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Abstract
A delayed reaction-diffusion system with free boundaries is investigated in this paper to understand how the bacteria
spread spatially to larger area from the initial infected habitat. Under the assumptions that the nonlinearities are of
monostable type and the initial values satisfy some compatible condition, we show that the free boundary prob-
lem is well-posed and discuss the long-time behaviour of solution (including spreading and vanishing) in terms of
the spatial-temporal risk index. Furthermore, to determine the spreading speed of free boundaries when spreading
occurs, we first study the distribution of roots of a transcendental equation containing a polynomial of degree four
and then establish the existence and uniqueness of monotone solution to a delay-induced nonlocal semi-wave prob-
lem by employing the approximation method, lower-upper solutions technique and Schauder fixed point theorem.
It is shown that time delays slow down the spreading of bacteria.

1. Introduction

Each infectious disease usually has its own specific route of transmission, such as contact transmission,
droplet transmission, faecal-oral transmission and so on. Faecal-oral transmitted diseases, including
hand foot mouth disease, cholera, poliomyelitis and viral hepatitis A, spread mostly through unapparent
faecal contamination of food, water and hands. Researchers have estimated that each year, there are 1.3–
4.0 million cases of cholera, and 21,000 to 143,000 deaths worldwide due to cholera [2]. To model the
cholera epidemic which spread in the European Mediterranean regions in 1973, Capasso and Paveri-
Fontana [6] proposed the following system of two ordinary differential equations{

u′(t) = −b1u + av,

v′(t) = −b2v + g(u),
(1.1)

which describes the positive feedback interaction between the infective human population v and the
concentration of bacteria u in the environment. Here the constants bi (i = 1, 2) respectively represent the
intrinsic decay rates of the two populations, av is the contribution of the infective humans to the growth
rate of bacteria and g(u) is the infection rate of humans under the assumption that the total susceptible
human population is constant. The qualitative analysis shows that there exist threshold dynamics for
(1.1) with suitable monotonicity assumptions on the nonlinearity g(u) [7]. Moreover, the model (1.1)
can also be used to describe the spread of other faecal-oral transmitted diseases, including typhoid fever
and infectious hepatitis, under suitable modification [8].
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For more realistic models, spatial diffusions of the bacteria and the infective humans should be
considered. Capasso and Maddalena [9] studied the following random diffusive system

⎧⎪⎪⎨
⎪⎪⎩
∂u

∂t
= d1

∂2u

∂x2
− b1u + av,

∂v

∂t
= d2

∂2v

∂x2
− b2v + g(u),

(1.2)

where di (i = 1, 2) are diffusion coefficients. If the diffusion of the infective humans is relatively smaller
than that of the bacteria, we can ignore it by setting d1 > 0 and d2 = 0 (in this case, the model is partially
degenerate). In [9], the corresponding Robin boundary value problems with suitable assumptions on g
have been investigated for d1 > 0 and d2 � 0. When d1 > 0 and d2 > 0, two threshold parameters�m and
�M were introduced such that the epidemic eventually tends to extinction for 0<�m < 1 and tends to
a spatially inhomogeneous stationary endemic state for�M > 1; while for d1 > 0 and d2 = 0, it has only
one threshold parameter as in (1.1). Moreover, the travelling waves of (1.2) have been studied. More pre-
cisely, when d1 > 0 and d2 > 0, Hsu and Yang in [19] established the existence, uniqueness, monotonicity
and asymptotic behaviour of travelling waves for (1.2) with the term av replaced by a more general func-
tion h(v). For the partially degenerate case, Xu and Zhao [39] established the existence, uniqueness (up
to translation) and global exponential stability with phase shift of bistable travelling waves; Zhao and
Wang [43] proved the existence of Fisher type monotone travelling waves and determined the minimal
wave speed.

In view of the latent period of infection, maturation time of population or other factors, time delay
is introduced in various biological models. For the general model in [19], Wu and Hsu [38] recently
incorporated two discrete time delays into the model as follows

⎧⎪⎪⎨
⎪⎪⎩
∂u

∂t
= d1

∂2u

∂x2
− b1u + h(v(t − τ1, x)),

∂v

∂t
= d2

∂2v

∂x2
− b2v + g(u(t − τ2, x)),

(1.3)

where diffusion coefficients (d1, d2) satisfy d1 > 0 and d2 � 0, and time delays (τ1, τ2) satisfy τ1 � 0 and
τ2 > 0. It was shown in [38] that the system (1.3) with and without the quasi-monotone condition admit
entire solution, which is defined in the whole time-space and behaves like a combination of travelling
waves as t tends to −∞. When d2 = 0, τ1 = 0 and h(v) = av, [31] investigated the existence of spreading
speed and minimal wave speed.

However, the fixed boundary problems (including the bounded domain or the whole space) consid-
ered above are not suitable to be used to understand how the bacteria spread spatially to larger area from
the initial infected habitat, which motivates us to consider the corresponding free boundary problems.
In recent years, the free boundary problems for biological models have been studied extensively. For
species models, Du and Lin [15] first studied the free boundary problem for diffusive logistic equa-
tion in homogeneous environment. They proved that the species either spreads successfully or vanishes
eventually, and determined the spreading speed of free boundary. Based on the work [15], free boundary
problems for single species model with periodic coefficients [11–13, 32], nonlocal dispersal [3, 14], sea-
sonal succession [26], general nonlinear term [16] and advection term [29, 36] have been investigated.
For epidemic models, free boundary problems for partially degenerate epidemic model [1, 40], SIS [5,
18, 20], SIRS [4], SEIR [23], West Nile virus [24, 35] models were also studied recently. Moreover, the
dynamics of biological models with time delay have been studied extensively, but the corresponding free
boundary problems were rarely considered. For example, [44] considered the free boundary problem for
tumour model with time delay. [23] investigated SEIR model with free boundary and distributed time
delay. [28] studied the free boundary problem for the delayed Fisher-KPP equation. [10] considered the
partially degenerate epidemic model with free boundary and time delay.
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In this paper, we consider the free boundary problem for (1.3) as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1

∂2u

∂x2
− b1u + h(v(t − τ1, x)), t> 0, s1(t)< x< s2(t),

∂v

∂t
= d2

∂2v

∂x2
− b2v + g(u(t − τ2, x)), t> 0, s1(t)< x< s2(t),

u(t, x) = v(t, x) = 0, t> 0, x � s2(t) or x � s1(t),

s1(0) = −s0, s′
1(t) = −μ∂u

∂x
(t, s1(t)), t> 0,

s2(0) = s0, s′
2(t) = −μ∂u

∂x
(t, s2(t)), t> 0,

u(θ , x) = u0(θ , x), −τ2 � θ � 0, s1(θ ) � x � s2(θ ),

v(θ , x) = v0(θ , x), −τ1 � θ � 0, s1(θ ) � x � s2(θ ).

