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We examine the vapour cloud of a pure liquid evaporating from a millimetric cylindrical
well/cavity/aperture. This is accomplished by injecting the liquid up a vertical pipe towards
its outlet onto a horizontal substrate. The injection is halted before the liquid surpasses the
substrate level. The resulting final state is a meniscus at or near the pipe’s end. The analysis
is realised by vapour interferometry (side view over the substrate) closely intertwined
with simulations (including Stefan flow), which also help to fill up certain gaps in the
measurements and provide computed evaporation rates. Comparison with experiment
is facilitated by converting the computed vapour clouds into interferometric images,
especially helpful when an inverse (Abel-type) conversion is difficult. Experiments
are conducted in both microgravity (via parabolic flights) and ground conditions, thus
enabling direct assessment of the role of gravity. The contrast is accentuated by a
working liquid with heavy vapour (refrigerant HFE-7100), when instead of being flattened
on ground the vapour cloud assumes a roughly hemispherical shape in microgravity.
Furthermore, a non-trivial vapour-cloud response to the flight g-jitter (residual gravity
oscillations) is unveiled, g-jitter vibrations posing a challenge for interferometry itself.
A number of undesired but curious side issues are revealed. One concerns vapour formed
deep inside the pipe during rapid injection and subsequently ejected into the field of view,
which is detected experimentally and quantified in terms of vapour Taylor dispersion in
the pipe. Others are an injection volume anomaly and parasitic postinjection specifically
observed in microgravity conditions.
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1. Introduction

In the majority of experimental studies concerning evaporation, the dynamics of the liquid
phase alone are often emphasized, with limited attention given to direct measurements
of the processes occurring in the gas phase. Nonetheless, a vapour cloud is a key
imprint of the evaporation process. Its visualization contributes to a better understanding
of the factors influencing the evaporation and, in particular, the evaporation rates. By
employing the subtle science of digital vapour interferometry, the dynamics of the vapour
cloud surrounding an evaporating surface can be assessed. The application of vapour
interferometry for studying evaporating droplets and films has been successfully realised
by a few researchers in the past (O’Brien & Saville 1987; Dehaeck, Rednikov & Colinet
2014; Braig et al. 2021). In the current study, we focus on quantifying the vapour cloud
emitted from a localized evaporation site into an extended volume of ambient gas. Our
particular interest lies in understanding the impact of gravity levels on the vapour cloud. To
this purpose, we conduct experiments using a specially designed set-up both on ground and
in the microgravity environment of a parabolic flight. Additionally we perform extensive
modelling of the vapour cloud behaviour to complement and support the experimental
analysis.

Under the auspices of the European Space Agency (ESA), several experiments exploring
evaporation (as well as condensation and boiling) in microgravity have either been realized
or are planned for the different near-future onboard platforms. As gravity is likely to
mask specific physical mechanisms, weightlessness serves as a valuable tool to investigate
them. The duration of microgravity ranges from a few seconds (drop tower) and tens of
seconds (parabolic flights) to several minutes (sounding rocket) and months (International
Space Station (ISS)). In particular, parabolic flights can serve as independent studies or be
conducted as a part of the preparation or support for a space experiment planned for other
space vehicles. Designing space host modules is a challenging task that often requires a
rigorous preparatory testing phase and automatization.

The present parabolic flight experiment was intended to fulfil both these roles. Its
conception aimed to test the essentials of vapour cloud measurement in a simplified
set-up for use in space experiments involving evaporating sessile droplets (Kumar et al.
2020; Dehaeck et al. 2023). To this purpose, a reduced approach was followed as far as
the localized vapour source is concerned: an evaporating meniscus inside a millimetric
vertical pipe with an outlet onto a flat horizontal substrate was formed (stopping short
of injecting a sessile droplet upon the substrate). At the same time, such a configuration
forms a subject in itself, serving as a prototype for evaporation from millimetric wells and
cavities (Shukla & Panigarhi 2020) and from the pipe’s exit (Buffone, Sefiane & Christy
2017). Besides, such a configuration can also bear upon evaporation from micropores (Lu,
Narayanan & Wang 2015), especially the microgravity part of the present study (gravity
being negligible on the micropore scales). Furthermore, it represents an intermediate case
between two more commonly studied scenarios. The first of them is the aforementioned
case of sessile droplets (Popov 2005; Tsoumpas et al. 2015; Kumar et al. 2020; Dehaeck
et al. 2023), while the menisci at the pipe’s outlet can be regarded as an extension (to
‘negative heights’) within the family of sessile droplets. The other common scenario
involves evaporation from a meniscus deep inside the pipe (Moosman & Homsy 1980;
Wayner 1999; Morris 2003; Zhang & Nikolayev 2021). Even if this latter scenario is not
studied in itself in the present paper, it can nevertheless be observed in the form of an
unexpected vapour eruption into the field of view at the end of the injection.

The microgravity quality achieved in parabolic flights is not as high as in other
microgravity platforms (approximately 10−2 of Earth’s gravity level, potentially reaching
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Evaporation from a cylindrical cavity

10−3 for brief periods as discussed later in this paper, whereas it can reach 10−5 or
less on sounding rockets and the ISS (Pletser & Russomano 2020)). Notably, there is
an appreciable g-jitter present and its significance varies depending on the phenomenon
studied. Exploring the significance of g-jitter on vapour cloud shapes is one of the
storylines followed in this paper. Additionally, this serves as an opportunity to examine
the vapour cloud’s response to such disturbances.

Simulations of evaporating menisci are supposed to play a special role in the present
study. Apart from clarifying the physical aspects, they will also help to fill certain gaps
in the measurements (such as diagnostics inside the pipe) and, in this regard, serve as
a diagnostic tool. A novel way of comparison with experiment, although already tested
by Dehaeck et al. (2023), is used, by converting the simulated concentration fields to
phase images equivalent to those obtained from postprocessing the experimental ones.
This conveniently enables an immediate active one-on-one comparison, considering that
an inverse conversion (from interferometric images to the concentration field) is not always
feasible for various reasons in the present experiment.

The set-up, interferometry and operational sequence are detailed in § 2. The evaporation
model is described in § 3. The results of ground and flight tests and the corresponding
simulations are analysed in § 4. The conclusions are drawn in § 5. Certain details like
the material properties, an auxiliary consideration of the vapour formation in the pipe
during the injection, and the challenging intricacies of interferometric postprocessing
under vibrations caused by g-jitter are given in the appendices.

2. Experiment

2.1. Set-up
The testing hardware consists of an experimental rig, control rack with touchscreen
monitors, interface hardware systems and CPUs, as well as nitrogen (N2) canisters.
The experimental rig consists of a cylindrical test cell with four optical access ports
(figure 1). Additional ports are provided for instrumentation and gas transport. A metallic
pipe with 4 mm internal diameter and 80 mm in length is welded to the centre of
a stainless-steel substrate (or platform). The bottom of the pipe is connected to a
flexible polytetrafluoroethylene (PTFE) tube (3 mm internal diameter) through a metallic
connector. The length of the flexible tube is roughly 130 mm. The other end of the flexible
tube is connected to an electrically operated three-way valve which acts as the inlet port to
allow the injected volume of liquid from the syringe pump. The same port also serves as
an exit port during the evacuation of the test cell. The HFE-7100 (NOVEC 3M) fluid has
been used as a working fluid in all the cases presented in this study.

A Mach–Zehnder interferometry set-up (Dehaeck et al. 2014) is employed to capture
the vapour distribution in the vicinity of the pipe outlet located in the centre of the
platform (figure 1). The (horizontal) field of view is focused just above the substrate with
the outlet, as accessed through the optical windows. A stable and reliable laser source
(Cobolt Samba λ = 532 nm laser with fibre pigtailing and coherence length > 100 m) has
been used to obtain high-quality interferometric images through the camera optics. The
light from the laser is directed into a flat mirror (M1) through a condenser lens (CL).
The circular condensed beam from M1 is split into two equal beams by the beam
splitter (BS1). One beam is allowed to enter the test cell through the mirror M1, and
the other beam serves as the reference beam. Both beams are again recombined by the
beamsplitter (BS2) and captured using a camera (make IDS) with optics. The mirrors
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TC (side view)

LS

M3

CL

M1 BS 1

BS 2 C

M2

TC (top view)

N2

Stainless steel
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Liquid meniscus

Pedestal

From syringe

pump

To liquid trap

PTFE tube

Metallic pipe

Figure 1. Schematic of the experimental set-up and Mach–Zehnder interferometry: LS, laser source; BS,
beam splitter; TC, test cell; CL, condensing lens; M, mirror; C, camera with optics.

