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SOME REMARKS ON EISENSTEIN SERIES FOR 
METAPLECTIC COVERINGS 

LAWRENCE MORRIS 

Introduction. In recent years the harmonic analysis of «-fold (n > 2) 
metaplectic coverings of GL2 has played an increasingly important role in 
certain aspects of algebraic number theory. In large part this has been 
inspired by the pioneering work of Kubota (see [3] for example); as an 
application one could cite the solution by Heath-Brown and Patterson [3] 
to a question of Kummer's on the distribution of the arguments of cubic 
Gauss sums. In that paper, Eisenstein series on the 3-fold metaplectic 
cover of GL2(A) play a crucial role. 

The object of this note is to point out that the theory of Eisenstein series 
can be made to work for a wide class of finite central coverings. Indeed, 
once the assumptions are made, the usual theory carries over readily, and 
one obtains a spectral decomposition of the appropriate L2-space of 
functions; this is done in Section 2 of this paper. In Section 1 we define the 
kind of coverings we are interested in, and draw some elementary 
conclusions from the definitions. Finally, in Section 3 we discuss the 
extent to which the assumptions are satisfied. 

This note originated sometime ago (late 1977) following conversations 
with S. J. Patterson; subsequent discussions with P. Deligne were also 
helpful. The referee has pointed out that a number of other authors have 
already independently used one or another of the observations in this 
paper in their work. Examples, in chronological order, include [5], [4], and 
[3]; see also Séminaire Bourbaki, No. 539 by P. Deligne. 

1. Finite central coverings. Let F be a global field, AF (or more briefly 
A) the associated ring of adeles. If F is a function field we shall let q 
denote the cardinality of its field of constants. In general, notation is 
adapted from [8] and [10]. 

Now suppose G is a locally compact (Hausdorff) topological group, 
equipped with a continuous projection TT.G —* G (A) where G is a 
(connected) reductive group defined over F. We suppose IT is surjective 

Received November 11, 1981 and in revised form July 19, 1982. 

974 

https://doi.org/10.4153/CJM-1983-053-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-053-4


METAPLECTIC COVERINGS 975 

and open, with a kernel ju. which is a finite subgroup of the centre ZQ of G; 
we shall summarize all this by the diagram 

0 -> ju -» G -> G(A) -» 0 

and refer to such a situation as a. finite central covering (or extension). 
Occasionally we shall refer to the analogous situation when G is defined 
over a local field k, and G (A) is replaced by G(k). 

Given H, a subgroup of G (A), we denote its inverse image in G by H. 
We now make some assumptions on the covering 

0 -> /x -» G -> G(A) -> 0. 

First, if P = M is a standard parabolic subgroup (always supposed 
defined over F\ we set P = 77_10P(A)) 

MI The central covering splits "naturally" over N(A). 
Mil P - Norm^ (N(A) ). 
Mill There is a positive integer «, such that 

(ZM(A)nr Q ZM. 

Finally, we assume 
(A) The central extension splits over G(F). 

We defer to Section 3 the extent to which these axioms are satisfied, 
contenting ourselves instead with a couple of remarks of more immediate 
pertinence. 

Firstly the word "naturally" in MI means that if P D Q, with NQ D NP, 
then the splittings provided by MI are compatible. 

Secondly, as we shall point out in more detail later, the axiom Mill can 
be weakened. 

Choose a (maximal) compact subgroup K of G (A) such that G (A) = 
P(A)K\ such K always exist. We then have immediately 

LEMMA. G = PR. 

From MI and Mil follows 

LEMMA. P = N(A)M {semidirect product). 

If H is a subgroup of G, then axiom (A) enables us to speak of H(F) = 
H n G(F). Thus for example, 

P(F) - P n G(F) = P(F% 

but ZM(F) * ZM(F). 
With regard to the second example, the following lemma is useful. 
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LEMMA. Given a central covering, S a subset of G, ZQ(S) its centralizer. 
Then TT(ZQ{S) ) is the subgroup of ZG(TT(S) ) given by 

{z e ZG(TT(S) ) W~\ sz)0(z9 z~l)p(s, z) = 1, each s G TTS}. 

Here /?:G(A) X G(\) —» /x is the 2-cocycle corresponding to the central 
covering. 

