In Section 3 we prove that one can define a maximal self-adjoint realisation iT—

of P in L2 (RN) as follows:

-Z.v) = {U G L2(RN) : (d>-ia>)u e *&.(*")•
\V\1'2u£l2

oc(R
N),Pu£L2(RN)},

It is clear that H— is an extension of 2?— . In fact, we have 27— = 27—

(Theorem 3.1). In [7], Simader considered a Schrodinger operator Tu = —An + Vu on

D(T) = CS°(RN) when the potential V satisfies

, m / V = Vi + V2, V real-valued, Vt £ L2
OC(RN), i = 1, 2,

' ' I 2 AT •

I VAx) ^ —C |z for x £ R" with suitable constant C ^ 0 and 0 ^ F2 '

He proved that T is essentially self-adjoint when V satisfies (H) and V\ ~£ 0, see [7,

Theorem 2]. In Section 4, we consider the self-adjoint realisation of P in L\OC(RN>) in

the sense of operator when V satisfies (H) and a £ Lfoc (R
N) ., div a £ L2

OC (RN) •

We prove that P is essential self-adjoint on C£° (RN) • Here, we must point out that

Simader's proof of the above theorem is completely dependent on the local boundedness

result in [8], but this method fails to be used in our case since — (V — iaj + V i s not

a real differential operator on C£° (RN). We avoid the estimation of local boundedness
by means of the self-adjoint realisation JJ— of P in the sense of form. Recently, Hinz

and Stolz proved that when «T £ L?OC(RN)N, div ̂  G L2
OC(RN), V £ L?OC(RN) and

V_ £ Kff + O(|s; |2) , P is essential self-adjoint on CS°(RN) . Their methods are the

same as Simader's.

2. T H E REGULARLY ACCRETIVE EXTENSION OF P

Let H denote a complex Hilbert space with inner product (u, v)H and norm

\\U\\H
 = (u> U)H • We suppose that there is a dense subspace W of H which is a

Hilbert space with inner product (u, v)w and norm ||u||tip. = (u, u)]y with u £ W.
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Suppose the identity map W —• H is a bounded operator, that is, there is a constant
Ko such that for all u £ W,

(2.1) \\u\\H^KQ\\u\\w.

Suppose further there is a bilinear form b(u, v) defined on W x W with values in
C and a constant K\ such that for all u, v in W,

(2.2) |6(»,i,)|<Jir1||ii||w|M|w.

We may define the linear operator associated with 6 to be that operator A with

domin D(A) C W such that u € -D(-4.) and Au = v if and only if 6(u, to) = (v, w) for

all we W.

We now make the fundamental

DEFINITION: A linear operator A is said to be regularly accretive if it is associated

with a bilinear form b which in addition to satisfying (2.2), also satisfies

(2.3) \\u\\2
w ^ K2 (Re b{u, u) + K3 \\u\\2

H)

for all u in W and fixed constants K2 and K3.

It can be shown that a regularly accretive operator is densely defined and closed. In

addition its spectrum is contained in some half-space Re A > K of the complex-plane.

If b is symmetric, then A is a semibounded self-adjoint operator.

Now suppose Ao is a linear operator in H whose domain D(Ao) is not necessarily

dense in H. The following lemma will be useful for us.

LEMMA 2 . 1 . Let U be a dense subspace of W which contains D(A0). Suppose

&(•, •) is a bilinear form on U x U which satisfies inequalities (2.1), (2.2) and (2.3) for

all u and v in U. If

(2.4) b(u, v) = (Aou, v)H

for all u in D{AQ) and v in U, it follows that Ao has a regularly accretive extension

A.

The proof follows directly from the observation that the inequalities (2.1), (2.2) and

(2.3) as well as the form b itself extend to all of W by continuity. That the regularly

accretive operator A associated with b and W is an extension of AQ follows from (2.4).

A fuller account of the ideas here can be found in Schechter [6] and Kato [3].
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In the sequel, we consider the regularly accretive extension of P. Here, suppose

~a, V satisfy (1.1)-(.13). Define the operator Fo on Cg°(RN) as follows:

D{F0) = {u G CZ°(RN) : \V\1/2 u £ L2(RN), Pu € L2(RN)}

Fou = Pu, t i e D(F0),

where P acts on u in the distribution sense.

Obviously, FQ is a linear operator in L2 (RN) .

THEOREM 2 . 2 . Let a, V and Fo as above, then Fo has a regularly accretive

extension F-~ .

PROOF: Let U denote the space CQ°(RN) and let W be the closure of U with
respect to the norm

(2.5) \\u\\w = I JRN I £ \{di - ia})u\2 + V+ \u\2 j dx + \\u\\2 %

where V+ — max(0, V) .