M1 and M2 (Newport:625-RC4-M) are adjusted to get raw interferometric fringes of the
required period and orientation (finite-fringe mode).

All the optics, test cell, electronic devices and instruments are mounted on a
custom-made breadboard (1600 × 600 mm2). The entire set-up is enclosed inside a Zarges
box, as shown in figure 2, to contain any possible HFE-7100 and optical leakages.

2.2. Interferometric postprocessing
The raw interferometric images are postprocessed into the so-called phase-wrapped
images that capture the spatial variation of the optical phase increment �ϕ (hereafter
simply the phase). These variations are mainly due to the presence of the vapour relative
to pure nitrogen at the same ambient pressure and temperature in the cell. This is related
to the corresponding increment of the gas refractive index �n by

�ϕ(t, y, z) = 2π

λ

∫
�n(t, x, y, z) dx modulo 2π, (2.1)

where the integration is realized along the optical path across the test cell parallel to the
substrate; x, y and z are the Cartesian coordinates (cf. also figure 2); t is the time. For
any time t, the phase-wrapped image is actually a density plot of the phase �ϕ(t, y, z)
modulo 2π, which thus consists of zones where the function value varies just between 0
and 2π. The boundaries between the zones (hereafter referred to as ‘fringes’) are obviously
isocontours of �ϕ(t, y, z).

The mentioned basic postprocessing consists of the following steps. The fast Fourier
transform is applied to the raw images, the necessary frequencies containing the phase
information are filtered using a window (also known as window Fourier filtering), centred,
and an inverse fast Fourier transform is applied after a shift to finally yield a phase-wrapped
field. This process is implemented using an in-house MATLAB code. For more details of
the postprocessing procedure, readers can refer to the previous articles (Takeda, Ina &
Kobayashi 1982; Kreis 1986; Dehaeck et al. 2014), although in the present context one
aspect of it (reference images) is worth examining further and we shall come back to it
shortly.

A quick postprocessing tool is in-built with the camera viewer. With this tool, it is
possible to view the phase-wrapped images (preferably at a low-sampling frequency)
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x
z

y

Zarges enclosure

(1700 × 800 × 700 mm3)

Breadboard

(1600 × 600 × 15 mm3)

M1
M2

CL
BS1

BS2 PS
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C

TC

NDF

LS

M3

Figure 2. Three-dimensional representation of the present experimental set-up enclosed in a Zarges
box: NDF, neutral density filter; PS, ports for thermocouples, pressure sensor and N2 inlet; OA, optical access;
other acronyms are as in figure 1.

during the tests. This allows us to visualize the vapour distribution on the ‘live-mode’
camera feed. The postprocessing of the entire dataset is realized upon the completion of
the tests.

Postprocessing of the measured interferometric images of the vapour cloud also involves
argument subtraction of the so-called reference image obtained in the absence of the cloud.
The alignment of the mirrors (cf. figure 1) is most certainly affected by the gravity level in
view of the presence of spring elements, whereas it is obviously desirable to have the
same alignment for the reference and actual measurements. Therefore, for flight runs,
we strive for taking the reference images when the microgravity phase, corresponding
to the flight ‘parabola’, has already began (cf. § 2.3). The parabolas for which this
did not happen (when the reference images without the vapour cloud were taken at
a still appreciable gravity level) were excluded from further consideration, because no
meaningful interferometric analysis turned out to be possible in those cases. Furthermore,
an added difficulty is that the presence of a strong g-jitter (cf. § 2.3) during the parabola
renders such precautions not fully sufficient as the mirrors still undergo vibrations with
consequences on their alignment. The intricacies of interferometric postprocessing in such
conditions are discussed in Appendix C, which is better read in conjunction with the flight
results presentation in § 4.3.
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Further postprocessing could in principle be considered, such as phase unwrapping,
i.e. getting rid of modulo 2π in (2.1) and obtaining a full value of �ϕ. Then applying
the inverse Abel transform to the result would yield �n(t, r, z) under the assumption
of its axial symmetry, where r = (

√
x2 + y2) is the cylindrical radial coordinate. Then

knowing (or independently measuring) the proportionality factor between �n and the
vapour concentration, the underlying axisymmetric vapour concentration maps could
experimentally be reconstructed (Dehaeck et al. 2014; Shukla & Panigarhi 2020). Yet
such further steps are not pursued here as they are deemed to be either not feasible or
unpractical within the present study on account of the following reasons. First, except for
the very initial moments, the vapour cloud extends horizontally beyond the actual field
of view, rendering such a full reconstruction problematic. Second, the axial symmetry
quality is somewhat compromised for the flight runs due to g-jitter. Third, the fringes in
the phase-wrapped images already provide a convenient and adequate visualization of the
vapour cloud shape, as we shall see. Fourth, as far as comparison between experiment and
theory is concerned, it can readily be carried out in terms of the phase-wrapped images.
Indeed, in numerical simulations, the phase-wrapped field is readily obtained from (2.1)
once the vapour concentration field has been computed (knowing the earlier mentioned
proportionality factor).

2.3. Operational sequences in flight and on ground
A typical experimental flight sequence consists mainly of two alternating phases, as
shown in figure 3: the test phase (T) and the preparation phase (P). The test phase
corresponds to the parabola of the flight when the actual microgravity experiment test is
performed. The ‘g’ (gravity level) data along the three directions is obtained from a triaxial
accelerometer (make MEGGITT) positioned close to the experimental cell (cf. figure 3
for the typical course of the z component). The total period and the gravity value
during the parabolic flight manoeuvres depend on parameters such as the flight altitude,
meteorological conditions, and sometimes even the pilot’s experience and timings. During
the microgravity phase, there is always a residual acceleration known as g-jitter, which
disturbs the symmetry and may have a significant effect on the vapour cloud as we
eventually find out in the present study.

Let us define the gravity vector g and its components gx, gy and gz as

g = gxex + gyey − gzez, ĝ ≡ g
g∗

= ĝxex + ĝyey − ĝzez, (2.2a,b)

where in view of certain convenience and conventions the z axis is directed ‘upwards’
(cf. figure 2) whereas the z-component is defined as positive when directed ‘downwards’.
The hat denotes the values normalized to the ground gravity level g∗ = 9.81 m s−2.

The OTL in figure 3 details the intermediate steps during the two phases. All the
operations, controls and data saving have been automated and can be executed just by
pressing a digital button, as required in parabolic flight campaigns. The preparatory phase
starts with filling the test cell with nitrogen to evacuate the residual liquid and the vapour
from the previous test. The nitrogen (N2) is supplied from an external gas bottle. The
operation is indicated as step 1 in the OTL (filled green circle indicating the opening of
the valve). An electrically operated, normally closed, two-way valve controls nitrogen flow
into the cell. A pressure sensor (TERPS 8000 series, make GE) continuously monitors and
records the pressure inside the cell. The pressure cycle of a typical parabolic manoeuvre is
also presented in figure 3. The test cell is filled with N2 up to approximately 1040 mbar, and
the two-way valve is shut off, indicated as step 2 in the OTL (filled red circle indicating the
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Figure 3. A typical pressure and gravity-level cycle during the flight. The microgravity experiment run
corresponds to the test phase T, which alternates with the preparation phase P. The operation timeline (OTL)
with the steps 1–8 is described in the text.

shutting of the valve). In step 3, the three-way valve connected to the PTFE tube is opened
to flush out the residual liquid in the pipe that is left over from the previous experiment
along with the residual HFE-7100 vapour and N2 into a liquid trap. The three-way valve
remains open to the liquid trap until the cabin pressure of approximately 860 mbar is
recovered inside the cell. The flushing of liquid and gas mainly occurs when the flight
is levelled at 1 g; however, before entering the next subsequent test (microgravity) phase,
the gravity level attains a value of approximately 1.8 g. As any physical movement of the
experimentalists during hypergravity (1.8 g) is not recommended due to motion sickness,
the steps for the initiation of the test phase already start just before the hypergravity, as
indicated in step 4 of the OTL. Though step 4 is initiated (by pressing a digital button),
the sequence does not start right away. Instead, programming ensures that the exit port of
the three-way valve first closes (step 5), and then the actual injection sequence is triggered
(step 6) ideally a few seconds after the start of microgravity (as required for taking the
right reference images, cf. § 2.2). This is quite challenging as the exact timing of the
hypergravity phase is not the same for each parabola. Therefore, only specific cases where
the injection sequences happened to be correctly initiated have been considered for our
analysis.