The proof of this is entirely straightforward. 
We note that 7T(ZG(S) ) is a closed subgroup, since the 2-cocycle /} is 

continuous. 
Since we may speak of H(F), we can give a definition of quasicharacter 

suitable for our purposes: a quasicharacter on H is a homomorphism 

X : # -> C* 

which is trivial on H(F). The set of quasicharacters on H forms a group, 
containing the subgroup of characters; i.e., those quasicharacters whose 
range is in the unit circle. If x is a quasicharacter then Re x, defined by Re 
X(^) = Ix(^) I is a r e a l valued quasicharacter. 

We specialize this discussion to M, and Z^. Suppose that £ is a 
character of the centre ZQ. Let Dg(^) be the set of quasicharacters on ZM 
which prolong £, and following Langlands, write A ^ R ) for the set of 
homomorphisms 

X :Z(A)ZW(F)\ZM(A) -» R*+. 

This has a natural structure as finite dimensional real vector space. 
There is an obvious injection 

ZSZM(F)\ZH -> Z(X)ZM(F)\ZM(A) 

as well as a homomorphism 

HM:ZM(A) -> Mor ( ^ ( R ) , R). 

Explicitly, in the number field case, HM is given by 

z - ^ ( x - > exp( <#M(z), x > ) ) 

and in the function field case by 

z -> (x -> exp (log q{ HM(z), X) ) )• 

Consequently there is a map 

i / „ : Z M - + M o r ( * M ( R ) , R ) 
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factoring through ZQZJ^{F)\ZM. The image of Z^ is either a vector 
group (number field case), or a free Z module of finite type (functional 
field case). Our axiom Mill ensures that these modules have the same rank 
as HM(ZM(A) ); in either case write it as Z^^. In the number field case 
ZM,OO splits ZM, but in the function field case this is not so, nor are the 
ranks of the two modules above equal. 

Put XM(C) = ^ ( R ) ® R C. One can make this complex vector space 
act on the set Dg(^) via 

? -> r q(H"{ }'x) = ?x 

where in the number field case q = e = 1 + 1 + 1/2! + 1/3! 4- . . . 
The stabilizer of £ is trivial in the number field case, and is equal to the 

lattice i L ^ , where i = \l —\, and 

L% = {v e XM(R) | (HM{Z\ V) G 27rZ/log q, all z) 

in the function field case (that it is a lattice follows from Mill again). 
Consequently one has a structure of complex analytic manifold on 

DM(£), characterized by the fact that each orbit under the above action is 
an open and closed submanifold. We shall write DM{£) for the set of 
characters; i.e., those J for which Re f is trivial. In the number field case it 
is a non compact differentiable manifold; in the function field case it is 
compact, because of the presence of i l ^ . 

The kernel of H M is denoted by Z^; it contains ZQZM^F), and mod­
ulo this, is a compact subgroup. 

Note that any element of XM(R) prolongs uniquely to a quasicharacter 
of M (A), thence to one of M. Write 

M° = {m G M\x(m) = 1, all x e XM(R) }. 

This group contains any compact subgroup of M, and all unipotent 
radicals which are in M. 

We conclude with a few observations necessary for Section 2. First of 
all, if f G DM(£), we have the real quasicharacter |f |; I claim |£| G X ^ R ) . 
This follows from the following 

LEMMA. Let XM(K) be defined analogously to XM(R) so that XM(R) c 
XM(R). Then Xa(R) = XM(R). 

The proof of this follows immediately from Mill. 

Thus XM(R) = ^ ( R ) and we can speak of the Weyl chamber CP with 
respect to P in A^(R). If (in additive notation) f j — f2

 G Q>> w e saY fi 
> f 2 -
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Secondly, we shall say R and P are associate if their respective Levi 
components are conjugate by an element of G(F): it is equivalent to 
say MR and MP are conjugate by an element of G(F). We write {P} for an 
equivalence class of parabolic subgroups. 

Finally, we remind the reader that G, as a locally compact group, can be 
equipped with a Haar measure; moreover, G is unimodular. 