By (1.3) and (1.8), we can easily deduce

N

V- \u\2 dx ^ C\ Y^ IKS1,- - ta.)u||2 + C2 \\u\\2

for all u in W.

Further we define a bilinear form 6 on W x W by the equation

(2.6) b(u, v) = / Vuvdx + V {(dj - iaj)u, {d, - ia.j)v)
JRN %.

Then for all u in D(F0) and v G U, b(u, v) = (Fou, v) and (2.1) is clear from (2.5).
We see by Lemma 2.1 that we need only verify inequalities (2.2) and (2.3), that is, we
need to find three positive constants Ki, K2 and K% such that for all u, v in W,

(2.7) |4(«, v)\ < Kx \\u\\w • \\v\\w

(2.8) | |« | |^ ^ K2 (b(u, u) + K3 IMI2).
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In fact,

\b(u, «)| < JRN ( £ \{di ~ iaj)u\2 + \V\ \u\2)dx

JRRN lE

t
/

N

\(dj - iaj)u\2 dx + C2 \\u\\

< (1 + d) f [ V \{dj - iaj)u\2 + V+ \u\2 )dx + C2 \\u\\2 .
JRN V £ /

Thus, there is a constant K\ > 0 such that (2.7) holds. Also,

\2dx\\u\\2b(u,u) = \\u\\2
w- I V-\u\2dx-\\u\\2,

so we have

||u||^ = b(u, u)+ [ V- \u\2 dx + \\u\\2

JRN

< b(u, u) + d \\u\\2
w + (1 + d) \\u\\2 .

Since 0 < Ci < 1, there exist K2, K3 > 0 such that (2.8) holds. By Lemma 2.1, Fo

has a regularly accretive extension F— in I? (RN) • D

Obviously, F-* is also a self-adjoint extension in the sense of form. What is the
connection between F-* and 2?— ? The following result answers this question.

THEOREM 2 . 3 . F-^ v = H-~ y .

PROOF: From the proof of Theorem 2.2, we have

IN \

~Z,vu' v) = j N I X ) (di<~ iaAu ' (d> ~ ia^v + VuV I dx

for ueflj^J, veW.

Since JP— is a regularly accretive extension of Fo , we have u £ DI F-~ J and

F— u = H-* u. Therefore, F— is an extension of H^ „ and H^ „ = F— ,, for
a ,V a,V ' a ,V a ,V a ,V a ,V

.F— and H^ are both self-adjoint. u
a ,V a,V
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3. T H E MAXIMAL SELF-ADJOINT REALISATION OF P

ifferen

in L2(RN) as follows:

Given the differential operator P, we can define a maximal realisation 27— of P

where P acts on u in the distribution sense. It is dear that 2f— is the extension of

27— obtained in Section 1. In fact, we have

THEOREM 3 . 1 . if- = 27- , , .
a,V a,V

COROLLARY 3 . 2 . 2f- y is the only self-adjoint realisation of P in L2 (RN) .

From (1.3) and (if— „**> v) = ^2 {.{pj ~ *«>)«> (dj — ia.j)v) + JRN Vuvdx for

u, v G Cg°(RN), we can easily find fc > 0 such that

(31) 3 1

1£\(dj-iaj)<p\2dx+ \V\-\<p\2dx
IR" f?[ JRN

for all if G Cg°(RN) . Thus, we may define a norm on CS°(RN) as follow:

By completing CQ°(RN) in the norm ||-||a, we obtain a Hilbert space which we denote

by M. From [9, Theorem 2.1], we have

(3.2) M = {u£ L2(RN) : {dj -iaj)u G L2(RN), \V\1/2u G L2(RN)}.

For the proof of the Theorem 3.1, we need

LEMMA 3 . 3 . If there is a fc' > 0 such that for all <p G CS°(RN) ,

JRNJR V
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where k is as in (3.1). Then the map u —» (P + k)u is an injective map from

D [S-^ v + Jb) into L2 (RN).

PROOF: Suppose u G D(H^ + k) such that (H^ + k)u - 0. For any e > 0,

define ue = u/(l + e \u\), then we have

(i) «. e £ L ( ^ ) . («i - »«,•)«. G Llc(R
N),

(ii) « , - t u , (9,- - ia.j)ue -*• (dj — ia.j)u in Lfoc(R
N) a s £ - > 0 .