The test phase consists of the injection stage (steps 6 to 7) and the evaporation stage
(steps 7 to 8). During the injection stage, a predefined volume (Vinj) of HFE-7100 is
injected into the pipe through the inlet port of the three-way valve at a given flow rate
(Jinj) and an injection time (tinj = Vinj/Jinj). During these stages, all necessary data, such
as pressure, temperature and gravity level, are stored along with the vapour cloud evolution
captured through interferometry. Several thermocouples have been fixed to the platform
and the internal walls of the test cell to monitor the substrate and the gas temperatures.

982 A26-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.95


S.K. Parimalanathan and others

Finally, after another passage through 1.8 g, the test phase is ended by returning to 1 g
conditions (step 1). This operational sequence is repeated for each parabola.

On ground, this sequence is similar, except that the internal test cell pressure is
maintained at an ambient pressure of 1013 mbar (instead of 860 mbar during the flight)
and the gravity level is normal (1 g). Also, the cell pressure is increased up to 1200 mbar
during the preparation phase, after which the cell is flushed until the ambient pressure is
reached.

Experiments were initially performed in ground conditions (1 g), and the liquid injection
volume necessary to position the meniscus close to the outlet of the pipe was estimated
to be Vinj = 1.95 ml (the injection rate used being Jinj = 0.5 ml s−1). The position of
the meniscus was confirmed visually by opening the top cover of the cell for a trial
test case. However, during microgravity conditions, when the same volume was injected
(although at a higher injection rate of Jinj = 1 ml s−1 to make the most of a limited time of
microgravity), the liquid overflowed out of the pipe outlet, wetting the platform. Therefore,
it was necessary to find the right injection volume whilst already in flight. To our surprise,
in microgravity, Vinj = 1.60 ml already turned out to be sufficient to ensure a meniscus
position at the pipe outlet (without overflow). This is appreciably less (by 17 %) than
the value precalibrated on ground. This newly calibrated injection volume turned out to
be quite reproducible for at least three consecutive parabolas, manifesting a systematic
character of the phenomenon. Our conjecture is that such a notable volume anomaly is
related to gas trapping in the injection systems, which seems to occur only in microgravity.
This could be the subject of a separate study, with a significance well beyond the present
set-up. A similar volume anomaly (although in a weaker form than here) was arguably
observed in sounding rocket experiments, when the injected sessile droplets turned out to
be larger than intended and precalibrated on ground (Kumar et al. 2020).

For this injection volume recalibration in flight, the only observation method at our
disposal were the live-mode phased-wrapped images (although at a quality appreciably
inferior to any images shown in the present paper). For instance, when the injection volume
exceeds the limit, the liquid overflows out of the opening onto the platform. This leads to
the formation of a sessile droplet-like puddle (highlighted zone) as shown in figure 4(a),
which is also understandably accompanied by a large number of fringes (large amount of
vapour). Then the decision was to slightly lower the position of the meniscus. The injection
volume was systematically reduced by small steps until no overflow was observed. This
resulted in the observation of fewer fringes (figure 4b). Inversely, when the meniscus
position was too deep (below 2 mm, as confirmed from ground experiments), the vapour
concentration in the vicinity of the pipe opening was too low to produce any noticeable
changes in the refractive index, resulting in no visible fringes. In that case, the injection
volume was slightly increased until two to three fringes were visible. Hereby, we must
note that there was no possibility of visually verifying the meniscus position in flight
conditions as already mentioned. In this way, we are reasonably sure that the meniscus is
eventually located at the opening (either pinned or slightly below, cf. figure 5 with further
explanations later on). However, its precise position remained unmeasured and will be
regarded as a fitting parameter when comparing the experiment with simulations.

3. Theory

3.1. Basic assumptions, equations and boundary conditions
We now turn to the mathematical formulation used in the present simulations of the vapour
cloud from an evaporating meniscus. The gravity acceleration g is therein set equal to
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t = 2 s

5 mm

t = 4 s t = 6 s t = 8 s

(a)

(b)

Figure 4. Phase-wrapped images for the case where the liquid overflow creates a large number of fringes:
(a) Vinj = 1.62 ml. Typical images when there is no overflow for comparison: (b) Vinj ≈ 1.6 ml.
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Figure 5. Meniscus configurations used in simulations, cf. (3.8).

either zero (g = 0) or the measured z-component of the g-jitter as a function of time,
g = −gz(t)ez, cf. also (2.2). An example of such a g-jitter can be found in figure 3. Here, we
limit ourselves to an axisymmetric formulation and hence discard the x- and y-components
of the g-jitter. When simulating for the ground runs, we have g = −g∗ez (where g∗ ≡
9.81 m s−2), directed downwards orthogonally to the substrate.

The gas density ρg varies by the order of itself throughout the vapour cloud. This is due
to HFE-7100 being rather volatile (saturation pressure psat ∼ 0.2 bar here) and having a
relatively high molar mass relative to ambient nitrogen (MHFE � MN2). Hence, we cannot
make the Boussinesq approximation. However, we still remain in the usual framework
of an incompressible flow, in the sense that ρg is not affected by hydrodynamic and
hydrostatic pressure variations, which are much smaller than the ambient pressure pamb.
Furthermore, for simplicity, we shall here rely upon an isothermal model, disregarding
evaporative cooling. The temperature is simply an input parameter (ambient temperature
Tamb) and not a dependent variable. Thus, ρg = ρg(χ) is taken as a function of the vapour
molar fraction χ at given Tamb and pamb. In contrast with ρg, the gas molar density ng
is constant (under those assumptions and the ideal-gas assumption). The gas dynamic
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Parameter Units Flight Ground

Vinj [ml] 1.6 1.95
Jinj [ml s−1] 1 0.5
uinj = Jinj/(πR2) [cm s−1] 8 4
tinj = Vinj/Jinj [s] 1.6 3.9
g [m s−2] 0 or g-jitter 9.81
R [mm] 2 idem
pamb [Pa] 86 000 101 325
Tamb [◦C] 18 (±0.5) 18 (±0.5)

Rg [J mol−1 K−1] 8.31 idem
MHFE [kg mol−1] 0.25 idem
MN2 [kg mol−1] 0.028 idem
ng = pamb

Rg(273.15+Tamb)
[mol m−3] 36 42

psat [Pa] 20 000 20 000
χsat = psat/pamb [–] 0.23 0.20
ρsat = psatMHFE

Rg(273.15+Tamb)
[kg m−3] 2.1 2.1

ρg(χ) = ng(MHFEχ + MN2(1 − χ)) [kg m−3] 1.0 + 7.9χ 1.2 + 9.3χ

Dg [mm2 s−1] 6.6 5.6
ρl [kg m−3] 1500 1500
Jevap scale = ρsatDgR/ρl × 109 [μl s−1] 0.018 0.015
μN2 [Pa s] 1.75 × 10−5 1.75 × 10−5

μvap [Pa s] 0.90 × 10−5 0.90 × 10−5

μg(χ, μvap, μN2) [Pa s] cf. Appendix A idem
�n(χ) [–] 0.00124χ 0.00147χ

λ [nm] 532 idem
A [–] 0.14 0.12
Peinj = uinjR/Dg [–] 24 14
Dg,eff [mm2 s−1] 6.6(1 + 12fTay) 5.6(1 + 4fTay)

Table 1. Basic properties (cf. Appendix A for additional details).

viscosity μg is defined as μg = μg(χ), similarly to ρg. The vapour diffusion coefficient
Dg, following Bird, Steward & Lightfoot (2006), is assumed constant as well (depending
on Tamb and pamb); cf. table 1 and Appendix A for further details on these and other
properties.

The Navier–Stokes equations in the gas (continuity and momentum) are then written as

∂tρg + ∇ · (ρgvg) = 0, (3.1)

ρg(∂tvg + vg · ∇vg) = −∇pg + ∇ · (μg(∇vg + ∇vT
g − 2

3 I ∇ · vg)) + ρgg, (3.2)

where vg is the gas velocity field, pg is the hydrodynamic gas pressure (defined up to a
constant) and I is the unit tensor. As already mentioned, we have an incompressible flow
in the sense that ρg is not affected by pg (ρg /= const. being entirely due to the vapour field
χ ). As a consequence, in spite of ∇ · vg /= 0, the bulk viscosity is immaterial and is not
accounted for in (3.2) because the corresponding gradient term would merely amount to a
redefinition of the hydrodynamic pressure pg without affecting the flow field.