(1.4)

As introduced above, u and v represent the concentration of bacteria in the environment and the pop-
ulation density of infective human, respectively; the diffusion coefficients di (i = 1, 2) and the intrinsic
decay rates bi (i = 1, 2) are positive constants. s1(t) and s2(t) (t> 0) are free boundaries, which represent
the boundary fronts of infected area (s1(t), s2(t)) at time t. Since the spread of epidemic discussed here is
mainly due to the growth of bacteria which results from the infective human population, it is reasonable
to assume that the movements of boundary fronts s1(t) and s2(t) are fully driven by the bacteria. We
assume that the front s1(t) expands at a rate proportional to the gradient of bacterial concentration at
x = s1(t), which gives rise to the Stefan condition s′

1(t) = −μ∂u
∂x

(t, s1(t)). Similarly, the right front s2(t)
satisfies s′

2(t) = −μ∂u
∂x

(t, s2(t)).
We assume that the initial functions satisfy⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u0(θ , x) ∈ C1,2([−τ2, 0] × [s1(θ ), s2(θ )]), v0(θ , x) ∈ C1,2([−τ1, 0] × [s1(θ ), s2(θ )]),

u0(θ , x)

{
> 0 for θ ∈ [−τ2, 0], x ∈ (s1(θ ), s2(θ )),

≡ 0 for θ ∈ [−τ2, 0], x �∈ (s1(θ ), s2(θ )),

v0(θ , x)

{
> 0 for θ ∈ [−τ1, 0], x ∈ (s1(θ ), s2(θ )),

≡ 0 for θ ∈ [−τ1, 0], x �∈ (s1(θ ), s2(θ ))

(1.5)

as well as the compatible condition

[s1(θ ), s2(θ )] ⊂ [−s0, s0] for θ ∈ [−max{τ1, τ2}, 0]. (1.6)

The nonlinearities g and h satisfy the following conditions:

(M)

⎧⎪⎨
⎪⎩

h ∈ C2([0, +∞)), g ∈ (C2 ∩ L∞)([0, +∞)),

h(0) = 0 = g(0), and h′(z), g′(z)> 0 for any z ∈ [0, +∞),

h′′(z) � 0, g′′(z)< 0 for all z> 0.

For example, h(v) = av, g(u) = pu
1+qu

(the Holling-II type) with a, p, q> 0. Some special cases of (1.4)
have been investigated recently. More precisely, when d2 = 0, τ1 = 0 and τ2 = 0, [1] established the
spreading-vanishing dichotomy of the partially degenerate free boundary problem, and [40] determined
the spreading speed; when τ1 = 0 and τ2 = 0, [34] determined the long-time dynamical behaviour; when
d2 = 0 and τ1 = 0, similar results have been obtained in [10].

The main subject of this paper is to investigate the long-time behaviour of solution and determine the
asymptotic spreading speed of free boundaries for the model (1.4) under the assumptions (1.5)–(1.6) and
(M). Compared to the partially degenerate case in [1, 10, 40], our model (1.4) in this paper is essentially
a two-dimensional problem which cannot be reduced to a nonlocal single-equation problem by solving
v from the second equation as in [1, 10, 40]. Moreover, there are two arbitrary positive time delays in
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(1.4), but only one time delay was considered in the previous works [10, 28]. These two differences bring
more difficulties to us, especially in establishing the existence of monotone solutions to a delayed semi-
wave problem (see (3.1)), which plays an important role in determining the asymptotic spreading speed.
Indeed, for the models in [10, 28], the authors discussed the distribution of roots of a transcendental
equation, which is the sum of an exponential function and a polynomial of degree two or three, and
constructed a lower solution of the delayed semi-wave problem by complex root with imaginary part
Imλ ∈ (0, π

cτ
). However, we cannot derive a suitable upper bound of Imλ for the transcendental equation

containing a polynomial of degree four in this paper. Thus, the approach in [10, 28] does not work
here. To overcome the difficulty, we first consider the corresponding perturbed semi-wave problem with
small parameter δ (see (3.14)) and establish the existence and uniqueness of monotone solutions by
combining the lower-upper solutions technique and the Schauder fixed point theorem. By taking the
limit δ→ 0, we prove that for any c> 0, the system (1.3) has either a monotone travelling wave with
speed c or a monotone semi-wave with speed c. Since it admits no monotone travelling wave solution
for any c ∈ (0, c∗

τ
), we can get the desired result on the existence of semi-wave solution.

The rest of this paper is organised as follows. In section 2, the well-posedness and long-time behaviour
of the solution are presented. A sharp criteria for spreading and vanishing is also provided. Section 3 is
devoted to the study of spreading speeds of free boundaries when spreading happens.

2. Long-time behaviour of the solutions

In this section, we mainly investigate the spreading and vanishing phenomenon of bacteria. A sharp
criteria for spreading and vanishing is also provided by choosing the spreading capability μ as varying
parameter.

2.1 Preliminaries: well-posedness and comparison principles

We first present the well-posedness and comparison principles of (1.4).

Theorem 2.1. (i) Assume that α ∈ (0, 1) and (u0(θ , x), v0(θ , x), s1(θ ), s2(θ )) satisfies (1.5) and (1.6).
There is a T0 > 0 such that (1.4) admits a unique solution (u, v, s1, s2) with u(t, x), v(t, x) ∈
C(1+α)/2,1+α(DT0 ), s1(t), s2(t) ∈ C1+α/2([0, T0]), where DT0 = {(t, x) ∈R

2 : t ∈ [0, T0], x ∈ [s1(t), s2(t)]}.
(ii) For the solution (u, v, s1, s2) established in (i), there exist positive constants K1, K2 and K3 inde-

pendent of T0 such that the solution satisfies 0< u(t, x) � K1, 0< v(t, x) � K2 and 0<−s′
1(t), s′

2(t) � K3

for 0< t � T0 and s1(t)< x< s2(t).
(iii) The solution (u, v, s1, s2) of (1.4) exists and is unique for all t ∈ (0, +∞).

Proof . (i) We introduce the coordinate transformation (t, x) → (t, y) = (t, y(t, x)) as follows

y = 2x − s1(t) − s2(t)

s2(t) − s1(t)
s0 for t> 0, y = x for − max{τ1, τ2}� t � 0, (2.1)

and define

w(t, y) := u
(

t,
s2(t) − s1(t)

2s0

y + s1(t) + s2(t)

2

)
= u(t, x) for t> 0,

w(θ , y) := u0(θ , y) for − τ2 � θ � 0,

z(t, y) := v
(

t,
s2(t) − s1(t)

2s0

y + s1(t) + s2(t)

2

)
= v(t, x) for t> 0,

z(θ , y) := v0(θ , y) for − τ1 � θ � 0.
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Denote

A = A(s1, s2) = 4s2
0

(s2(t) − s1(t))2
,

B = B(s1, s2, y) = s′
2(t) − s′

1(t)

s2(t) − s1(t)
y + s′

2(t) + s′
1(t)

s2(t) − s1(t)
s0,

h(z(t − τ1, y)) = h(v(t − τ1, x)), g(w(t − τ2, y)) = g(u(t − τ2, x)).

Then, (1.4) can be transformed into a fixed boundary problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w

∂t
= d1A

∂2w

∂y2
+ d1B

∂w

∂y
− b1w + h(z(t − τ1, y)), t> 0, −s0 < y< s0,

∂z

∂t
= d2A

∂2z

∂y2
+ d2B

∂z

∂y
− b2z + g(w(t − τ2, y)), t> 0, −s0 < y< s0,

w(t, y) = z(t, y) = 0, t> 0, y � s0 or y �−s0,

w(θ , y) = u0(θ , y), −τ2 � θ � 0, −s0 � y � s0,

z(θ , y) = v0(θ , y), −τ1 � θ � 0, −s0 � y � s0

(2.2)

and

s′
1(t) = − 2s0μ

s2(t) − s1(t)

∂w

∂y
(t, −s0), s′

2(t) = − 2s0μ

s2(t) − s1(t)

∂w

∂y
(t, s0). (2.3)

Let k1 = −μ∂u0
∂y

(0, −s0) and k2 = −μ∂u0
∂y

(0, s0). For 0< T0 � min{ s0
2+k1+k2

, τ1, τ2}, we define

Ds1
T0

= {s1 ∈ C1([0, T0]) : s1(0) = −s0, s′
1(0) = k1, ‖s′

1 − k1‖C([0,T0]) � 1},
Ds2

T0
= {s2 ∈ C1([0, T0]) : s2(0) = s0, s′

2(0) = k2, ‖s′
2 − k2‖C([0,T0]) � 1}.