In fact, uc 6 ^ ( i Z ^ ) is obvious, and by \ue - u\ = (e\u\2)/(l + e\u\) ^ |u|

and the dominated convergence theorem, we obtain B t - > u a s e - t 0 i n L2
oc {RN) •

Also since u £ L2(RN) C tfoc(R
N), a,u G tfoc(R

N), 1 < j ^ iV, we can deduce

«,-« G iJ , . (« W ) ^ d D{S^,v) C ^ l o c ^ ) - By (1.8) we have fl, | u | e l L ( ^ ) -
For any yj in CS°(RN) ,

(3.3)

This implies

dj \ueip\ — ue(dj<p) + ip
dju — euedj \u\

\(dj - ia.j)(ue<p) - (dj - ia,j)(u(p)\

—euedj \u\ — e \u\ (dj — ia.j)u
(ue - u)(dj<p) A

J. T e. |u

^\(dj<p)u\ + \(dj-iaj)u\.MeL2(RN),

therefore (dj — ia,j)(ue<p) G L2(RN) . Using (3.3) and the dominated convergence the-
orem, we obtain (dj — ia.j)ue —> (dj — ia.j)u as e —» 0 in L2

OC(RN) . So we have proved
(i) and (ii).

For any real function <p G CS°(RN) , ueip
2 G M l~l L°°(RN) . By (3.2), we have

^ ((dj - iaj)u, (dj - iaj)(uer
2)) + (V + k)uue<p2dx = 0.

Then

((dj - iaj)u • (dj - iaj)(ue<p*) + V \ue\
2 <e2)dx + f k\ue\

2 <p2dx
N \ / JRN

— / k(ue - u)ueip
2dx

+ f ((dj - iaj)(ue - u) • (dj - iaj)(ue<p2) - V(u - uc)u<p2)dx
JRN \ /
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Since (u - ue)ue (= (e | u | s ) / ( ( l + e |u|)2) ^ 0) is real, lim JRN {ue - u)ue<p2dx = 0

and lim JRN {dj — ia,j)(ue — u) • {dj — iaj)(ueip
2)dx = 0, we have lim I m / e = 0.

By (u — u<-)ue ^ 0, we have

ReIe = Re ( / {dj - iaj)(ue - u) • {dj - iaj)(ue<p2)dx + k f (we - u)ue<p2dx)
KJR^ JRN J

— / V{u — ue)ue<p2dx
JRN

^ R e ( - . . ) + / V-{u - ue)ut<p2dx
JRN

a \ l / 2 / f \ l / 2

F_ | u - ue\
2 <p2dx\ (J V.<p2 \uc\

2 dx) .

So from (i) and (ii), lim(Re/e + Im/e) ^ 0. Also, since

{dj - ia.j)ue • {dj - iaj){ueip
2)

N N

dj - iaj)ue ) ,

we have

i = l

dj - io,-)««) + V H 2 y.2 + fc |«e|
2 ̂  j dx = / , .

By Kmlm/, = 0 ,
e—»0

lim
e-»0

Im
N r

(dj - iaj)uedx = 0.

Then from (3,2) and the condition, we have

N r r
£ 11(0,- - tayXti^H2 + / V \ue<p\2 dx+ k \ue9\

2 dx > k' \\ue<p\\2

j = 1 JRN JRN
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and

0 ^ lirn(Re/e + Im/e)
e » O

= Urn R e ^ f £ \{di - iai)(u.V)\2 - \ue\
2 |Vy,|2 + k \ue\

2 ^ + V |uep|2 J dx

> limYk' \\ue<p\\2 - I \ue\
2 \V<p\2 dx)

«-0 ^ JRN )

= k'\\uVf- f \u\2\VV\2dx, •
JRN

that is, k' H^ll2 ^ IRN H2 iV^l'da;. Taking tp.(») = !?(x/e), where !? € CS°(RN),
!?(x) = 1 when \x\ < 1; V(x) = 0 when \x\ ^ 2 and 0 < 9 < 1, \dj#(y/e)\ =

o(l/e) (e -+ oo), we have ifc' ||ii|| < 0 and u = 0. D

PROOF OF THEOREM 3.1: NT- 4-fc) is a bounded linear operator in L2 (RN)

for suitable k > 0. Suppose « G D{^ v + k) > v = U~(H^ v
 + fc) ( ( ^ v +

Since D(H-^ \ C -Of^- V) , we have w 6 ^ ( ^ - v
 + fc) ' A l s o s i n c e (P + k)v = °

and from (3.1), we have v = 0 by Lemma 3.3. So « £ D^-ff- y + k\ and £T- y -

4. THE ESSENTIAL SELF-ADJOINTNESS OF P ON CQ°(RN)

In this section, we consider the essential self-adjoint extension of the Schrodinger

operator P = - £ (3; - ia,)2 + F , where a 6 L*OC(RN)N, div a G ifo c(flN), V =

Vi + F 2 , Vi e A2oc(fiJV). * = i . 2, ^i(z) ^ - c I* ! 2 (C > o), o ^ K2 e KN.
First, we prove the following result.