The vapour molar fraction χ is governed by an advection–diffusion equation:

∂tχ +
(

vg + Dg
MHFE − MN2

MHFEχ + MN2(1 − χ)
∇χ

)
· ∇χ = Dg∇2χ, (3.3)
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where the advection is realized by means of a so-called molar-averaged velocity (the term
in parentheses on the left-hand side (Bird et al. 2006)). The form (3.3) is convenient when
ρg is greatly variable while the molar density ng is constant (as is here the case).

The boundary conditions include no slip and impermeability

vg = 0, ∂nχ = 0 at solid surfaces. (3.4)

On the other hand,

vg,n = j
ρg

, vg,τ = 0, χ = χsat at the meniscus surface, (3.5)

where χsat is the saturation molar fraction,

j = −ngMHFEDg

1 − χ
∂nχ at the meniscus surface (3.6)

is the evaporation flux density [kg m−2 s−1], the denominator different from unity
accounting for Stefan flow, n is the normal pointing to the gas, the subscripts ‘n’ and
‘τ ’ denote the normal and tangential components, respectively. According to (3.5), the
normal velocity of the gas is due to evaporation; the tangential velocity is set equal to zero
disregarding flow in the liquid relative to the one in the gas (in particular, disregarding a
possible Marangoni convection, which is consistent with the present isothermal model).
With (3.6), the evaporation rate Jevap [kg s−1] is obtained by integrating over the meniscus
surface area:

Jevap =
∫∫

j dS, J∗
evap = Jevap

ρsatDgR
, (3.7a,b)

where a normalized evaporation rate J∗
evap is also introduced with the scale given by the

denominator, ρsat being the saturation density. Note also that to express Jevap in μl s−1 (as
often used in the literature), one should multiply J∗

evap by the scale provided in table 1.
Although we know that the meniscus is located inside the (circular) pipe close to the

opening, its exact position and shape remain unmeasured. In view of this, when attempting
a comparison between the experiment and simulations later on, those will just be treated as
fitting parameters. Given such a level of detail, we limit ourselves to two particularly simple
meniscus shapes in the simulations, which is deemed sufficient to capture the essence of
the observed vapour clouds. Namely, we just consider spherical caps as well as flat menisci
located at a certain depth, i.e.

h(r) =

⎧⎪⎪⎨
⎪⎪⎩

√
(R2 + h2

a)
2

4h2
a

− r2 − R2 − h2
a

2ha
(ha ≤ R)

√
R2 − r2 + ha − R (ha ≥ R)

and h(r) = ha, (3.8a,b)

respectively, where r ≤ R, cf. figure 5. Here r is the cylindrical radial coordinate, h the
local gas depth in the pipe (from the substrate to the meniscus surface) and ha is the
depth along the symmetry axis. The latter will serve as the mentioned fitting parameter. In
(3.8a), we consider at first (when ha < R) spherical caps pinned at the edge of the opening.
At ha = R, the spherical cap becomes a hemisphere, and for ha > R we just consider
hemispheres depinned from the opening and shifted down by (ha − R). Furthermore, we
shall assume the meniscus shape unchanged during the evaporation, thus disregarding its
possible receding for the time period of vapour cloud measurements. All simulations here
are two-dimensional (2-D) axisymmetric.

982 A26-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.95


S.K. Parimalanathan and others

3.2. Two kinds of simulations: benchmark quasisteady and real-set-up transient.
Phase images

The simulations are carried out using the COMSOL Multiphysics software. Two kinds of
simulations are realized in the present paper:

(i) Benchmark simulations. These are simulations in a somewhat reduced, more
‘standard’ arrangement representing the essence of the problem. Here, given that
the evaporation cell dimensions are much greater than the pipe opening size, we
disengage ourselves from the real cell geometry and rather resort to asymptotic
boundary conditions v → 0 and χ → 0 far away from the pipe opening (formally
at infinity, the gas phase thus occupying the half-space above the meniscus and the
otherwise flat substrate, cf. figure 6). Furthermore, we just solve a (quasi)steady
problem, with ∂t ≡ 0 in (3.1)–(3.3). This is of relevance in the present context given
that the typical diffusion time is ∼R2/Dg < 1 s. One of the goals is to represent in
a concise and systematic way the typical vapour cloud distributions and evaporation
rates as functions of the meniscus geometry (depth) and gravity level. Note, though,
that such benchmark steady simulations are generally of limited utility as far as
reduction to phase images is concerned, in terms of which, as earlier mentioned,
comparison with experiment will be carried out. The matter is that the integral in
(2.1) may not be converging for steady concentration fields χ(r, z) in a domain
of a formally infinite extent (χ → 0 not sufficiently fast at infinity), where χ(r, z)
gives rise to �n(r, z) through a proportionality factor provided in table 1. Thus, for
phase images, we need to resort to the real-set-up transient simulations, where this
impediment is remedied both by an eventually faster decay of χ in the transient case
and by a finite domain considered (be it even large). Moreover, this will also be
suitable for the initial stage, and not only for the already established vapour clouds.

(ii) Real-set-up simulations. These are transient simulations in a configuration as close
to the experiment as possible. In particular, we adhere to the real (axisymmetric)
geometry of the evaporation cell, as schematized in figure 7. Boundary conditions
(3.4) are then used at all walls (not only at the substrate). Note that this corresponds,
in fact, to a hermetically sealed cell, while a slight evaporation-related pressure
increase is disregarded in the simulations, which can be justified by a large cell size
and a limited time of observation. It is such real-set-up simulations that are used
for a direct comparison with the experiment in terms of the wrapped-phase images.
To this purpose, the computed axisymmetric vapour concentration field χ(t, r, z)
is converted to �n(t, r, z) by means of table 1 and then used in (2.1) to compute
�ϕ(t, y, z) (modulo 2π).

An important point for our analysis, already underscored in § 2.2, is illustrated
in figure 8. It shows the typical phase-wrapped images alongside the underlying
axisymmetric vapour concentration fields obtained in simulations for a flight parabola.
Here we can see that the shape of our (heavy) vapour cloud in response to the flight g-jitter
(elongation along the axis for gz < 0 and flattening for gz > 0) is well representable by the
fringes, even if they do not coincide with the isoconcentration lines. More detailed results
will be provided in due course in § 4.

While the problem formulation provided in § 3.1 is complete for the benchmark
quasisteady simulations, it still needs to be complemented by the initial conditions for
the real-set-up transient simulations. In experiments, a rather non-negligible amount of
vapour is observed to be ejected from the opening into the field of view already during
the injection. This still happens before the meniscus reaches its topmost position and
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4 mm

Figure 6. Geometry used in benchmark simulations. Asymptotic boundary conditions are imposed far away
from the meniscus (symbolised by the dashed contour). The meniscus is represented just schematically (for
shapes used in simulations rather cf. figure 5).

135 mm

75 mm

2 mm 5 mm

20 mm
4 mm

63 mm

Figure 7. Basic evaporation cell geometry (axisymmetric, not drawn to scale), used in the real-set-up
simulations. The gas phase, for which the simulations are carried out, occupies the space beyond the pedestal
and the liquid column in the pipe. The meniscus is represented schematically (for shapes used in simulations
rather cf. figure 5).

the injection stops (the moment at which the formulation of § 3.1 is implied to enter
into effect). Therefore, an appropriate initial condition can only be formulated upon
considering the injection stage.

3.3. Injection stage: vapour cloud formation and Taylor dispersion in the pipe
The vapour is forming in the pipe while the liquid is still deep inside during the injection.
It is eventually ejected into the field of view. One of the reasons why it is so noticeable is
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Figure 8. Typical phase-wrapped images together with the corresponding vapour concentration map for
simulations in flight conditions.

deemed to be because of the relatively large internal radius of the pipe used here, eventually
the same as the meniscus radius (R = 2 mm), giving rise to much vapour.

In the present paper, such a vapour cloud formation in the pipe during the injection
is accounted for in a semiheuristic way, by making use of a one-dimensional (1-D)
self-similar solution for a concentration boundary layer developing towards z > 0 from
a flat evaporating surface located at z = 0:

χ = χsat

2 − erfc A
erfc

(
z

2
√

Dgt
− A

)
, (3.9)

with the evaporation flux density given by j = ngMHFE
√

DgA/
√

t. Note that this is a
solution of the equation ∂tχ + ( j/(ngMHFE)) ∂zχ = Dg∂zzχ . It is an appropriate 1-D
version of (3.3) on account of the fact that the z-component of the molar-averaged velocity,
the term between the parentheses in (3.3), is here given by j/(ngMHFE) throughout
(spatially constant since the molar density ng is also assumed spatially constant). The
solution (3.9) satisfies the boundary condition χ = χsat at z = 0, cf. (3.5). The prefactor
A is then determined from (3.6) applied at z = 0, yielding a transcendental equation

A = e−A2
χsat√

π(1 − χsat)(2 − erfc A)
, (3.10)

where the value of A is obtained numerically (cf. table 1 for results). This completes
the 1-D boundary-layer solution. Note that the classical pure-diffusion solution will be
recovered in (3.9) in the dilute-vapour limit χsat → 0 (hence A → 0), the terms with A
accounting for Stefan flow.