Taking any fixed (s1, s2) ∈ Ds1
T0

× Ds2
T0

, we have

|s2(t) − s1(t) − 2s0| = |(s2(t) − s0) − (s1(t) + s0)|
� ‖s′

2‖C([0,T0])T0 + ‖s′
1‖C([0,T0])T0

� (2 + k1 + k2)T0 � s0,

which implies s2(t) − s1(t) � s0. Then, the above coordinate transformation (t, x) → (t, y) is a diffeomor-
phism from [0, T0] × [s1(t), s2(t)] to [0, T0] × [−s0, s0]. Note that the parabolic equations in (2.2) are
linear, since z(t − τ1, y) and w(t − τ2, y) contained in the right-hand sides of equations are given initial
functions when t ∈ [0, T0]. By the Lp theory of parabolic equations and the Sobolev embedding theorem,
we can prove that (2.2) admits a unique (w(t, y), z(t, y)) ∈ [C(1+α)/2,1+α([0, T0] × [−s0, s0])]2.

Denote

ŝ1(t) = −s0 −
∫ t

0

2s0μ

s2(ζ ) − s1(ζ )

∂w

∂y
(ζ , −s0)dζ

and

ŝ2(t) = s0 −
∫ t

0

2s0μ

s2(ζ ) − s1(ζ )

∂w

∂y
(ζ , s0)dζ .

We define an operator L by

L(s1, s2) = (ŝ1, ŝ2).

Similar to the proof of Theorem 2.1 in [15], we can show that for T0 > 0 sufficiently small, L maps
Ds1

T0
× Ds2

T0
into itself and L is a contraction mapping on Ds1

T0
× Ds2

T0
. The contraction mapping theorem

gives that L has a unique fixed point in Ds1
T0

× Ds2
T0

. Then, (2.2) and (2.3) have a unique local classical
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solution (w(t, y), z(t, y), s1(t), s2(t)). We should mention that the local well-posedness can also be estab-
lished similarly as the proof of Theorem 1.1 in [33], where the existence was proved by the Schauder
fixed point theorem.

(ii) We only prove u(t, x) � K1 and v(t, x) � K2, the remaining part can be obtained by similar
arguments as in the proof of Lemma 2.3 in [1].

For any z> 0, by Taylor’s formula and the concavity of h we have

h(z) = h(z) − h(0) = h′(0)z + 1

2
h′′(ξ )z2 � h′(0)z

with some ξ ∈ (0, z). Since g is bounded, we can choose Ki (i = 1, 2) sufficiently large such that
‖g‖L∞

K2

� b2, h′(0)
K2

K1

� b1,

which imply
g(K1)

K2

� b2,
h(K2)

K1

= h(K2)

K2

· K2

K1

� h′(0)
K2

K1

� b1.

We may assume that

u0(θ , x) � K1 for (θ , x) ∈ [−τ2, 0] × [−s0, s0],

v0(θ , x) � K2 for (θ , x) ∈ [−τ1, 0] × [−s0, s0].

Let

(U(t, x), V(t, x)) := (K1 − u(t, x), K2 − v(t, x))e−kt

with some constant k to be determined later, then (U, V) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
= d1

∂2U

∂x2
− (b1 + k)U + e−kt[b1K1 − h(v(t − τ1, x))]

� d1

∂2U

∂x2
− (b1 + k)U + e−kτ1 h′(ξ )V(t − τ1, x), t> 0, s1(t)< x< s2(t),

∂V

∂t
= d2

∂2V

∂x2
− (b2 + k)V + e−kt[b2K2 − g(u(t − τ2, x))]

� d2

∂2V

∂x2
− (b2 + k)V + e−kτ2 g′(η)U(t − τ2, x), t> 0, s1(t)< x< s2(t),

U(t, x) = K1e−kt, t> 0, x � s2(t) or x � s1(t),

V(t, x) = K2e−kt, t> 0, x � s2(t) or x � s1(t),

U(θ , x) � 0, −τ2 � θ � 0, s1(θ ) � x � s2(θ ),

V(θ , x) � 0, −τ1 � θ � 0, s1(θ ) � x � s2(θ ),

(2.4)

where ξ lies between K2 and v(t − τ1, x), η lies between K1 and u(t − τ2, x).
We claim that U(t, x), V(t, x) � 0 in (0, +∞) × (s1(t), s2(t)). Assume by contraction that there exist

some T0 and (t0, x0) ∈ (0, T0] × (s1(t), s2(t)) such that

min{U(t0, x0), V(t0, x0)} = min
(t,x)∈[0,T0]×[s1(t),s2(t)]

min{U(t, x), V(t, x)}< 0.

If U(t0, x0) = min{U(t0, x0), V(t0, x0)}< 0, then U(t0, x0) is the minimum of U(t, x) in [0, T0] ×
[s1(t), s2(t)]. It follows that ∂U

∂t
(t0, x0) � 0 and ∂2U

∂x2 (t0, x0) � 0. On the other hand,

−(b1 + k)U(t0, x0) + e−kτ1 h′(ξ )V(t0 − τ1, x0) �−(b1 + k)U(t0, x0) + e−kτ1 h′(ξ )U(t0, x0)

� (−b1 − k + h′(ξ ))U(t0, x0).
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Choose

k = max
{
‖h′‖L∞([0,max{K2,M2}]), ‖g′‖L∞([0,max{K1,M1}])

}

with

M1 = ‖u‖L∞([−τ2,T0−τ2]×[s1(t),s2(t)]),

M2 = ‖v‖L∞([−τ1,T0−τ1]×[s1(t),s2(t)]).

Thus,

−(b1 + k)U(t0, x0) + e−kτ1 h′(ξ )V(t0 − τ1, x0)> 0,

which contradicts with the first equation in (2.4). If V(t0, x0) = min{U(t0, x0), V(t0, x0)}< 0, we can
similarly prove the claim. This completes the proof of (ii).

(iii) Since u, v and s′
1(t), s′

2(t) are bounded in (0, T0] × (s1(t), s2(t)) by constants independent of T0, the
global solution is guaranteed.

Next, we provide two comparison principles for the free boundary problem (1.4). The first one is used
for comparing the solution (u(t, x), v(t, x), s1(t), s2(t)) with a upper solution (ū(t, x), v̄(t, x), s̄1(t), s̄2(t))
in the spatial domain (s1(t), s2(t)), and the second one is used for comparing (u(t, x), v(t, x), s2(t)) with
(ū(t, x), v̄(t, x), s̄2(t)) in one-side interval (0, s2(t)). The proofs are similar as that of Lemma 2.5 in [1],
here we omit the details. Moreover, we can also obtain the corresponding conclusions for lower solution
by minor modification.