LEMMA 4 . 1 . Let~a,V be as above. Then there exist constants Cs > 0, C4 > 0

such that for all ue CS°(RN),

N

-•_!

r r
I \Pu\2dx + C<m2 \u\2 dx,

where Bm = {x e RN: m/2 < [asj < 3m}, m > 0.

PROOF: Take £ e CS°(RN), 0 < f ^ 1, ^(x) = 1 when 1 ^ |x| < 2; £(x) = 0
when \x\ ^ 3 or |z| ^ 1/2. For any positive integer m, £m = £(x/m). By V2 G
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for any e > 0, there exists M(e, V2) > 0 such that

|(Vrfm«, *m«)| ^ e I MUu)\2 dx + M(e, V2) I \Uu\2 dx
JRN JRN

for tt G CS°(RN). Set K = max |V£(y)|, then |V£m(!B)| < iif/m and
t£fl"

(4.1) I^Um«)|2 ^ 2(aien»)2 M2 + 2 ^ |9i«|2.

Therefore, there exists a constant Ce > 0 such that for any tt G CQ°(RN) •

\(V2u,emu)\^2e [ &\S7\u\\2dx+C. I \u\2 dx.
JR." JRN

Taking e — 1/16, we have

(4.2) -C(3m)2 f \u\2dx
JBm

-\f |V|«||2dx-C1/16 / |u|2dx.
8 JBrr, JBm

Also since
N

AT

j=\

we have

N N

|2 dx - C(3m)2 / |u|2 dx
JBm

-\f \V\u\\2dx-C1/lt f \u\2dx.
8 JBm JBm

This implies that
xr

3j - ia,)u\2 dx^C3 f |P«|2 dx + C'sn2 f \u\2 dx + | dx
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for suitable constants C'3, C'± > 0. Also by (1.8), we have

N r r r
Y, / \(9j - iaj)u\2 dx^C3 \Pu\2 dx + dm2 / |u|2 dx

for suitable constants C3, C± > 0. D

THEOREM 4 . 2 . Let~a,Vbeas above, then P = - £ {dj - iaj)2 + V is essen-

tial self-adjoint on CS°(RN) .

PROOF: Since P is symmetric, if we want to prove that P is essential self-adjoint

on Cg°(RN), we only need to prove that for any ^ G CZ°(RN), if / G L2(RN),

(/, Ptp) = 0, then / = 0. Thus, in the sequel, we suppose / G L2{RN), (/, Pip) = 0

for any ipeCS°(RN).

If V satisfies (H), put

V{k)(x) = I ^ '
\ -Ck2 \x\ > k.

Then (V1 J is a bounded function. By the discussion in Section 1, we have Pk :=

N

— ^2 {dj — iaj) + Vi + V\ is essential sett-adjoint on C£°(RN) in the sense of form

and we denote the self-adjoint realisation of Pk by Pk. Moreover, by (4.2) we have

| (Pku, & „ ) | = | ( (V - ia)u, (V - ia) ( ^ « ) ) + ((v2 + V™)u, ^ « ) |

for u G D(Pk) • Using the same methods in the proof of Lemma 4.1, we have there
exist constants Cs, Ce > 0 such that

N r t _ t
(4.3) Y, I W* ~ ia>)u\2 dx^C* \Pku\2 dx + C6m

2 / \u\2

j=l •'Bm JBm •»Bm

dx.

Take 77 G C%°{RN), Tf(x) = 1 for \x\ < 1; TJ(X) = 0 for \x\ ^ 2 and set r)m(x) =

V{x/m). For any u G CS°(RN) ,

(P + i)(uT}m) = •qm{P + i) -

where D = (di — io i , ^2 — 102, • • • , <?JV — JOAT). From this, we have

i)u) = (/, (Ar,m)u) + 2 ̂ / , VT,
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and for any « G CS°(RN) , k ^ 3m,

Taking k = 3m, we have

(4.4) (fVm, (P3m + i)u) = (/, (AVm)u) + 2(f, VVm • Du\.

Since Psm is essential self-adjoint on C£° (RN) in the sense of form, (4.4) also holds

for u e D(Pk) • Therefore there exists um E D(P3m) such that (P3m +i)um = fr]m.

So, we have

(4.5)
f\2V2

mf =

for suitable constant M > 0. Since P3m is a self-adjoint operator and (P3m + i)um =

fVm, we have ||tim|| < | | / i^ | | ^ | | / | | . Also by (4.3),

(4.6) | P « m | | | 2 , < C 5 / \(P3m + i)um\2dx + C6m
2 f \um\2dx.

Ill IIIL3(Bm) JBm JBmJBm

So from (4.5) and (4.6), there exists C7 > 0 such that

Let m -> 00, then we have | | | / | 2 | | = 0; thus / = 0. •
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