In application to the injection stage, the solution (3.9) is meant in the reference frame
of the injected meniscus in the pipe, moving at a velocity uinj = Jinj/(πR2) (cf. the values
in table 1). Furthermore, in view of non-1-D and advective effects in the pipe, one can
expect the diffusion coefficient within a 1-D representation (3.9) to be effectively greater
than given by molecular diffusion, which would also imply a larger amount of vapour
formed in the pipe. Inspired by the Taylor dispersion result (Taylor 1953), such an effective
diffusion coefficient, which serves to substitute Dg in (3.9), is represented as

Dg,eff = Dg

(
1 + fTay

48
Pe2

inj

)
, (3.11)
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where the injection Péclet number Peinj = uinjR/Dg turns out to be quite appreciable
(cf. table 1). Here fTay is a ‘correction factor’ introduced for later convenience, whose
value will be discussed in due course (not a fitting parameter). For the moment, just note
that fTay = 1 would correspond to the classical result, whereas fTay = 0 would correspond
to the absence of Taylor dispersion.

Now, at the injection stage 0 < t < tinj, we return to the following heuristic
simplification. We do not directly follow the moving meniscus in the pipe. Rather, we
formally use the same geometry as described in §§ 3.1 and 3.2 for the ‘evaporation stage’
t > tinj (real-set-up simulations), with the meniscus already in its final, topmost location.
However, the boundary conditions (3.5) and (3.6) are replaced with

vg = 2uinj

(
1 − r2

R2

)
ez, χ = χsat

2 − erfc A
erfc

(
uinj(tinj − t)

2
√

Dg,eff t
− A

)
(3.12a,b)

applied for 0 < t < tinj at the final meniscus location. Here ez is the unit vector in the
z direction. The expressions (3.12) are inspired, respectively, by the Poiseuille profile and
by the boundary layer solution (3.9) showing up its front at the final meniscus location
at a height z = uinj(tinj − t) relative to the moving meniscus in the pipe. For t > tinj, the
boundary conditions (3.5) and (3.6) enter in effect, while (3.12) are abandoned.

4. Results and discussion

4.1. Benchmark quasisteady simulation results
The computation results are shown in figure 9. A good reference point for rationalizing
the presented J∗

evap values is provided by J∗
evap = 4, which stands for a flat top meniscus

(ha = 0, equivalently an infinitesimally thin sessile droplet) in the pure diffusion regime
of evaporation (Popov 2005). With the help of 0 g simulations, we see that the present
inclusion of Stefan flow leads to somewhat higher J∗

evap (cf. the lower point at the ordinate
axis), which is of no surprise also in view of the denominator in (3.6). For lower meniscus
positions in the pipe, the evaporation rates expectedly decrease. The decrease is far more
drastic within the family of flat menisci than the spherical-cap ones. This is associated
with the well-known (integrable) evaporation flux singularity at the contact line (Popov
2005), which can be observed in figure 10. The singularity takes place for the pinned
spherical-cap menisci, but is relaxed for a flat meniscus inside the pipe (when the contact
angle is formally equal to 90◦). In 1 g, the evaporation rates are appreciably higher due to
the natural convection, especially taking into account the heavy vapour we are dealing with
here. The insets (figure 9) put into evidence a drastic buoyancy flattening of the vapour
cloud. Otherwise, similar tendencies are observed at both gravity levels as a function of ha.

4.2. Vapour cloud evolution in ground conditions
Experiments have been performed in ground conditions, under normal gravity. As
described earlier, the precise location of the meniscus is not known, and a mutual
validation between the interferometry and numerical simulations will in particular be used
to estimate the depth ha of HFE-7100 in the pipe. The temporal variation of vapour cloud
shapes obtained in the experiments is presented in figure 11(a). The parameters of the
ground experiments were already detailed in table 1. The injection starts at t = 0 and ends
roughly at t = tinj = 3.95 s. After that, the vapour cloud spreads until a quasisteady state
is apparently reached (no appreciable change after t = 10 s). There is no visible vapour
cloud for a time less than t = 3.5 s as the meniscus and the vapour that has already
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1.5 2.0

1.0

χ/χsat

0.9

0.8
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0.6

0.5

0.4
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Flat meniscus, 0 g

Flat meniscus, 1 g

Spherical cap, 1 g

Figure 9. Benchmark (quasisteady) simulation results. Dimensionless evaporation rate J∗
evap (cf. table 1 for the

scale) versus ha/R (meniscus position depth in the pipe along the symmetry axis normalized to the radius of
the opening) in 0 and 1 g. Results for the spherical-cap and flat menisci (cf. figure 5 and (3.8)). The insets show
the vapour cloud distributions in selected points. The 1 g simulations were carried out for the fluid properties
from ground runs (cf. table 1). The 0 g simulations were realized using the fluid properties from both flight and
( just for comparison) ground runs. Notably, the results from the former were found to be only approximately
3 % higher than those from the latter, in terms of dimensionless J∗

evap.

4

3

2j∗

1

0 0.5

s/R
1.0 1.5

ha/R = 1, 1 g

Hemispherical:

ha = 0, 1 g

ha = 0, 0 g

ha/R = 0.5, 1 g

ha/R = 0.5, 0 g

Flat:

ha/R = 1, 0 g

ha/R = 2, 1 g

ha/R = 2, 0 g

Figure 10. Benchmark simulation results. Evaporation flux density distributions along the meniscus surface,
where s is the arclength counted from the symmetry axis and j∗ = j/(ρsatDg/R) is a dimensionless
representation. The cases depicted here include both flat and hemispherical menisci, mirroring the eight
scenarios presented in the insets of figure 9.

been generated are still deep inside the pipe. At approximately 3.5 s, the movement of the
interface towards the opening effuses enough precursor vapour to produce a vapour jet.
Shortly thereafter, a pancake-shaped cloud is being formed with several layers of fringes
that spreads laterally on the platform.
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t = 3.5 s

(a) (b) (c) (d ) (e)

Numerical
5 mm

Experiment Numerical
5 mm

Experiment

( f ) (g) (h) (i)

t = 3.6 s

t = 3.7 s

t = 3.8 s

t = 3.9 s

t = 3.95 s

t = 4.0 s

t = 4.1 s

t = 4.2 s

t = 4.3 s

t = 4.4 s

t = 4.5 s

t = 5.0 s

t = 8.0 s

t = 10.0 s

Figure 11. Evolution of the phase-wrapped vapour cloud images in experiment and simulations (parametric
study) in ground conditions: (a) experiment; (b) simulation for a flat meniscus at a depth ha = 0.5 mm without
Taylor dispersion during the injection stage ( fTay = 0); (c) idem but with 100 % Taylor dispersion ( fTay =
1); (d) idem but with 20 % Taylor dispersion ( fTay = 0.2); (e) comparison between experiment (right-hand
side in each image) and simulation for the optimal values of a flat meniscus depth ha = 0.5 mm and 20 %
Taylor dispersion (left-hand side); ( f ) simulation for a flat meniscus at a depth ha = 0.2 mm with 20 % Taylor
dispersion; (g) idem but for ha = 1 mm; (h) simulation for a hemispherical meniscus pinned at the opening
with 20 % Taylor dispersion; (i) comparison between the latter simulation (left-hand side in each image) and
experiment (right-hand side).

982 A26-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.95


S.K. Parimalanathan and others

As discussed in § 3.3, the effective diffusion correction factor fTay, here described in
the framework of Taylor dispersion, may play an important role in the initial distribution
of the vapour cloud. Both extremes fTay = 0 and fTay = 1 are tested in the simulations
and compared with the experiments. Simulations without Taylor dispersion ( fTay = 0)
showed fewer fringes with a constrained spreading of the vapour in comparison with
the experimental phase-wrapped image (figure 11b). When full Taylor dispersion is
considered ( fTay = 1), more fringes appear in comparison with the experiments, as shown
in figure 11(c). Then, to find out what values of fTay can be expected under normal gravity,
an auxiliary test computation has been carried out, cf. Appendix B for details. The test
concerns a vapour boundary layer developing from a meniscus that steadily moves upward
inside an infinite pipe. A full 2-D axisymmetric formulation has been used with the present
geometric and material parameter values. It turns out that an optimal approximation with
the help of (3.9), where Dg is replaced with Dg,eff from (3.11), is achieved for roughly
fTay = 0.2. Notwithstanding, even with fTay = 0.2 (i.e. 20 % Taylor dispersion), Dg,eff
is here almost twice greater than Dg (cf. table 1), rendering its effect quite detectable.
The simulated variation of the vapour cloud with 20 % Taylor coefficient is shown in
figure 11(d). We see that the number of fringes and the lateral distribution are quite close
to the experimental results. A separate comparison with the corresponding experimental
images is presented in figure 11(e).