Lemma 2.1. Suppose that T ∈ (0, ∞), s̄1, s̄2 ∈ C([−max{τ1, τ2}, T]) ∩ C1((0, T]), ū0(θ , x) ∈
C1,2([−τ2, 0] × [s̄1(θ ), s̄2(θ )]), v̄0(θ , x) ∈ C1,2([−τ1, 0] × [s̄1(θ ), s̄2(θ )]), ū(t, x), v̄(t, x) ∈ C1,2((0, T] ×
(s̄1(t), s̄2(t))), and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ū

∂t
� d1

∂2ū

∂x2
− b1ū + h(v̄(t − τ1, x)), 0< t � T , s̄1(t)< x< s̄2(t),

∂ v̄

∂t
� d2

∂2v̄

∂x2
− b2v̄ + g(ū(t − τ2, x)), 0< t � T , s̄1(t)< x< s̄2(t),

ū(t, x) = v̄(t, x) = 0, 0< t � T , x � s̄2(t) or x � s̄1(t),

s̄′
2(t) �−μ∂ ū

∂x
(t, s̄2(t)), 0< t � T ,

s̄′
1(t) �−μ∂ ū

∂x
(t, s̄1(t)), 0< t � T ,

ū(θ , x) = ū0(θ , x), −τ2 � θ � 0, s̄1(θ ) � x � s̄2(θ ),

v̄(θ , x) = v̄0(θ , x), −τ1 � θ � 0, s̄1(θ ) � x � s̄2(θ ).

If ū0(θ , x) � u0(θ , x) for (θ , x) ∈ [−τ2, 0] × [s1(θ ), s2(θ )], v̄0(θ , x) � v0(θ , x) for (θ , x) ∈ [−τ1, 0] ×
[s1(θ ), s2(θ )] and [s̄1(θ ), s̄2(θ )] ⊇ [s1(θ ), s2(θ )] for θ ∈ [−max{τ1, τ2}, 0], then we have s̄1(t) � s1(t),
s̄2(t) � s2(t) for t ∈ (0, T] and (ū(t, x), v̄(t, x)) � (u(t, x), v(t, x)) for (t, x) ∈ (0, T] × (s1(t), s2(t)).

Lemma 2.2. Suppose that T ∈ (0, ∞), s̄2 ∈ C([−max{τ1, τ2}, T]) ∩ C1((0, T]), ū0(θ , x) ∈ C1,2([−τ2, 0] ×
[0, s̄2(θ )]), v̄0(θ , x) ∈ C1,2([−τ1, 0] × [0, s̄2(θ )]), ū(t, x), v̄(t, x) ∈ C1,2((0, T] × (0, s̄2(t))), and
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Figure 1. Two curves y = p(x) and y = q(x).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ū

∂t
� d1

∂2ū

∂x2
− b1ū + h(v̄(t − τ1, x)), 0< t � T , 0< x< s̄2(t),

∂ v̄

∂t
� d2

∂2v̄

∂x2
− b2v̄ + g(ū(t − τ2, x)), 0< t � T , 0< x< s̄2(t),

ū(t, x) = v̄(t, x) = 0, 0< t � T , x � s̄2(t),

ū(t, 0) � u(t, 0), v̄(t, 0) � v(t, 0), 0< t � T ,

s̄′
2(t) �−μ∂ ū

∂x
(t, s̄2(t)), 0< t � T ,

ū(θ , x) = ū0(θ , x), −τ2 � θ � 0, 0 � x � s̄2(θ ),

v̄(θ , x) = v̄0(θ , x), −τ1 � θ � 0, 0 � x � s̄2(θ ).

If ū0(θ , x) � u0(θ , x) for (θ , x) ∈ [−τ2, 0] × [0, s2(θ )], v̄0(θ , x) � v0(θ , x) for (θ , x) ∈ [−τ1, 0] × [0, s2(θ )]
and [0, s̄2(θ )] ⊇ [0, s2(θ )] for θ ∈ [−max{τ1, τ2}, 0], then we have s̄2(t) � s2(t) for t ∈ (0, T] and
(ū(t, x), v̄(t, x)) � (u(t, x), v(t, x)) for (t, x) ∈ (0, T] × (0, s2(t)).

2.2 Spreading and vanishing

In this subsection, we investigate the long-time behaviour of solution.
Let

R0 :=
√

h′(0)g′(0)

b1b2

.

We claim that (1.3) admits a unique positive equilibrium for R0 > 1 and has no positive equilibrium for
0<R0 � 1. Indeed, let

p(x) = g
(h(x)

b1

)
and q(x) = b2x,

we conclude that the curves y = p(x) and y = q(x) have at most one intersection point in the interior of
the first quadrant R2

+. Otherwise, the mean value theorem yields that there exists a ξ > 0 such that

p′′(ξ ) = g′′
(h(ξ )

b1

)(h′(ξ )

b1

)2 + g′
(h(ξ )

b1

)h′′(ξ )

b1

= 0,

which contradicts with the condition (M). When R0 > 1, we have p′(0) = h′(0)g′(0)
b1

> b2 = q′(0). Then,
p(x)> q(x) for small x> 0 due to p(0) = q(0) = 0. Moreover, since g ∈ L∞, we know that p(x)< q(x) for
large x> 0. Thus, as showed in Figure 1 the curves y = p(x) and y = q(x) have exactly one intersection
point (x∗, y∗)> (0, 0) for R0 > 1, which implies that ( h(x∗)

b1
, x∗) is the unique positive equilibrium of (1.3).

For 0<R0 � 1, we have p′(0) � q′(0), then the claim can be easily proved by the concavity of p(x).
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Theorem 2.2. If 0<R0 � 1, then the solution (u, v, s1, s2) of (1.4) satisfies

lim
t→+∞

(‖u(t, ·)‖C([s1(t),s2(t)]) + ‖v(t, ·)‖C([s1(t),s2(t)])) = 0.

Proof . Let (w1(t), w2(t)) be the unique solution of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w′
1 = −b1w1 + h(w2(t − τ1)), t> 0,

w′
2 = −b2w2 + g(w1(t − τ2)), t> 0,

w1(θ ) = ‖u0‖C([−τ2,0]×[s1(θ),s2(θ)]), θ ∈ [−τ2, 0],

w2(θ ) = ‖v0‖C([−τ1,0]×[s1(θ),s2(θ)]), θ ∈ [−τ1, 0].

(2.5)

From the comparison principle, we know that (u(t, x), v(t, x)) � (w1(t), w2(t)) in [0, +∞) × [s1(t), s2(t)].
Denote C̄ := C([−τ2, 0], R) × C([−τ1, 0], R), then C̄ is a Banach space with the usual norm. For

any given w = (w1, w2) ∈ C̄ defined on [−τ2, σ ) × [−τ1, σ ) with σ > 0, we define wt := (w1
t , w2

t ) ∈ C̄ for
0 � t<σ , where w1

t (θ ) = w1(t + θ ) for θ ∈ [−τ2, 0] and w2
t (θ ) = w2(t + θ ) for θ ∈ [−τ1, 0]. Let

C̄+ =
{

(ϕ1, ϕ2) ∈ C̄;ϕ1(θ ) � 0 on [−τ2, 0], ϕ2(θ ) � 0 on [−τ1, 0]
}

and define f : C̄+ −→R
2 by

f (ϕ1, ϕ2) = (f1(ϕ1, ϕ2), f2(ϕ1, ϕ2))

=
(
−b1ϕ1(0) + h(ϕ2(−τ1)), −b2ϕ2(0) + g(ϕ1(−τ2))

)
,

then the equations in (2.5) can be rewritten as

w′(t) = f (wt). (2.6)

For any (y1, y2) ∈R
2, we write (ŷ1, ŷ2) for the element of C̄ satisfying ŷ1(θ ) ≡ y1 for θ ∈ [−τ2, 0]

and ŷ2(θ ) ≡ y2 for θ ∈ [−τ1, 0], and define f̂ : R2
+ →R

2 by f̂ (y1, y2) = f (ŷ1, ŷ2). Since f (0̂, 0̂) = (0, 0)
and df (0̂, 0̂)(ϕ1, ϕ2) = (−b1ϕ1(0) + h′(0)ϕ2(−τ1), −b2ϕ2(0) + g′(0)ϕ1(−τ2)) for any (ϕ1, ϕ2) ∈ C̄, we can
check that df (0̂, 0̂) satisfies the condition (R) in [42].

