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SCHRODINGER OPERATORS WITH MAGNETIC
AND ELECTRIC POTENTIALS

YU KAIQI

In the present paper, we consider Schrédinger operators which are formally given
N

by P=— 3% (8; —ia;)*+V in L? (RN) . In Section 2 and 3 we prove that P hasa
j=1

1=
regularly accretive extension which is a self-adjoint extension of P and it is the only

self-adjoint realisation of P in L? (RN ) when 4 satisfies @ = (a1, a3, - ,an) €
Lfoc(RN)N, a; real-valued, 1 < j < N, V € L}, (RN), real-valued and the
negative part V_ := max (0, —V) satisfys fn" V_lel* de < C1 ||V + Ca |lel?
¢ € H'? (RN), with constants 0 < C1 < 1, C2 > 0 independent of V. In
Section 4, we prove that P is essential self-adjoint on Cg° (RN ) when e, V satisfy
a € Li (RM)", diva € L4, (RY); V = i+ V4, V real-valued, Vi € L, (RY),
i=1,2, Vi(z) > —C|z|*,for z € RN with C >0 and 0> V; € Ky.

1. INTRODUCTION
In the present paper, we consider Schrédinger operators which are formally given by
N —
P=—3 (8; —ia;)* +V, where V is an electric potential and @ = (a;, az, - , an)
i=1

is a singular magnetic vector potential. In solid state physics, this corresponds to a

simple one-electron model of a crystal in a magnetic field, the (short-range) potential

V describing impurities of the crystal (Reed and Simon [5, Vol.IV, Section VIL.16]).
Schrédinger operators with magnetic vector potentials have been studied exten-

sively (Leinfelder and Simader [4], Simon [9], Simader {7], Hinz and Stolz (2] and the

references given therein). In Section 2 and 3, we make the general assumption s

(1.1) @ =(a1, a2, ,an) € L2 (RM)", a; real-valued, 1 < j < N,

(1.2) V € Lj,.(RY), real-valued,

the negative part V_ := max (0, —V) satisfying
[, V-leP de < CLITwI? + Calol o € B (RY)

with constants 0 € C; < 1, C2 > 0 independent of V.

(1.3)
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Since C§°(RYN) is dense in H'?(R") and V% is a closed operator from L?(R™) into
L%(R") as a multiplication operator, (1.3) can be written

(1.3)" /RN V_lplde < CLIIVIglP +Callel?, v € BY(RY).

Condition (1.3) or (1.3)' is for example satisfied if V_ € Ky (in fact, C; may be zero
in this case), where

(1.4) Ky = {V € leoc(RN) lefl()le,t(V) = 0} ,

(15)  wni(V)= sup / V@) |z — > dy, fort > 0and N > 3.
z€RN J[z—y|<t

For N = 2, |z —y|*™" has to be replaced by log|z —y|™" in Equation (1.5); for
N =1, Kn coincides with L}, .(R) (compare [1] for these definitions).
Now we define a sesquilinear form h: v in the Hilbert space L? (RN ) by

’

(1.6) h—;,v(u, v) = Z (85 — iaj)u, (8; —iaj)v) +/ Vuvde

j=1

for u, v from

(1.7) D(hz,) = {ue I*(BY) : (9; - ia;u € L*(RV),

1< <N, Vil e I} (RY) },

where (8; — iaj)u is defined in the sense of distribution. h— _ is symmetric semi-

bounded, densely defined and closed, this is shown in [4] for V > 0. To accommodate
V_, it is important to note that (compare [4, Equation (3.6)])

(18) 0 lul <1(8; —iahul  weD(hs )

where V; = V + V_. Hence, if (1.3) holds, V_ has relative form bound C; < 1 with
respect to h— TV, and [3, Theorem VI-1.33] applies.

Let H v denote the self-adjoint and semibounded operator associated with h— v

by [3, TheoremVI 2.1]. Instead of Hg,v, we write —A+V. Then H— isa self-adjomt

realisation of P in L?(R") in the sense of form and D(H: V) = {u € L*(RM) :
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(8; —iaj)u € L*(RVN), [V|"?u e L? (RN), Pu € L*(RN)}, where P acts on u in the
distribution sense.