For all simulation results presented in figure 11(b–d), the meniscus position was
maintained flat at a depth of ha = 0.5 mm. However, numerical simulations were also
performed with different meniscus depths of ha = 0.2, 0.5 and 1 mm from the pipe
opening (for the optimal value fTay = 0.2). In the simulation with a depth of ha = 0.2 mm
shown in figure 11( f ), the initial vapour distribution is very similar to the experimental
case. However, an additional fringe appears close to the opening for t = 4.0 s and greater.
This implies that the meniscus position ha = 0.2 mm must be too high to represent the
experiment. For simulations with a depth ha = 1 mm, as seen from figure 11(g), the initial
evolution of the vapour cloud is still very similar to the experiments, but for t > 4.0 s, the
lateral span of the vapour cloud distribution is small and different from experiment. This
indicates that the meniscus position ha = 1 mm is a bad shot (too low). It is curious to
note that even though the final meniscus positions in the cases of figures 11(d), 11( f ) and
11(g) are different, the initial vapour cloud evolution is always similar to the experimental
results. This emphasizes that the initial stage is predominantly influenced by the amount of
vapour generated in the pipe during the injection, rather than by the final position ha of the
meniscus. Herewith, a correct estimation of the effective diffusion coefficient (here with
20 % Taylor dispersion) is a key for a correct prediction of the vapour cloud. In contrast,
at a later stage, the eventual distribution of the vapour cloud rather turns out to be related
to the position ha of the meniscus (quite in accordance with figure 9), while the vapour
produced in the pipe during the injection stage is no longer important.

In most of the present simulations, a flat meniscus has been assumed for simplicity,
as the shape and position of the meniscus were unmeasured. However, to assess the
effect of the meniscus shape on the vapour cloud, a simulation with a spherical-cap
meniscus has also been carried out for comparison. We chose the case of a hemispherical
meniscus pinned at the edge of the pipe outlet, with ha = R = 2 mm within the family
of spherical-cap menisci in (3.8a), under the assumption that the evaporation rate J∗

evap
in this case is not much different (cf. figure 9) from the earlier indicated optimal case
ha = 0.5 mm within the family of flat menisci. The Taylor correction factor was still the
earlier established optimal one of 20 %, i.e. fTay = 0.2 in (3.11). The simulation result is
shown in figure 11(h), where one can observe no appreciable difference with the mentioned
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corresponding flat-meniscus simulation shown in figure 11(d). This points to the versatility
of our conclusions in spite of no precise details of the meniscus shape. A side-by-side
comparison with experiment is now represented in figure 11(i), similar to figure 11(e)
earlier.

Finally, note that the present consideration is practically not affected by lowering the
meniscus level in the pipe due to evaporation. Indeed, as inferred from figure 9 (cf. 1 g
results), the dimensionless evaporation rate for the mentioned optimal cases is J∗

evap ∼ 5.
With the Jevap scale for ground conditions inferred from table 1, one arrives at an
estimation Jevap ∼ 0.075 μl s−1. Figure 11 shows the results up to t = 10 s. During this
time, the meniscus lowers by just (t − tinj)Jevap/(πR2) ∼ 0.035 mm, which is insignificant
in the present context.

4.3. Vapour cloud evolution in microgravity and effect of g-jitter
The experimental phase-wrapped images of the vapour cloud for two different parabolas
are presented in figure 12(a,b) together with the corresponding g-jitter data and simulation
results. The in-flight parameters can be recalled in table 1. The simulations are conducted
assuming axisymmetric geometry and use the actual vertical g-jitter data ĝz(t) obtained
during the flight (shown in the upper insets as well as for each row of images). The
horizontal g-jitters (ĝx and ĝy) are thus disregarded in such simulations, although they
may cause a certain asymmetry of the vapour cloud in experiments.

Similarly to what we did in § 4.2 for the ground case, a parametric study on the meniscus
position and shape, and the Taylor dispersion correction factor has been carried out in
the simulations in order to assess their influence on the vapour cloud. This is all the
more pertinent recalling that the meniscus shape and position remain unmeasured in
the experiments. Some key results of the parametric study are already represented in
figure 12 for the two parabolas, while additional results for the first parabola are shown
in figure 13. As we can see from figure 12, an optimal fair agreement with experiment
is achieved for the first parabola with a meniscus depth ha = 1.2R = 2.4 mm in the
realm of the hemispherical menisci. For the second parabola, a slightly deeper position
ha = 1.3R = 2.6 mm is preferred. In contrast, the case ha = R, mm (hemispherical
meniscus pinned at the opening) generally yields more fringes than in experiment, thus
overpredicting the amount of vapour, whereas a deeper meniscus, located at ha = 1.5R =
3 mm, underpredicts the number of fringes and the vapour cloud.

A consistency check is that the optimal meniscus position found here with the help of
interferometry and simulations corresponds well to the injection volume difference that
can be consulted in the caption to figure 4. Indeed, the injection volume at which overflow
was observed, i.e. Vinj = 1.62 ml, exceeds by 20 μl the injection volume that is used in the
present experiment, i.e. Vinj = 1.6 ml. Now, for a hemispherical meniscus at a depth ha =
1.2R = 2.4 mm, the volume still required to fill the pipe up to the top is (ha − R)πR2 +
(2π/3)R3 ≈ 22 μl, which compares reasonably well with the earlier mentioned difference.

However, a persistent impression one can get from the comparison between experiment
and simulations in figure 12 is that the meniscus keeps rising (even after the injection
ended at t = tinj = 1.6 s): a lower meniscus position in simulations seems to fit the
experiment in the beginning (from the viewpoint of the fringe size and number), but
eventually a higher position is preferred. Incidentally, another piece of evidence to the
same phenomenon could already be seen in figure 4, where the overflow occurred clearly
later than t = 2 s, already after the normal injection had stopped. We refer to it as ‘parasitic
postinjection’. We speculate that it could be related to the volume anomaly, described in
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ĝy = –0.011
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Figure 12. The g-jitter data and evolution of the vapour cloud for two of the flight parabolas (a,b).
Experimental and simulation results in terms of phase-wrapped images. Various meniscus depths are tested
in the simulations.

§ 2.3, with supposedly trapped gas in the pipe system during injection in microgravity (but
not in normal gravity). Namely, the parasitic postinjection could be due to progressive
liquid vaporization into the trapped gas, which would lead to a volume increase in the
latter (up to ∼20 %, cf. χsat in table 1) and, as a consequence, further liquid displacement
from the pipe.

Another related issue is that, unlike the ground runs (§ 4.2), no substantial comparison
with experiment around the injection stage (t ∼ tinj = 1.6 s) turns out to be feasible here,
and this stage is not included in figure 12. Once again, the disruption of our injection
scenario is attributed to the potential presence of trapped gas. For instance, even at t = 2 s
(the first time moment shown in figure 12), one can still see traces of a vapour jet emanating
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ĝz = 0

t = 10 s

t = 12 s
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Figure 13. Additional parametric study (simulations) for the first parabola of figure 12.

upwards from the opening in the simulations (vapour formed in the pipe and ejected due to
gas displacement from the pipe at injection), but not in experiment. A further illustration
is provided in figure 14 in relation to the very end of the regular injection, t = tinj = 1.6 s.
We observe a barely visible vapour trace in experiment, whereas the simulations show a
noticeable vapour jet even if the meniscus had stopped as low as ha/R = 5 (i.e. ha = 1 cm).