Note that

f̂ (y1, y2) = f (ŷ1, ŷ2) =
(
−b1y1 + h(y2), −b2y2 + g(y1)

)
and the Fréchet derivative is

Df̂ (y1, y2) =
⎛
⎝ −b1 h′(y2)

g′(y1) −b2

⎞
⎠ , Df̂ (0, 0) =

⎛
⎝ −b1 h′(0)

g′(0) −b2

⎞
⎠ . (2.7)

From 0<R0 � 1, we know that the stability modulus

s(Df̂ (0, 0)) = max
{
Re λ; det (λI − Df̂ (0, 0)) = 0

}
� 0.

Moreover, since h′′(z) � 0, g′′(z)< 0 for all z> 0, we have
h(λy2)

λy2

= h(λy2) − h(0)

λy2

� h(y2) − h(0)

y2

= h(y2)

y2

and
g(λy1)

λy1

= g(λy1) − g(0)

λy1

>
g(y1) − g(0)

y1

= g(y1)

y1

for y1, y2 > 0 and λ ∈ (0, 1). It follows that f̂ : R2
+ →R

2 is strictly subhomogeneous. Similarly, we
can check that f : C̄+ →R

2 is subhomogeneous. From Theorem 3.2 in [42], we know that (0, 0) is
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globally asymptotically stable for (2.6) with respect to C̄+. That is, the solution (w1, w2) of (2.5) satisfies
limt→+∞ (w1(t), w2(t)) = (0, 0), which implies limt→+∞ (‖u(t, ·)‖C([s1(t),s2(t)]) + ‖v(t, ·)‖C([s1(t),s2(t)])) = 0. This
completes the proof.

Due to Theorem 2.1, there exist s1,∞, s2,∞ ∈ (0, +∞] such that limt→+∞ s1(t) = s1,∞ and
limt→+∞ s2(t) = s2,∞. We call that the bacteria are spreading if s2,∞ − s1,∞ = +∞ and
lim supt→+∞ (‖u(t, ·)‖C([s1(t),s2(t)]) + ‖v(t, ·)‖C([s1(t),s2(t)]))> 0; the bacteria are vanishing if s2,∞ − s1,∞ <+∞
and limt→+∞ (‖u(t, ·)‖C([s1(t),s2(t)]) + ‖v(t, ·)‖C([s1(t),s2(t)])) = 0.

Next, we discuss the spreading and vanishing of bacteria for R0 > 1. For epidemic models governed
by differential equations, the threshold dynamics of bacteria or virus are usually established in terms
of the basic reproduction number R0. However, for (1.4), the infected area is changing with time t, and
therefore, the basic reproduction number is not a constant and should be a function of t. As in [24], we
introduce the spatial-temporal risk index, which is expressed by

RF
0 (s1(t), s2(t)) =

√
h′(0)g′(0)

[d1( π

s2(t)−s1(t)
)2 + b1][d2( π

s2(t)−s1(t)
)2 + b2]

.

According to Lemma 4.1 in [24], there exist λ1 and κ > 0 such that sign(1 −RF
0 (s1(t), s2(t))) = signλ1

and (φ,ψ) := (κψ∗,ψ∗) solves the following problem

⎧⎪⎨
⎪⎩

−d1φxx = h′(0)ψ − b1φ + λ1φ, x ∈ (s1(t), s2(t)),

−d2ψxx = g′(0)φ − b2ψ + λ1ψ , x ∈ (s1(t), s2(t)),

(φ(x),ψ(x)) = (0, 0), x = s1(t) or x = s2(t),

(2.8)

where ψ∗ is the principal eigenfunction of −� in (s1(t), s2(t)) with null Dirichlet boundary condition. It
is easy to check thatRF

0 (s1(t), s2(t)) is increasing in t and satisfiesRF
0 (s1(t), s2(t)) →R0 as s2(t) − s1(t) →

+∞.

Theorem 2.3. (i) If s2,∞ − s1,∞ <+∞, then s0 < s2,∞, −s1,∞ <+∞.
(ii) If s2,∞ − s1,∞ = +∞, then s2,∞ = −s1,∞ = +∞.
(iii) If s2,∞ − s1,∞ <+∞, then limt→+∞ (‖u(t, ·)‖C([s1(t),s2(t)]) + ‖v(t, ·)‖C([s1(t),s2(t)])) = 0.
(iv) Assume that R0 > 1. If s2,∞ − s1,∞ = +∞, then limt→+∞ (u(t, x), v(t, x)) = (u∗, v∗) locally uni-

formly for x ∈R, where (u∗, v∗) is the unique positive equilibrium of (1.3).

Proof . Similar as the proof of Lemma 3.1 in [1], we can show that −2s0 < s1(t) + s2(t)< 2s0 for t � 0,
which implies (i) and (ii).

For (iii), we only prove limt→+∞ ‖u(t, ·)‖C([s1(t),s2(t)]) = 0, since the result for v can be obtained similarly.
Let w(t, y) and z(t, y) be the functions transformed from u(t, x) and v(t, x) by (2.1). Then, it is sufficient
to show limt→+∞ ‖w(t, ·)‖C([−s0,s0]) = 0. We assume by contradiction that

lim sup
t→+∞

‖w(t, ·)‖C([−s0,s0]) = δ > 0.

It follows that there exists a sequence {(tk, yk)}∞
k=1 in (0, +∞) × (−s0, s0) such that tk → +∞ as k → ∞

and w(tk, yk) � δ

2
for all k ∈N. Since {yk}∞

k=1 is bounded, we may assume that yk → y0 as k → ∞. Similar
as the proof of Lemma 3.2 in [1], we can obtain y0 �= ±s0.

Denote wk(t, y) = w(t + tk, y) and zk(t, y) = z(t + tk, y) for any (t, y) ∈ (t0 − tk, +∞) × [−s0, s0]. Note
that s′

1(t), s′
2(t) → 0 as t → +∞. It follows from Theorem 2.1 and the parabolic regularity theory that

{(wk, zk)} has a subsequence, denoted by itself, such that (wk, zk) → (w̃, z̃) in C1,2
loc(R× [−s0, s0]) as k →

∞ and (w̃, z̃) satisfies

https://doi.org/10.1017/S0956792523000220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000220


European Journal of Applied Mathematics 1143

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w̃

∂t
= d1Ã

∂2w̃

∂y2
− b1w̃ + h(z̃(t − τ1, y)), −∞< t<+∞, −s0 < y< s0,

∂ z̃

∂t
= d2Ã

∂2z̃

∂y2
− b2z̃ + g(w̃(t − τ2, y)), −∞< t<+∞, −s0 < y< s0,

w̃(t, y) = z̃(t, y) = 0, −∞< t<+∞, y � s0 or y �−s0,

w̃(t, y) � 0, z̃(t, y) � 0, −∞< t<+∞, −s0 < y< s0,

(2.9)

where Ã = 4s2
0

(s2,∞−s1,∞)2 . Since wk(0, yk) = w(tk, yk) � δ

2
, we have w̃(0, y0) � δ

2
. By the strong maximum prin-

ciple, we can deduce that w̃(t, y)> 0 for (t, y) ∈R× (−s0, s0). Applying the Hopf boundary lemma, we
have ∂w̃

∂y
(t, s0)< 0.