In Section 2, we consider the regularly accretive extension of P, which is also a
self-adjoint extension of P. We point out that when a, V satisfy (1.1)-(1.3), P has
a regularly accretive extension F- and F—- = H - (Theorem 2.2 and Theorem

2. 3) In Section 3 we prove that one can deﬁne a ma.}uma.l self-adjoint realisation H -
of P in L?(RN) as follows:
D(ﬁ— V) = {u € L*(R") : (8; — iaj)u € L2 (R"),

a,

IVlllzu € leoc(RN)’ Pu € Lz (RN)}’

H;- ve= Pu, u€ D(E:,V).

It is clear that H—- 1s an extension of H— . In fact, we ‘have H~ = H-
WV a,V e,V a,V

(Theorem 3.1). In [7] Simader considered a Schrodmger operator Tu = _Au +Vu on
D(T) = C§°(R™N) when the potential V satisfies

(B) V=V, +V,, V real-valued, V; GLIOC(RN), 1=1,2,
Vi(z) > —-C Izl for ¢ € RN with suitable constant C > 0and 0 > V, € Kx.

He proved that T is essentially self-adjoint when V satisfies (H) and V; > 0, see [7,
Theorem 2]. In Section 4, we consider the self-adjoint realisation of P in L} _(RM) in
(RM)N, diva e L2 (RV).
We prove that P is essential self-adjoint on C§° (RN ) . Here, we must point out that

the sense of operator when V satisfies (H) and @ € L

loc

Simader’s proof of the above theorem is completely dependent on the local boundedness
result in [8], but this method fails to be used in our case since — (V - i;)z +V is not
a real differential operator on C§°(RN ) We avoid the estimation of local boundedness
by means of the self-adjoint realisation H— V of P in the sense of form. Recently, Hinz
and Stolz proved that when @ € L{_ (RN ) divae € L2, (RY), Ve L} (R") and
V.e Ky + O(|z| ), P is essential self-adjoint on C$°(RM). Their methods are the

same as Simader’s.
2. THE REGULARLY ACCRETIVE EXTENSION OF P

Let H denote a complex Hilbert space with inner product (u,v), and norm
lullg = (u, u)1/2. We suppose that there is a dense subspace W of H which is a
Hilbert space with inner product (u, v)y, and norm |u||y = (u, -u,)l/2 with v € W.
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Suppose the identity map W — H is a bounded operator, that is, there is a constant
Ky such that for all ue W,

(2.1) llll e < Ko llullw -

Suppose further there is a bilinear form 5(u, v) defined on W x W with values in
C and a constant K; such that for all u, v in W,

2.2) 16, )| < K ullyg [olop -

We may define the linear operator associated with b to be that operator A with
domin D(A) C W such that v € D(A4) and Au = v if and only if b(u, w) = (v, w) for
all we W.

We now make the fundamental

DEFINITION: A linear operator A is said to be regularly accretive if it is associated
with a bilinear form b which in addition to satisfying (2.2), also satisfies

(23) lullyy < Ko (Reb(u, u) + Ks |lully )

for all v in W and fixed constants K; and Kjs.

It can be shown that a regularly accretive operator is densely defined and closed. In
addition its spectrum is contained in some half-space Re A > K of the complex-plane.
If b is symmetric, then A is a semibounded self-adjoint operator.

Now suppose Ag is a linear operator in H whose domain D(A4y) is not necessarily
dense in H. The following lemma will be useful for us.

LEMMA 2.1. Let U be a dense subspace of W which contains D(Ao). Suppose
b(-, -) is a bilinear form on U x U which satisfies inequalities (2.1), (2.2) and (2.3) for
allw and v in U. If

(2.4) b(u, v) = (Aou, v)y
for all u in D(Ay) and v in U, it follows that A, has a regularly accretive extension

A.