The parametric study helps to additionally clarify a number of other points. First, it is
only for the first moment shown in figures 12 and 13 (viz. t = 2 s) that the effect of vapour
generated in the pipe during the injection appears to be noticeable in the simulations.
Indeed, at t = 2 s, one can observe a more pronounced jet emanating upwards in the
simulation with 100 % Taylor dispersion ( fTay = 1) as compared with that with no vapour
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Simulation (hemispherical meniscus)
Experiment

t = 1.6 s

5 mm

ha/R = 5,  fTay = 0.3 ha/R = 3,  fTay = 0.3 ha/R = 1,  fTay = 0.3

Figure 14. Vapour cloud (phase-wrapped images) at the end of injection (t = tinj = 1.6 s) for the first flight
parabola of figure 12. The interferometric signal corresponds to a vapour jet from the pipe’s outlet. Experiment
and simulations for various meniscus depths.

Taylor dispersion ( fTay = 0) in the pipe (figure 13). Herewith, the case 30 % ( fTay = 0.3)
is used as a baseline throughout, as estimated similarly to Appendix B, but now in 0 g.
At later moments (t ≥ 3 s), no difference is any longer observable. Thus, for the 0 g
simulations we can draw quite similar conclusions as for the ground runs (cf. figure 11):
the role of the amount of vapour ejected from the pipe on the observed vapour cloud fades
away at later moments. The small difference, however, is that, in microgravity, it fades
away immediately given that the ejected vapour is merely blown upwards out of the field
of view (cf. the above mentioned upward jet at t = 2 s). In contrast, on ground, such a jet
must be turned down by gravity already at a modest height of u2

inj/(2g∗) ∼ 1 mm for our
heavy vapour and hence the ejected vapour keeps near the substrate affecting the observed
vapour cloud for a longer period of time, as pointed out in § 4.2.

Second, as in the ground study (§ 4.2), the vapour cloud shapes we hereby observe
cannot be readily associated with a specific shape of the meniscus. For instance, as
evidenced by figure 13, quite similar results are obtained for ha/R = 0.25 in the realm
of flat menisci and for ha/R = 1 in the realm of spherical caps and hemispherical
menisci (besides, the evaporation rates are not much different between these two cases
either, cf. figure 9). Thus, for our purposes in the present paper, we could have just
proceeded with the flat menisci (e.g. for the sake of simplicity), as we largely did in
§ 4.2. However, the hemispherical meniscus must here be closer to reality, as indicated
by both other measurements and physical considerations. Indeed, the volume difference
of ∼20 μl mentioned in the consistency check above would not be covered by a flat
meniscus at the appropriate depth. This is evident from the fact that the volume in the
pipe above the hemispherical meniscus with ha/R = 1 is equal to (2π/3)R3 ≈ 17 μl,
whereas it is only haπR2 ≈ 6 μl above the flat meniscus with ha/R = 0.25 yielding an
equivalent phase-wrapped image. As for physical considerations, our HFE-7100 liquid is
perfectly wetting, hence demonstrating a vanishing (Young’s) contact angle and leading to
a hemispherical meniscus when stabilized inside the pipe in microgravity. Note though that
a finite even if small contact angle of an evaporation-induced nature (< 9◦ for HFE-7100
(Tsoumpas et al. 2015)) should in reality be expected, which would not make a difference
within the roughness of the present analysis.

Third, an unexpected simulation result that can be inferred from figure 13 is a
non-monotonic vapour cloud height variation ( judged qualitatively from the vertical extent
of the fringe pattern) as the depth ha is decreased from ha/R = 1 (hemispherical meniscus
pinned at the opening) to ha/R = 0.5 (pinned spherical-cap meniscus) and then to ha = 0
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Figure 15. Simulated evolution of the dimensionless evaporation rate (cf. (3.7) and table 1) for a hemispherical
meniscus pinned at the opening under 0 g exactly (dashed line) and under the g-jitter of the first parabola (solid
line).

(top flat meniscus), even if the evaporation rate in figure 9 behaves monotonically. We
attribute it to a slight vapour cloud focalization by Stefan flow (blowing from the meniscus
surface), which is inclined more towards the axis in the hemispherical case in view of the
obvious geometrical reasons.

Fourth, the response of the vapour cloud to g-jitters can clearly be observed, although
slightly delayed. This can be seen in figure 13 by comparing the last column of images,
simulated for a pinned hemispherical meniscus at 0 g exactly, with the corresponding
fourth column, simulated using the g-jitter of the first parabola. For instance, at t = 8 s,
the measured ĝz is approximately 0.008, with a slightly positive value indicating that the
vapour is pushed downwards (the cloud is flattened). However, at t = 10 s, even though
the ĝz is negative, the vapour cloud takes a few seconds to catch up with the continuously
changing upward gravity. Eventually, for later times t = 12, 14 and 16 s, the vapour cloud is
elongated along the axis, forming a cone-like structure in response to the negative g-jitters.
The noticeable deformations of the vapour cloud under g-jitter obviously point to equally
noticeable modifications of the evaporation rate, because the latter is determined by the
vapour concentration gradients (changing as the vapour cloud deforms). A confirmation is
presented in figure 15, which shows that the g-jitter gives rise to higher evaporation rates.
This is especially true for the periods of negative g-jitter (evaporation rate maximum at
t ∼ 16 s).

Similar g-jitter response tendencies can be discerned for the experimental results too
(figure 12), although perhaps in a somewhat tarnished way. The responses to g-jitters in
the x direction (ĝx), arguably resulting in a shortening of the vapour cloud heights, and to
g-jitters in the y direction (ĝy), resulting in an asymmetry of the vapour cloud, cannot be
captured within the present axisymmetric simulations. At t > 20 s, the microgravity phase
ends with a transition to the hypergravity phase, where the vapour cloud drastically flattens
(and the evaporation rate drastically increases in figure 15). The two different parabolas
represented in figure 13 emphasize the fact that even though the experimental parameters
such as the injection volume, injection speed, temperature and pressure may be similar,
reproducing the same vapour cloud evolution is not possible, as every parabola has a
unique g-jitter signature.
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5. Conclusions

Vapour interferometry in conjunction with fluid-dynamic simulations has reconfirmed
itself as an effective tool in analysing vapour clouds, a principal visualizable imprint
of the evaporation process. Its effectiveness persists even when a complete tomographic
reconstruction of the vapour concentration field is impractical for various reasons. In such
a case, it is the simulation results that can take a step forward towards interferometry
by being rendered in terms of interferometric images. Many details of the ‘puzzle’ can
be restored in this way even when certain information is missing and certain quantities
remain unmeasured (like the meniscus position/shape and the evaporation rates in the
present set-up).

The configuration studied here represents a borderline/transition case between more
classical cases of evaporation from a (generally moving) meniscus in a pipe and
evaporation of a sessile droplet on a horizontal substrate. In particular, this has permitted
us to study the intricacies of the injection process such as the amount and role of
a precursor vapour preceding the advancing liquid meniscus in the pipe. This vapour
eventually ends up ejected over the substrate. Its role in the beginning of the evaporation
process from a final steady meniscus at the pipe outlet (and potentially from a sessile
droplet if we chose to proceed with the injection up to that state) is found to be significant
under normal gravity and for millimetric pipes such as ours, although confirmed to fade
away at later moments (after several seconds). A good agreement between experiment and
simulations is achieved as far as the amount of such precursor vapour is concerned, the
result for which is expressed in terms of vapour Taylor dispersion in the pipe at injection
(the corresponding Péclet number being rather high).

The final disposition, with a meniscus at the opening, actually corresponds to the
problem of evaporation from a well or cavity on a flat substrate. It can also be viewed
as an extension of the sessile-droplet family to ‘negative heights’. A vast parametric study
has been carried out to extend the known evaporation-rate results to such a case.

A peculiar feature of the present study is that the same experiment (together with
corresponding simulations) has been repeated both in microgravity (parabolic flights) and
in normal gravity. The consequences of the gravity level on the vapour cloud are found to
be remarkable. We visualize and confirm in simulations a drastic flattening of the vapour
cloud on ground under normal gravity, the working liquid being a refrigerant HFE-7100
with a particularly heavy vapour. In microgravity, the vapour cloud assumes a largely
hemispherical shape. Yet, a more non-trivial result consists in revealing its sensitivity to
the g-jitter present during the parabolas, of the order of a few per cent of normal gravity
and with a main period of the order of a few seconds. Its ‘breathing’ under the g-jitter
(periodic elongation and flattening along the vertical axis with a certain delay relative
to the g-jitter) is one of the spectacular phenomena observed in the present study and
also confirmed in simulations. As the g-jitter signature is unique for each parabola, so are
inevitably the fine details of the vapour cloud evolution.

The g-jitter also impacts the development of vapour-cloud measurement as such in the
current paper. In situations where the mirrors experience vibrations due to g-jitter, making
it challenging to establish a definitive reference image, alternative approaches have been
suggested.