On the other hand, by the Stefan condition s′
2(tk) = −μ∂u

∂x
(tk, s2(tk)) and the fact that s′

2(t) → 0 as
t → +∞, we have ∂u

∂x
(tk, s2(tk)) → 0 as k → ∞. Note that ∂u

∂x
(tk, s2(tk)) = √

A ∂wk
∂y

(0, s0) →
√

Ã ∂w̃
∂y

(0, s0). It
follows that ∂w̃

∂y
(0, s0) = 0, which is a contradiction. Thus, (iii) holds true.

Next, we prove (iv). Since R0 > 1, we have

s(Df̂ (0, 0)) = max{Re λ; det (λI − Df̂ (0, 0)) = 0}> 0,

where Df̂ (0, 0) is defined in (2.7). By Theorem 3.2 in [42], we can deduce that the solution of (2.5)
satisfies

lim
t→+∞

(w1(t), w2(t)) = (u∗, v∗). (2.10)

Moreover, by the comparison principle, we know that

u(t, x) � w1(t) for (t, x) ∈ [−τ2, +∞) × [s1(t), s2(t)],

v(t, x) � w2(t) for (t, x) ∈ [−τ1, +∞) × [s1(t), s2(t)].
(2.11)

Hence,

lim sup
t→+∞

(u(t, x), v(t, x)) � (u∗, v∗)

uniformly for x ∈ [s1(t), s2(t)].
Next, we prove

lim inf
t→+∞

(u(t, x), v(t, x)) � (u∗, v∗)

uniformly in any compact subset of R.
Since R0 > 1, we can choose a sufficiently large L0 > 0 such that RF

0 (−L0, L0)> 1. Then, there exist
λ1 < 0 and κ > 0 such that (φ,ψ) := (κψ∗,ψ∗) solves the problem (2.8) with (s1(t), s2(t)) replaced by
(−L0, L0), where ψ∗ is the principal eigenfunction of −� in (−L0, L0) with null Dirichlet boundary
condition. Due to s2,∞ − s1,∞ = +∞, we have s2,∞ = −s1,∞ = +∞ by (ii). Thus, for any L � L0, there
exists tL > 0 such that s2(t) � L and s1(t) �−L for all t> tL.

Let U(t, x) = δκψ∗(x) and V(t, x) = δψ∗(x). We can choose a sufficiently small δ > 0 such that (U, V)
satisfies ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
� d1

∂2U

∂x2
− b1U + h(V(t − τ1, x)), t> tL0 , −L0 < x< L0,

∂V

∂t
� d2

∂2V

∂x2
− b2V + g(U(t − τ2, x)), t> tL0 , −L0 < x< L0,

U(t, x) = V(t, x) = 0, t> tL0 , x = ±L0,

U(θ , x) � u(θ , x), θ ∈ [tL0 − τ2, tL0 ], x ∈ [−L0, L0],

V(θ , x) � v(θ , x), θ ∈ [tL0 − τ1, tL0 ], x ∈ [−L0, L0].
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For any L � L0, we extend (U, V) by defining (U(t, x), V(t, x)) = (0, 0) for (t, x) ∈R× ([−L, L] \ [−
L0, L0]). Consider the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d1

∂2u

∂x2
− b1u + h(v(t − τ1, x)), t> tL, −L< x< L,

∂v

∂t
= d2

∂2v

∂x2
− b2v + g(u(t − τ2, x)), t> tL, −L< x< L,

u(t, x) = v(t, x) = 0, t> tL, x = ±L,

u(θ , x) = U(θ , x) = δκψ∗(x), θ ∈ [tL − τ2, tL], x ∈ [−L, L],

v(θ , x) = V(θ , x) = δψ∗(x), θ ∈ [tL − τ1, tL], x ∈ [−L, L].

(2.12)

By the comparison principle, we have

u(t, x) � u(t, x) for (t, x) ∈ [tL − τ2, +∞) × [−L, L],

v(t, x) � v(t, x) for (t, x) ∈ [tL − τ1, +∞) × [−L, L].

Moreover, since (U(t, x), V(t, x)) is a lower solution of (2.12), the solution of (2.12) is increasing in t for
x ∈ [−L, L]. Thus, (u(t, x), v(t, x)) → (uL, vL) in C2([−L, L]) as t → +∞, where (uL, vL) solves⎧⎪⎨

⎪⎩
−d1uL

xx = −b1uL + h(vL(x)), −L< x< L,

−d2vL
xx = −b2vL + g(uL(x)), −L< x< L,

uL( ± L) = vL( ± L) = 0.

Note that (uL, vL) is increasing in L. By classical elliptic regularity theory and a diagonal procedure, we
obtain that as L → +∞, (uL, vL) converges to (u∞, v∞) in [C2

loc(R)]2, and (u∞, v∞) solves{−d1u∞
xx = −b1u∞ + h(v∞(x)), −∞< x<+∞,

−d2v∞
xx = −b2v∞ + g(u∞(x)), −∞< x<+∞.

(2.13)

Similarly as the proof of Theorem 4.5 in [1] and Lemma 3.5 in [34], we can prove (u∞, v∞) = (u∗, v∗)
and then get the desired result.

Remark 2.1. From Theorem 2.3 (iii) and (iv), we know that the spreading-vanishing dichotomy holds
for R0 > 1, that is, either the bacteria are spreading (s2,∞ − s1,∞ = +∞) or vanishing (s2,∞ − s1,∞ <
+∞).

Next, we exhibit some sufficient conditions to determine whether the bacteria are vanishing or
spreading.

Theorem 2.4. If RF
0 (−s0, s0)< 1 and μ> 0 is sufficiently small, then s2,∞ − s1,∞ <+∞.

Proof . Since RF
0 (−s0, s0)< 1, we know that there exist λ1 > 0 and κ > 0 such that (φ,ψ) := (κψ∗,ψ∗)

satisfies the problem (2.8) with (s1(t), s2(t)) replaced by (−s0, s0), whereψ∗ is the principal eigenfunction
of −� in (−s0, s0) with null Dirichlet boundary condition. Moreover, we have ψ∗(x)> 0 in (−s0, s0),
(ψ∗)′(x)< 0 in (0, s0] and (ψ∗)′(x)> 0 in [−s0, 0). Since λ1 > 0, there exists a small δ > 0 such that

−δκ + 1

(1 + δ)2
(h′(0) − b1κ + λ1κ) + b1κ − h′(0)eδτ1 � 0 (2.14)

and

−δ + 1

(1 + δ)2
(κg′(0) − b2 + λ1) + b2 − κg′(0)eδτ2 � 0. (2.15)
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Define

σ (t) =

⎧⎪⎪⎨
⎪⎪⎩

s0

(
1 + δ − δ

2
e−δt

)
, t ∈ [0, +∞),

s0

(
1 + δ

2

)
, t ∈ [−max{τ1, τ2}, 0],

ū(t, x) =

⎧⎪⎪⎨
⎪⎪⎩
κCe−δtψ∗

(
xs0

σ (t)

)
, (t, x) ∈ [0, +∞) × [−σ (t), σ (t)],

κCψ∗
(

2x

2 + δ

)
, (t, x) ∈ [−τ2, 0] × [−σ (t), σ (t)],

v̄(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

Ce−δtψ∗
(

xs0

σ (t)

)
, (t, x) ∈ [0, +∞) × [−σ (t), σ (t)],

Cψ∗
(

2x

2 + δ

)
, (t, x) ∈ [−τ1, 0] × [−σ (t), σ (t)].