The proof follows directly from the observation that the inequalities (2.1), (2.2) and
(2.3) as well as the form b itself extend to all of W by continuity. That the regularly
accretive operator A associated with b and W is an extension of A, follows from (2.4).

A fuller account of the ideas here can be found in Schechter [6] and Kato [3].
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In the sequel, we consider the regularly accretive extension of P. Here, suppose
a, V satisfy (1.1)-(.13). Define the operator Fy on C§° (RN) as follows:

D(Fy) = {u € C°(R) : [V]'/*u € I*(B"), Pu e L*(RY)}
Fou = Pu, u€ D(F),

where P acts on u in the distribution sense.

Obviously, Fy is a linear operator in L? (RN ) .

THEOREM 2.2. Let a,V and F, as above, then F, has a regularly accretive
extension F:'V .

PROOF: Let U denote the space C§°(RN) and let W be the closure of U with
respect to the norm

N 1/2
25 lully = ( L (Zl(aj —iagul? + V, w) do + ||u||”>

i=1

where V; = max(0, V).
By (1.3) and (1.8), we can easily deduce

N
/R | V-lul* dz < C Y1185 — e )ull® + Ce Jul?

j=1

forall u in W.
Further we define a bilinear form b on W x W by the equation

N
(2.6) b(u,v) = /};N Vuvdz + z ((0j — iaj)u, (8; — iaj)v).

Then for all v in D(Fy) and v € U, b(u, v) = (Fou, v) and (2.1) is clear from (2.5).
We see by Lemma 2.1 that we need only verify inequalities (2.2) and (2.3), that is, we
need to find three positive constants K;, K, and K such that for all 4, v in W,

(2.7) 16w, v)] < Ki [[ullyy - o]l
(2.8) lullyy < Ko (b, w) + Ks [lul?).
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In fact,

b, w)l < [ N(
<[,

N
el / 3 1(8; - iaj)ul? d + C; [ul?
RN j=1

N
185 —iay)ul + V] [ul* | d=
i=1
N
U85 —iaj)ul* + Vi Juf® |de
ij=1

N

<@+0) [ | 310 —iag)ul’ + Vi fuf* | do -+ Ca .
RY \i=1 .
Thus, there is a constant K; > 0 such that (2.7) holds. Also,

B(u, u) = |lulll - / V_ luf? dz — |lu|?,
RN
so we have

lulfy =8y )+ [ V- lul do + ul?
RN
< 5w, u) + Cu Jlullyy + (1 +Ce) [lu]l*.
Since 0 < C; < 1, there exist K, K5 > 0 such that (2.8) holds. By Lemma 2.1, F,
has a regularly accretive extension F;- v in L? (RN ) 0
Obviously, F: v is also a self-adjoint extension in the sense of form. What is the
connection between F— v and H - ? The following result answers this question.

THEOREM 2.3. F: =H:

v v’

PROOF: From the proof of Theorem 2.2, we have

(H:,Vu" v) = ./RN (i (8; — ia;)u - (8; — 1aj)v + Vui) dz

for u € D(H:'V), veW.

Since F— isa regularly accretive extension of Fy, we have u € D(F—aa V) and
F;-,V'u. = H-'-;'Vu.. Therefore, F;-,V is an extension of H—a',v and H:'V =F. for
F-. and H- _ are both self-adjoint. 0

a,V a,V
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3. THE MAXIMAL SELF-ADJOINT REALISATION OF P

Given the differential operator P, we can define a maximal realisation ﬁ",v of P
in L2(RN) as follows:
D(& ) = {ue I2(RY) : (8 — ias)u € e (RV),
[V["?u € 12 (R"), Pu c L’(RN)},
H. u=Pu, uc D(f—f;-,v),

where P acts on u in the distribution sense. It is clear that H. =y is the extension of

H: v obtained in Section 1. In fact, we have
THEOREM 3.1. H;.‘V = H;-’V.