2. Eisenstein series. We shall proceed by imitating the framework of [8], 
appendix II. Suppose given a character £ of the centre ZQ of G (to start, it 
is convenient to assume that £ is a character, and not merely a 
quasicharacter, but this is definitely not essential). We define the space 
S<;(£) to be the space of measurable functions. 

<j>:G(F)\G -> C 

which satisfy 

(i) fag) = £(z)<Kg), Z €= ZG,g €E G 

(i.e., <f> transforms by £) 

<u> k-Ginxe !*<*> I 2 * < °°-
The latter condition puts the structure of a Hilbert space on £(;(£), on 

which G acts by right translations; the problem we set ourselves is to 
break up this space into simpler G-invariant subspaces. 

The axioms MI and Mil evidently ensure that one can speak of 
cuspforms [8] on G. In particular, we write S( {G}, £) for the space of cusp 
forms of &G(£). 

The usual arguments show that C( {G}, £) decomposes discretely cf. [8] 
3.2, [10] part I, 1.5.8. 

If P = N(\)M, one can define C( {M}, £) analogously, and M acts on 
this^space by right translations. There is then an induced representation 
Indx/(C( {M}, £), which by definition acts on the space of functions 

<|>: :N(A) P(F)\G -> C 

such that 

(i) m -> <j>(mg) e fi( {M}, Q for each g G G 

<"> Jz€NiA)P{F)\G l<Kmg) | 2 * < °°' e a c h m e ^ -
Writing K(P, £) for this space, we define the subspace ©0CP> S ) t o consist 

of the continuous functions <£ such that 
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(i) <j> is right ^-finite 
(ii) the support of m —» <j>(mg) is compact mod M°, each g e G 

(iii) there exists an invariant subspace V of cusp forms on M° 
transforming by £ which is the sum of a finite number of irreducible 
subspaces such that for each g e G, the function m —» <Kmg) n e s 

in K 

Given an element <J> G ^( .P , £), one constructs the series 

$A(g) = 2 <Mrg) 
P(F)\G(F) 

cf. [8] appendix II, [10]. This has the usual good properties. We write 
£(P, £) c Cç(£) for the closure of the space of functions <f>A, <t> e (£0(P, £) 
and put 

C ( < p > ' *> = P . % * < * • *>• 

One then has the following proposition, established just as in [8] 4.6, 
[10]. 

PROPOSITION. CÇ(£) = © V( {P}, £). 

To go further, one must introduce Eisenstein series, a special case of 
which already plays a role in the proof of the above proposition. They can 
be defined exactly as in the usual case. 

First, one can introduce the space 

as in [8] appendix II. On replacing G by M and modifying the definitions 
slightly one can then form 

I n d | (S(M, {R(M) } , | ) ) 

where {R(M) } is a class of associate parabolics in M of the form R n M. 
This representation acts on a space of functions &(P, {R(M) }, £), and we 
may consider the subspace &0(P, {R(M) }, £) in the same way as 
before. 

There are also spaces &0(P, {R(M) }, f), f e DM(£) SO that in 
particular 

£0(P,{R(M) }, I) = / ^ <£0(P, {R(M) }, M". 
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As f ranges over Z>M(£) this collection of spaces forms a complex analytic 
vector bundle on DM(£). 

Given $ e ©0(,P, {£(M) }, f8P) with Re f > 8P one shows that the 
formal series (8P is the modular character of P) 

E(g, *) = 2 $(yg) 
P(F)\G(F) 

converges uniformly on subsets of G compact modulo Z<jG(F). It can be 
analytically continued to a meromorphic function over the entire vector 
bundle, all of whose singularities lie on hyperplanes, none of which meet 
Re ? = 0. 

Now let 

where 

<j> G S 0(P, { £ ( # ) }, I), 

$ ( 0 G g 0 ( p , {/?(#) }, ffip). 

The integral, like those preceding it, is the Fourier decomposition of the 
function <f> viewed on ZjÇf(F)\Zg. 

Then 

T<Kg) = Li.m. j D m E(g, <D(f) K 

exists, where Li.m. is of course "limit in the mean", and (in the number 
field case) is taken over an exhaustive family of compact subsets of 
Z)̂ Qr(|). The linear map <£ —> T<f> extends to a linear map (continuous in a 
suitable topology) from <&0(P, {R(M) }, £) to £G(£) and then in the 
obvious way to a linear map on 

3 > 9 e( '̂ <*<*> >• «> 
where £ runs over all associate classes of the form {R(M) }. The operator 
T intertwines the action of G and its image is by definition S( {P}, {/Ê}, 
£). One then has 

THEOREM. 