For (t, x) ∈ (0, +∞) × (−σ (t), σ (t)), we can deduce
∂ ū

∂t
− d1

∂2ū

∂x2
+ b1ū − h(v̄(t − τ1, x))

= −δū − κCe−δt xs0σ
′(t)

σ 2(t)
(ψ∗)′

( xs0

σ (t)

)
− d1κCe−δt s2

0

σ 2(t)
(ψ∗)′′

( xs0

σ (t)

)
+ b1ū − h(v̄(t − τ1, x))

�−δū − κCe−δt xs0σ
′(t)

σ 2(t)
(ψ∗)′

( xs0

σ (t)

)
+ Ce−δt s2

0

σ 2(t)
(h′(0) − b1κ + λ1κ)ψ∗

( xs0

σ (t)

)
+ b1ū

−h′(0)v̄(t − τ1, x)

= −κCe−δt xs0σ
′(t)

σ 2(t)
(ψ∗)′

( xs0

σ (t)

)

+
[
−δκ + s2

0

σ 2(t)
(h′(0) − b1κ + λ1κ) + b1κ − h′(0)

v̄(t − τ1, x)

v̄(t, x)

]
v̄(t, x).

Case 1. If (t, x) ∈ [τ1, +∞) × (−σ (t), σ (t)), then

v̄(t − τ1, x)

v̄(t, x)
= eδτ1

ψ∗
(

xs0
σ (t−τ1)

)
ψ∗

(
xs0
σ (t)

) .

When x ∈ [0, σ (t)), we have xs0
σ (t−τ1)

> xs0
σ (t)
> 0. Since (ψ∗)′(x)< 0 in (0, s0], we have

ψ∗
(

xs0
σ (t−τ1)

)
ψ∗

(
xs0
σ (t)

) � 1, −κCe−δt xs0σ
′(t)

σ 2(t)
(ψ∗)′

( xs0

σ (t)

)
� 0.

When x ∈ (−σ (t), 0], we can get the same inequalities by the fact (ψ∗)′(x)> 0. Consequently,
∂ ū

∂t
− d1

∂2ū

∂x2
+ b1ū − h(v̄(t − τ1, x))

�
[
−δκ + s2

0

σ 2(t)
(h′(0) − b1κ + λ1κ) + b1κ − h′(0)eδτ1

]
v̄(t, x)

�
[
−δκ + 1

(1 + δ)2
(h′(0) − b1κ + λ1κ) + b1κ − h′(0)eδτ1

]
v̄(t, x)

� 0, (2.16)

where the last inequality uses (2.14).
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Case 2. If (t, x) ∈ (0, τ1) × (−σ (t), σ (t)), by using similar arguments as above, we can deduce

v̄(t − τ1, x)

v̄(t, x)
= eδτ1

ψ∗
(

2x
2+δ

)
ψ∗

(
xs0
σ (t)

) � eδτ1 , −κCe−δt xs0σ
′(t)

σ 2(t)
(ψ∗)′

( xs0

σ (t)

)
� 0,

which implies that (2.16) also holds.
Similarly, by (2.15), we have

∂ v̄

∂t
− d2

∂2v̄

∂x2
+ b2v̄ − g(ū(t − τ2, x)) � 0 for (t, x) ∈ (0, +∞) × (−σ (t), σ (t)).

Besides, choose C large enough such that

ū0(θ , x) = κCψ∗
( 2x

2 + δ

)
� κCψ∗

( 2s0

2 + δ

)
� ‖u0‖L∞([−τ2,0]×[s1(θ),s2(θ)]) � u0(θ , x)

for (θ , x) ∈ [−τ2, 0] × [s1(θ ), s2(θ )] and

v̄0(θ , x) = Cψ∗
( 2x

2 + δ

)
� Cψ∗

( 2s0

2 + δ

)
� ‖v0‖L∞([−τ1,0]×[s1(θ),s2(θ)]) � v0(θ , x)

for (θ , x) ∈ [−τ1, 0] × [s1(θ ), s2(θ )]. Then, take μ> 0 sufficiently small such that

σ ′(t) = s0

δ2

2
e−δt �−μūx(t, σ (t)), −σ ′(t) = −s0

δ2

2
e−δt �−μūx(t, −σ (t)) for t> 0.

Since

[−σ (θ ), σ (θ )] =
[
−s0(1 + δ

2
), s0(1 + δ

2
)
]
⊇ [−s0, s0] ⊇ [s1(θ ), s2(θ )]

for θ ∈ [−max{τ1, τ2}, 0], we can apply Lemma 2.1 to conclude that s1(t) �−σ (t) and s2(t) � σ (t) for
t> 0. Thus, s2,∞ − s1,∞ � s0(2 + 2δ), which completes the proof.

Theorem 2.5. If RF
0 (−s0, s0) � 1, then s2,∞ − s1,∞ = +∞.

Proof . Since RF
0 (s1(t0), s2(t0))>RF

0 (−s0, s0) � 1 holds for any t0 > 0, we can choose t0 as initial time
when RF

0 (−s0, s0) = 1, so it is sufficient to consider the case RF
0 (−s0, s0)> 1. In such case, we know that

there exist λ1 < 0 and κ > 0 such that (φ,ψ) := (κψ∗,ψ∗) satisfies the problem (2.8) with (s1(t), s2(t))
replaced by (−s0, s0), where ψ∗ is the principal eigenfunction of −� in (−s0, s0) with null Dirichlet
boundary condition.

Let ε > 0 be a sufficiently small constant and define

u(t, x) = εκψ∗(x), v(t, x) = εψ∗(x) for (t, x) ∈ [ max{τ1, τ2}, +∞) × [−s0, s0].

By direct calculations, we have

∂u

∂t
− d1

∂2u

∂x2
− h(v(t − τ1, x)) + b1u = εψ∗(x)(h′(0) + λ1κ) − h(εψ∗(x))

= εψ∗(x)(h′(0) + λ1κ) − εψ∗(x)h′(ξ1(x))

and

∂v

∂t
− d2

∂2v

∂x2
− g(u(t − τ2, x)) + b2v = εψ∗(x)(g′(0)κ + λ1) − g(εκψ∗(x))

= εψ∗(x)(g′(0)κ + λ1) − εκψ∗(x)g′(ξ2(x)),
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where ξ1(x) ∈ (0, εψ∗(x)) and ξ2(x) ∈ (0, εκψ∗(x)). We may choose ε sufficiently small such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− d1

∂2u

∂x2
− h(v(t − τ1, x)) + b1u � 0, t>max{τ1, τ2}, −s0 < x< s0,

∂v

∂t
− d2

∂2v

∂x2
− g(u(t − τ2, x)) + b2v � 0, t>max{τ1, τ2}, −s0 < x< s0,

u(θ , x) � u(θ , x), max{τ1, τ2} − τ2 � θ � max{τ1, τ2}, −s0 � x � s0,

v(θ , x) � v(θ , x), max{τ1, τ2} − τ1 � θ � max{τ1, τ2}, −s0 � x � s0.