CorOLLARY 3.2. H-  is the only self-adjoint realisation of P in L*(RN).
N
From (1.3) and (Hz ,u,0) = 3 ((8; —ie;)u, (8; —ia;}0) + [au Vuidz for
a, =

u, v € Cg° (RN), we can easily find k > 0 such that

N
Bl +3 [ 10 ool de+ [ 1V1-1pP de > (B, +E)ore)
(3.1) =

N
1—01 . 2 / 2
> 2 PR . .
> llell* + — (/RN ,-§=1:|(a’ ia;)el*de + | IV el dz)

for all ¢ € C§°(RY). Thus, we may define a norm on C§°(R") as follow:

el = (8= , +E)e.v) ™"

By completing C¢°(RY) in the norm ||-||,, we obtain a Hilbert space which we denote
by M. From [9, Theorem 2.1], we have

(3.2) M = {u € L*(R") : (; — ia;)u € L*(RV), [V|'/*u € L*(R")}.

For the proof of the Theorem 3.1, we need
LEMMA 3.3. Ifthereis a k' > 0 such that for all ¢ € C$°(RV),

N
Y18~ ias)ell + [ Vol do + kgl > &' llel”,
i=1
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where k is as in (3.1). Then the map u — (P + k)u is an injective map from
D(H , +k) into L*(RN).
PRrROOF: Suppose u € D(ET; v k) such that (17;- vt k)u =0. Forany € > 0,
define u, = u/(1 + € |u|), then we have
(1) ur € leoc (RN) ’ (aJ - ia‘j)"" € leoc (RN) )
(i) ue —u, (8 —iaj)u. — (8; —ia;)u in LE (RN) as e — 0.
In fact, u, € LE (R") is obvious, and by |u, —u| = (s |u|2)/(1 +elul) < |ul

and the dominated convergence theorem, we obtain u, — u as € — 0 in LZ_ (RN ) .
Also since u € L*(RN) c LY (RV), aju € LL, (RN}, 1 < j < N, we can deduce
dju € L, (R") and D(ﬁi,v) C H.!(RN). By (1.8) we have 9; [u| € L2 (RV).
For any ¢ in C$°(RYN),

(3.3) 0 el = ue(Oy) + - L
This implies

1(8; — ia;)(ucp) — (85 — ia;)(up)]

= l(w. — 2)(B _—€uel; |u| — € |u| (8; — iaj)u
- ("‘l'e u)(aJ‘P) + 14 1 +e |u|

< (B0}l +1(8; — iaj)ul - lo| € L*(RY),

therefore (8; —ia;)(u.p) € L*(RN). Using (3.3) and the dominated convergence the-
orem, we obtain (8; — ia;)u. — (8; —ia;)u as ¢ — 0 in L2 _(R"N). So we have proved
(i) and (ii).

For any real function ¢ € C.;”(RN), u.p2 € MN L“(RN). By (3.2), we have

N
Z ((8; — iaj)u, (8; —ia;)(uep ) + ./RN (V + k)uu,p dz. =0.

j=1

Then

[ (@5 = iasye B =i 4 V Yo+ [kl e
RN RN
=/ k(u, — u)g.p’dz
RN

* /RN (065 — ia;)(we — u) - (85 = 1a;)(we®) - V(u — w.)ap? ) da

=:1,.
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. — 3 2 . . —
Since (v —u.)z. (= (e [u| )/((1 + € ul) ) 2> 0) is real, 11_:5) Jar (ue —u)B.p%dz =0
and lim Jar (05 —iaj)(u. — u)- (8 — ia;j)(uep?)dz =0, we have lim Im I, = 0.

By (u — u.)u, > 0, we have

Rel. =Re </ (05 —iaj)(ue — u) - (85 — ia;)(ucp?)dz + k/ (ve — u)ﬁ,cpzdz)
RN RN
- / Viu-— u,)ﬁ,tpzdz
RN

SRe(---)+/ V_(u — u.)u p’de
RN

1/2 1/2
< Re(---)+ (/ V- ju — u)? <p2d:c> (/ V_g? |u.) dz) .
RN RN

So from (i) and (ii), _lijl%(ReI, +ImI.) < 0. Also, since

(85 —ia;j)uc - (8; —ia;)(uep?)