A number of unforeseen phenomena occurred on the way. These include an injection
volume anomaly rendering on-ground precalibrations useless for the experiments in flight
(hypothesized to be due to gas trapping in the pipe system in microgravity) and a parasitic
postinjection after the controlled injection had already stopped (perhaps due to liquid
vaporization into the trapped gas). On the positive side, interferometry and simulation
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permitted certain diagnostics of such issues, with repercussions no doubt beyond the
present set-up.

This study has revealed the main mechanisms that describe the behaviour of the vapour
originating from a pipe opening, both during the injection stage and after the injection,
under normal gravity and parabolic-flight g-jitter. The understanding acquired from the
results, both experimental and numerical, will be useful for conceiving and preparing
future evaporation experiments on ground, in parabolic flights and in space.
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Appendix A. Additional remarks on material properties

Here we provide explanations for certain entries in table 1. Ideal gas laws are used for
expressing ng, χsat, ρsat and ρg(χ). The Dg values are obtained using an interpolation of
the measurements at various temperatures provided by Shevchenko et al. (2021) and then
applying the law Dg ∝ p−1

amb (Bird et al. 2006) for recalculating from atmospheric to any
ambient pressure. Online data provided by the manufacturer (Novec 3M) are used for psat
and ρl of HFE-7100. Well-known common data are used for the nitrogen gas viscosity μN2,
while for the HFE-7100 vapour viscosity μvap we rely upon data from the ESA Topical
Team on Boiling and Evaporation (private communication).

Following Bird et al. (2006), the dynamic viscosity of a gas mixture (here HFE-7100
vapour + N2) as a function of the molar fraction χ is represented as

μg(χ) = χμvap

χ + (1 − χ)Φ2
+ (1 − χ)μN2

χΦ1 + 1 − χ
, (A1)

with

Φ1 = 1√
8

(
1 + MN2

MHFE

)−1/2
[

1 +
(

μN2

μvap

)1/2 (MHFE

MN2

)1/4
]2

, (A2)

Φ2 = 1√
8

(
1 + MHFE

MN2

)−1/2
[

1 +
(

μvap

μN2

)1/2 ( MN2

MHFE

)1/4
]2

, (A3)

and the material properties from table 1.
The proportionality factor �n/χ for the HFE-7100 vapour was measured in-house at

24 ◦C and 1 atm to yield 0.00144, which agrees well with the data by Shevchenko et al.
(2021). At other pressures and (absolute) temperatures, it was recalculated assuming a
Lorentz–Lorenz dependence ∝ pamb/Tamb (Pendrill 2004).
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Figure 16. A 2-D axisymmetric numerical solution for a developing vapour cloud in a semi-infinite pipe
for a (flat) meniscus moving upwards against gravity in 1 g. Consideration in the reference frame of the
meniscus. Cross-section-averaged χ profiles at t = 2 s and t = 3.9 s (solid blue curves) and the corresponding
vapour clouds (insets). The corresponding 1-D analytical solution (3.9), where Dg is replaced with the Taylor
dispersion value Dg,eff from (3.11), for various values of the Taylor dispersion correcting factor fTay (orange
dashed and solid curves). Basic parameters are as in the third column of table 1. The value of fTay = 0.2 (solid
orange curve) is deemed to represent the numerical solution in an overall optimal way.

Appendix B. Vapour Taylor dispersion in a vertical pipe

To clarify the issue of a Taylor dispersion correcting factor fTay in 1 g raised at the end
of § 3.3, we consider an auxiliary simulation for the vapour cloud that develops from
a zero initial condition due to a meniscus moving upwards at a constant velocity in a
formally semi-infinite vertical pipe. The numerical solution is then compared with the 1-D
self-similar solution considered in § 3.3 in order to establish an optimal value of fTay. The
equations and boundary conditions are the same as in § 3.1, except that the velocity at the
wall is now non-zero and rather given by vg = −u ez (in the meniscus frame of reference).
Further details can be found in figure 16.

Appendix C. Postprocessing of phase-wrapped images obtained under g-jitter

In the present appendix, we take over the point raised in § 2.2 on the difficulties of
choosing the reference image (Iref ) under the conditions of g-jitter. We proceed as follows.
For each measured interferometric image of the vapour cloud (Ivap), we identify the
proper Iref . We choose Iref from the images available before the start of the injection but
after the start of the microgravity phase, while the parabolas where such choice was not
possible were discarded (as explained in § 2.2). An exhaustive search has been conducted.
Figure 17 shows the effect of different Iref , used for argument subtraction with Ivap, on
the final phase-wrapped images. For this analysis, several Iref between t = tinj − 1.62 s,
corresponding to the start of the injection sequence, and t = tinj − 2.12 s have been
considered. As the images were recorded at 100 f.p.s., we have approximately 50 frames
(recorded for the indicated time range) that can be chosen as Iref , of which we consider
14 representing each column in figure 17. The rows represent the times at which Ivap was
taken starting from t = 1.6 s, corresponding to the end of the injection sequence. The other
times are the same as chosen for figure 12, extending up to the end of the microgravity
phase (approximately 20 s). The following selection procedure has been used to filter the
final experimental images to be eventually shown in figure 12.

(i) Only the images with closed fringes around the opening and free of any virtually
‘parasitic’ fringe away from the opening have been manually selected from figure 17
to make the second group.
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t = 1.6 s

tinj – 2.12 s tinj – 2.07 s tinj – 2.02 s tinj – 1.97 s tinj – 1.92 s tinj – 1.87 s tinj – 1.82 s tinj – 1.80 s tinj – 1.78 s tinj – 1.77 s tinj – 1.76 s tinj – 1.72 s tinj – 1.67 s tinj – 1.62 s

t = 2.0 s

t = 3.0 s

t = 4.0 s

t = 6.0 s

t = 8.0 s

t = 10.0 s

t = 12.0 s

t = 14.0 s

t = 16.0 s

t = 18.0 s

t = 20.0 s

Figure 17. Variation in the phase-wrapped images obtained at different postinjection times (rows) using the
reference images from different preinjection times (columns) for the first flight parabola of figure 12. Discarded
variants are crossed out. The variants selected for further consideration are ticked off.

(ii) The shortlisted second group of images that satisfy the above criterion is ticked
off in figure 17. In the second phase of filtering, the phase-wrapped image that
shows the background contrast closer to that in the numerical simulation (second
column of figure 12) is selected. It is interesting to see (cf. figure 12 of the main text)
that in all the numerical simulations, irrespective of different meniscus depths and
shapes (for instance, at t = 2 s), the background is almost white. This is appropriate
for a localized vapour cloud and practically no vapour in the surroundings. In
figure 17, the last shortlisted image at t = 2 s (second row) has a very similar white
background. Hence, it has finally been filtered for figure 12.

(iii) However, this is not the case for t = 3 s (third row). The background in numerical
simulation (again very close to white) does not match any of the shortlisted images
of figure 17 for this row. In such cases, an additional procedure is followed. To the
original phase (modulo 2π) of the phase-wrapped image, a fraction of π is added
or, in some cases, subtracted (uniform phase shifting) to obtain roughly the same
background contrast as in the corresponding simulations. However, the fractions of
π were carefully chosen so that the phase shift operations do not add or remove any
fringes to the original phase-wrapped image but modify the background contrast. For
instance, adding a phase shift of π/2 to the last but one phase-wrapped image (third
row) simply changes the background contrast close to the numerical simulation
results. Furthermore, several shortlisted images (in each row) may turn out to be
essentially equivalent up such a uniform phase shift. To illustrate this, consider the
last shortlisted image for t = 8 s (sixth row). To this phase image chosen as ‘original’
(represented as ‘0’), different fractions of π are added or subtracted. The results of
such operations are shown in figure 18. Now, comparing the shortlisted images of the
sixth row of figure 17 with the images of figure 18, we notice that they look almost
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–0.5π –0.3π –0.1π +0.1π

t = 8.0 s, reference at tinj –1.76 s

+0.3π +0.5π0

Figure 18. Variations in the phase-wrapped images due to a uniform phase shift (here different fractions
of π).

identical, which demonstrates the point. This is not a surprise as we are conscious
that vibrations may sometimes result just in a uniform phase shift. We note also that
a uniform phase shift of −0.1π was actually applied to the experimental images
of figure 11 to similarly correct the background. On the other hand, it may well be
that if a larger collection of Iref was taken into consideration, we would not need to
recur to such an additional procedure. However, as we now proceed manually, this
would be tedious and time-consuming. Perhaps, machine-learning algorithms can be
employed for such procedures, but such an idea is beyond the scope of the present
study.
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