Here {P] è {£} if for some P G {P}, R G {#} , one «as ? ^ R. 
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One can also define intertwining operators M(w, f) just as in [8], [10], 
analytically continue them to sections over all of Z> /̂(£), and show that 
they (and the associated Eisenstein series) satisfy the appropriate 
functional equations. 

In this way it follows that T is the composition of an orthogonal 
projection, and an isometric injection. 

We have not offered any proofs of the above assertions. In fact, once the 
axioms above are formulated, the above results follow in much the same 
fashion as the ordinary case (this is one of the virtues of the 
Selberg-Langlands approach). A few remarks are in order, however. 

(i) The notion of a Weyl chamber depends only on XM(R). 

(ii) In the number field case, differential operators play an indispens­
able role (c.f. the definition of automorphic form in [2] ); this has been 
carefully disguised here. In the case at hand, at the infinite places one is 
dealing with a finite covering of linear Lie groups, and the infinitesimal 
theory is exactly the same. 

(iii) The usual theory of reduction suffices, because the relevant 
calculations are done modulo the centre Z^, the covering is central, and 
one has Mill. 

Finally, note that one should be able to adapt the work of Arthur on the 
Selberg trace formula to this framework, although I have not done so. For 
steps in this direction see [3] and [7]. To end on a local note the cusp form 
philosophy is also valid in the p-adic version as well. The true difficulties 
of this situation lie elsewhere. 

3. Complements. The results of this section appear to be part of the 
folklore, but I first learned of them from Deligne. 

Suppose for the moment that k is an arbitrary field, G is defined over /c, 
and that we are given a finite central covering of abstract groups 

0 —> /x —> G^ G(k) -> 0. 

Suppose P — NM is a standard parabolic subgroup of G (thus we are 
presupposing a choice of a fixed minimal parabolic subgroup PQ). Then M 
= ZG(T) where T is the maximal /c-split torus in Z(M). The group M(k) 
acts on N(k) by inner automorphisms of course; it also acts on N. Indeed 
if m e M(k), lift it to m e M, then m n m~] e TV, and only depends on 
m, as one sees from the definitions and an easy cocycling argument. It is 
obvious that m intertwines this action of M(k), and the resulting action of 
P(k). 
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LEMMA. Suppose G is semisimple and simply connected, and that \k\ ¥= 4, 
9. There is a unique splitting of the sequence over N(k) which intertwines the 
action of P(k). 

Sketch of the proof We may as well suppose G is almost simple and 
simply connected. We can also suppose P = NM is a minimal parabolic, 
so that N, and the split component of Z(M) are as large as possible. 

The uniqueness follows from the fact that N(k) is generated by 
commutators (7, n) = tnt~]n~l, t <E T(k), n e N(k). For any splitting 
normalized by P(k), 

(/, n)~ = ((tnt~x)n~xy = (ffirl)n~l 

and exactly as above this depends only on n, t. Thus if there is a splitting 
with the cited property, it is unique. 

Now for existence. There is a sequence of /c-algebraic groups 

N = NQ > N} > N2 > Nr = {e} 

such that each N\ is characteristic in TV, and Nt/Ni+\ is a vector group. In 
fact, if 2 + denotes the set of positive roots for T with respect to a given 
set of simple roots A, let 2 + = {«i, «2> • • • • , ar} where at are written in 
increasing order with respect to some total order. Then Nt is the group 
generated by the Na. with r i^ j i^ /. From this one sees that Ni/Ni+\ 
breaks into a sum of eigenspaces under T with weights given by certain of 
the roots. To lift N(k) preserving the action of P(k) amounts to lifting the 
filtration setwise, preserving appropriate relations. So one is reduced to 
lifting the Nj/Nj+\ while preserving the relations between them. But then 
one is reduced in essence to the arguments of [11] p. 123-124, which is 
where one requires that \k\ ¥= 4, 9. 

The lemma implies that, in this case, MI and Mil hold. Thus in a certain 
sense MI and Mil are very mild. 