N N
= 37185 —ia;)(uep)? — fuel? - [Vl +2iIm (Zma,-so (85— ia,-)u,) :

i=1 j=1

we have

N
Lo (Z (85 ~ ias)(wep ) — ul” VP

N
+2 Imz (Tep - Bjp - (85 — iaj)uc) + V uel® 02 + k [ue|? <p2> dz =1I.,.

i=1

By ].in:(l]ImIe =0,

N
}if(x) ImJ_Zl /};N T.p0jp - (0; — iaj)u.dz| = 0.
Then from (3.2) and the condition, we have
N
. 2 2
S = ia)weol + [ Viuepl dot [ klucl® do > ¥ fucpl?
ot RN RN
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and

0> 1i_n%(ReI, +Iml,)

=R [ (Zl(a —ia;) () — uel? [V + klucl +V|uevlz) do
RN

e—0
j=1

> 5 (el - [ 1uel* 191" o)
e—0 RN

= ¥ [[up]® - / fuf? Vo da,
RN

that is, k' |luglf® < Jan [u]? |Vep|* dz. Taking @.(z) = !F(z/e), where ¥ € C*(RYN),
Y(z) = 1 when |z] < 1; ¥(z) = 0 when |z|] > 2 and 0 < ¥ < 1, |0;%(y/€)| =

o(1/€) (¢ — ), we have k' |lul| <0 and u =0.

<0
PROOF OF THEOREM 3.1: (H:‘V + k) ™ js a bounded linear operator in LZ(RN)
for suitable k > 0. Suppose u € D(H , +£), v =u—(Hz , +4) B (B, +#)u).
Since D(H ) c D(H; ), we have v € D(H | +k). Also since (P+kJv = 0
and from (3.1), we have v = 0 by Lemma 33. So u € D(H_ , +k) and H_ =

H‘a‘v

4. THE ESSENTIAL SELF-ADJOINTNESS OF P oN C§°(RY)

In this section, we consider the essential self-adjoint extension of the Schrédinger
operator P = — E (8; —ia;)? + V, where @ € Lt _ (RN) dive € L} (RV), V =
Vi+Va, Vi eLl (RN), i=1,2, Vi(z) > —Clz|> (C>0),0> Vo € Kn.

First, we prove the following result.

LEMMA 4.1. Let E, V be as above. Then there exist constants Cs > 0, Cs > 0
such that for all u € Cg°(RV),

Z / 1(8; — ia;)ul? dz < C / |Puf? dz + Cym? / luf? da,
B,
i=1 m

where B,, = {z € RN : m/2 < |z| < 3m}, m > 0.

PROOF: Take ¢ € C°(RN), 0 <€ <1, &=z) =1 when 1 < |z| £ 2; §(z) =0
when |z| > 3 or |z| < 1/2. For any positive integer m, {m = €(z/m). By V2 € KN,
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for any € > 0, there exists M(e, V2) > 0 such that
(Vabms o) < [ [9mu)l*de+M(e, V) [ emul” do
RN RN
for u € C{°(RN). Set K = max |VEé(y)|, then |VEn(z)| < K/m and
yER
(4.1) 18;(6mu)l* < 2(8j6m)” lul® + 267, 18;5ul* .
Therefore, there exists a constant C. > 0 such that for any u € C§°(RY ) .
|(Vau, €2,u)| S2e/ £ |V|u|? d=+c,/ luf? dz.
RN RN
Taking € = 1/16, we have

|(Pu, &0)| = | ((V - 13w, (V=13) (&) + (Vu, 4))

(4.2) > - C(3m)* /B ul® dz

N
Z (85 — ia;)u, (85 — ia;)(é5u))