We now turn to assumption Mill. Here it was assumed that (ZA/(A)W)~ 
Q ZM for some positive integer n. In fact a careful examination shows 
that it would be enough to assume the images of ZM and ZM(X) under 
HjÇf, HM (respectively) have the same rank. True, we required that 
ZM(F)ZQ\ZM be compact, but this did not depend on Mill . 
Indeed ZM(F)ZÇ\ZJÇJ embeds into Z(X)ZM(F)\Z'%t as a closed subgroup 
and that is enough. 

We conclude with some remarks concerning the behaviour of finite 
central coverings when restricted to compact subgroups. 

LEMMA. Let H be a profini te group, with 
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0 - > / i - > / / -> H->0 

a finite central covering. Then there is an open normal subgroup H' < H over 
which the sequence splits. 

Proof. This follows straight from the definitions: an extension of the 
above type corresponds to a 2-cocycle /? e H2(H, /A) (with H acting on /x 
trivially). Thus 

/?:# X H -+ p. 

is a continuous cocycle, and the result follows. 

Suppose now that k is a non archimedean local field, G reductive 
defined over k, and 

0 -> /i -> G -* G(k) -> 0 

a finite central covering. We write r for the ring of integers of /c, K for the 
residue field, p for its characteristic. 

The above result tells us that if K is any open compact subgroup of 
G(k), then the extension splits on an open compact subgroup K < K. 
Indeed K is totally disconnected, and is hence profinite since one can 
always find a base of neighbourhoods at 1 consisting of normal open 
compact subgroups (if K! < K, just take nx(=KKx: this is of finite index in 
K\ and normal in K). 

The same kind of arguments apply if we have 

0 -> ii -> G -» G(tJ) -» 0 

where A^ is the ring of finite adeles associated to a global field F. For 
example, if K = YLV Kv then the sequence will split over a compact open 
subgroup of K\ in fact for almost v, it splits over Kv. 

Returning to the local case one can also ask when a finite central 
covering splits over a given compact subgroup. One approach is to lean on 
the structure theory of Bruhat-Tits; as a general reference we cite [12]. 

Suppose that K is the group of units of a group scheme ® defined over r, 
then there is a short exact sequence of profinite groups obtained by 
reduction mod p: 

0-> N -> K-» G(ic)->0. 

Here G is the algebraic group obtained from © by tensoring with /c. There 
is a spectral sequence of profinite groups 
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HP(G(K), H«(N, ft) ) ^ HP+HK, M). 

Suppose that 

W(N, /i) = 0, q > 0. 

Then we find that H2(G(K), /A) = / / 2(#, M), since the spectral sequence 
will collapse. For example, if G is simply connected semisimple we find 
H2(K, /A) = 0, by the results of Steinberg [11]. 

Two examples of this come to mind. 
(i) K is a hyperspecial ( [12] ) compact subgroup such that G is simply 

connected. Whenever K is hyperspecial, the group TV is a pro-/?-group 
( [11], 1.10.2, 3.4.2-3); if ( |/i|,/>) = 1 as is the generic case, then Hq(N, /A) 
= 0, q > 0 and the argument above implies that the sequence splits over 
K. 

(ii) K an Iwahori subgroup. Here K is such that © ® K can be viewed as 
a Borel subgroup of a suitable reductive group defined over K. Thus 
® ® = T • (/, T a torus, (7 unipotent, and T normalizing U. One finds 
K = T(K) - N (semidirect product) where N is a pro-/?-group. At any rate 
H2(N, /A) = 0 if ( |fi|,/?) = 1 so that the sequence splits over N (which is of 
finite index in K). 

As a special case of all this, suppose G is split and simply connected 
over F, a global field. Let K = À ^ X Kf where ^oo is a suitable maximal 
compact at the infinite places, and 

tf = I I G{rv). 
V 

Then for all v such that ( |/x|,/?) = 1 (p = residue characteristic of Fv) one 
finds from the above discussion that the exact sequence splits above Kv = 
G(rv). Since /A is finite this leaves only a finite number of places (the 
troublesome ones); cf. also [12], 3.9.1. 

Finally we remark that arguments of a related nature occur in Section 
11 of [9]. 
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