1
_§/ |V|u||2dz—01/m/ luf? de.
Bm Bm

Also since

N
> ((8; — iaj)u, (8; —ia;) (€4 u))

i=1

N N
=) ((8; —iaj)u, €2,(8; —ia;)u) + Z (85 —iaj)u, 26m(8j&m)u),

i=1 i=1

we have

N N
. 1 .
I(Pu, Efuu)l P E/ (85 — m.j)u,l2 dz — 3 2/ [(8; — za,-)ulz dz
j=17Bm j=17Bm
—4 / fuf? [Vém[? dz — C(3m)? / luf? do
Bm Bm

1
_5/ |V|u||2dz—Cl/1,/ luf? dz.
Bm B

This implies that

N
Z/ |(a,-—ia,-)ufdz<c;/ |Pu|’dz+c;m2/ |u|’dz+1/ (V]u[]® dz
j=1YBm Bm Bm 8 /B
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for suitable constants C3, C; > 0. Also by (1.8), we have

N
Z/ (85 — ia;)u|* dz < Cs / |Pu)? dz + Cym? / [ul? dz
= /Bm Bm Bm

for suitable constants Cs, Cs > 0. 0

— N
THEOREM 4.2. Let a,V be asabove, then P = — Y (8; — ia;)’ +V is essen-
j=1

tial self-adjoint on C§°(RN).

PROOF: Since P is symmetric, if we want to prove that P is essential self-adjoint
on C(‘,”(RN), we only need to prove that for any ¢ € C§° (RN), if fe L? (RN),
(f, Pp) =0, then f =0. Thus, in the sequel, we suppose f € L*(RN), (f, Pp) =0
for any ¢ € C§°(RN).

If V satisfies (H), put

Vi(e) le| <k,

k
@) = { —CK? |z| > k.

Then (Vl(k)) is a bounded function. By the discussion in Section 1, we have Py :=

N
-3 (85 —ia;)’ + Vo + Vl(k) is essential self-adjoint on C§°(RYN) in the sense of form
=1

and we denote the self-adjoint realisation of Py by Pj;. Moreover, by (4.2) we have

|Phu, &) = |((V-ia)u, (v-ia) (&) + (V2 + V) u 2))

for u € D(ﬁk). Using the same methods in the proof of Lemma 4.1, we have there
exist constants Cs, Cs > 0 such that

N
(4.3) Z/ (85 — ia;)u) dz < 0’5/ Iﬁkulz dz + Cst/ [ul? dz.
=1 /Bm B Bm

Take n € Cg?(RYN), n(z) = 1 for |z| < 1; n(z) = 0 for |z| > 2 and set fm(z) =
n(z/m). For any u € C{*(RV),

(P + i) (ufim) = foa(P +4) — 2V - Du — (A )u

where D = (6 —ia;1, 02 —taz, --- , Oy —tan). From this, we have

(fa nm(T + i)u) = (f’ (Aﬂm)") +2 (f’ v"]m . Bu)
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and for any u € C§°(RN), k > 3m,
Nn(T + )8 = 9 (Pr + 3)u.
Taking k = 3m, we have
(24) (Fms (Pom +300) = (7, (A1 )u) + 2( £, V- D).
Since Ps,, is essential self-adjoint on C§°(RYN) in the sense of form, (4.4) also holds

for u € D(-ﬁk) . Therefore there exists us;, € D(ﬁsm) such that (?3,,, + i)u,,. = fm -
So, we have

1722 = I s+ i)um* = (5, (Am)im) +2( 5, P D)

L’(Bm))

for suitable constant M > 0. Since Ps,, is a self-adjoint operator and (ﬁsm + i)'u.,,. =
fim , we have |[un|l < [|fom|l < |If]|. Also by (4.3),

(4.5)

< flsamy (M il + 2m~ | B

pu—y 2 . 2
(4.6) I”Duml primy S 05 /a,,, |(Psm + i) um|” dz + Com? /B... lumn? dz.

So from (4.5) and (4.6), there exists C7 > 0 such that
2 2 |?
17292 < Crllf 3oy

Let m — oo, then we have |||f|2|| =0; thus f=0. 0
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