Moreover, it is easy to check that
u(t, x) = v(t, x) = 0, t � max{τ1, τ2}, x � s0 or x �−s0,

0 = s′
0 �−μ∂u

∂x
(t, s0), t>max{τ1, τ2},

0 = −s′
0 �−μ∂u

∂x
(t, −s0), t>max{τ1, τ2},

[−s0, s0] ⊆ [s1(θ ), s2(θ )], t>max{τ1, τ2}.
It follows from the comparison principle that (u(t, x), v(t, x)) � (u(t, x), v(t, x)) for (t, x) ∈
[ max{τ1, τ2}, +∞) × [−s0, s0], thus

lim inf
t→∞

(‖u(t, ·)‖C([s1(t),s2(t)]) + ‖v(t, ·)‖C([s1(t),s2(t)])) � ε(κ + 1)ψ∗(0)> 0.

By Theorem 2.3 (iii), we have s2,∞ − s1,∞ = +∞.

Theorem 2.6. If RF
0 (−s0, s0)< 1<R0 and μ> 0 is sufficiently large, then s2,∞ − s1,∞ = +∞.

Proof . Since RF
0 (−L, L) →R0 > 1 as L → +∞, there exits L0 > 0 such that RF

0 (−L0, L0)> 1. Note that

∂u

∂t
− d1

∂2u

∂x2
�−b1u for (t, x) ∈ (0, +∞) × (s1(t), s2(t)).

It follows from Lemma 4.3 in [30] that there exists μL0 > 0 such that for any μ>μL0 , the corresponding
solution (u(t, x), v(t, x), s1(t), s2(t)) of (1.1) satisfies

lim sup
t→+∞

s1(t)<−L0, lim inf
t→+∞

s2(t)> L0.

Since −s1(t) and s2(t) are strictly increasing in t, there exists T0 > 0 such that s1(T0)<−L0 and s2(T0)>
L0. Hence, RF

0 (s1(T0), s2(T0))>RF
0 (−L0, L0)> 1. By Theorem 2.5, we have s2,∞ − s1,∞ = +∞ for any

μ>μL0 .

By choosing μ as varying parameter, we can obtain the following sharp criteria from Theorems 2.4–
2.6. We shall use the notations uμ, vμ, sμi , sμi,∞ (i = 1, 2) to emphasise the dependence of u, v, si, si,∞ on
μ in the following theorem.

Theorem 2.7. (Sharp criteria) Assume thatR0 > 1. For any given (u0(θ , x), v0(θ , x), s1(θ ), s2(θ )) satisfy-
ing (1.5) and (1.6), there exists μ∗ ∈ [0, +∞) such that s2,∞ − s1,∞ = +∞ for μ>μ∗, and s2,∞ − s1,∞ <
+∞ for 0<μ�μ∗.

Proof . For RF
0 (−s0, s0) � 1, Theorem 2.5 implies μ∗ = 0.

For RF
0 (−s0, s0)< 1<R0, we define

� = {μ> 0 : sμ2,∞ − sμ1,∞ <+∞}
and

μ∗ = sup�.
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By Theorems 2.4 and 2.6, we have � �= ∅ and 0<μ∗ <+∞. It follows that sμ2,∞ − sμ1,∞ = +∞ for
μ>μ∗.

By Lemma 2.1, if μ1 >μ2 and sμ1
2,∞ − sμ1

1,∞ <+∞, then sμ2
2,∞ − sμ2

1,∞ <+∞. Thus, to complete the
proof it is sufficient to show sμ

∗
2,∞ − sμ

∗
1,∞ <+∞. Assume, by contradiction, that sμ

∗
2,∞ − sμ

∗
1,∞ = +∞,

we have limt→+∞ RF
0 (sμ

∗
1 (t), sμ

∗
2 (t)) =R0 > 1. Then, there exists a sufficiently large T∗ > 0 such that

RF
0 (sμ

∗
1 (T∗), sμ

∗
2 (T∗))> 1. By the continuous dependence of (uμ, vμ, sμ1 , sμ2 ) onμ, we can find a sufficiently

small δ > 0 such that RF
0 (sμ1 (T∗), sμ2 (T∗))> 1 for all μ ∈ [μ∗ − δ,μ∗ + δ]. Choosing T∗ as initial time,

similarly as the proof of Theorem 2.5, we can deduce that sμ2,∞ − sμ1,∞ = +∞ for allμ ∈ [μ∗ − δ,μ∗ + δ].
This contradicts with the definition of μ∗.

3. Asymptotic spreading speeds

In this section, we mainly determine the spreading speeds of free boundaries when spreading happens.
To achieve it, we first consider a semi-wave problem with time delays, whose monotone increasing
solutions provide a pair of upper and lower solutions in handling spreading speeds.

3.1 Semi-wave problem with time delays

Consider the following nonlinear semi-wave problem with time delays⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cφ ′(s) − d1φ
′′(s) = h(ψ(s − cτ1)) − b1φ(s), s> 0,

cψ ′(s) − d2ψ
′′(s) = g(φ(s − cτ2)) − b2ψ(s), s> 0,

(φ(s),ψ(s)) = (0, 0), s � 0,

(φ( + ∞),ψ( + ∞)) = (u∗, v∗),

(3.1)

where c> 0 and τ1, τ2 > 0. The condition R0 > 1 is always assumed in this section, which ensures
that (3.1) admits a positive equilibrium (u∗, v∗). In this subsection, we aim to establish the existence,
uniqueness and properties of monotone increasing solutions to (3.1).

For the existence of monotone increasing solutions to (3.1), we first characterise the distribution of
roots of the following transcendental equation containing a polynomial of degree four:

�c(λ, τ ) := pc
1(λ)pc

2(λ) − h′(0)g′(0)e−λcτ = 0 (3.2)

with

pc
1(λ) = d1λ

2 − cλ− b1, pc
2(λ) = d2λ

2 − cλ− b2, τ = τ1 + τ2.

Obviously, for i = 1, 2, pc
i (λ) = 0 has two real roots

λ±
i = c ± √

c2 + 4dibi

2di

.

Denote

λc
m = min{λ+

1 , λ+
2 }, λc

M = max{λ+
1 , λ+

2 }
and define

c∗
0 = inf

{
c0 > 0

∣∣∣ all roots of �c(λ, 0) = 0 are real for c � c0

}
.

Next we establish the distribution of roots of �c(λ, τ ) = 0 according to the value of c in the following
lemma.

Lemma 3.1. Assume that c> 0 and τ1, τ2 > 0. Then, the following conclusions hold:
(i) �c(λ, τ ) = 0 has only one positive root λ̃c

τ
in [λc

m, +∞). Moreover, λ̃c
τ

satisfies λ̃c
τ
> λc

M and
d

dλ
�c(λ, τ )|λ=λ̃c

τ
> 0;
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(ii) there exists c∗
τ
∈ (0, c∗

0) such that
(a) for c> c∗

τ
, �c(λ, τ ) = 0 has exactly two positive roots λ̌c

τ
, λ̂c

τ
in (0, λc

m) and satisfies �c(λ, τ )> 0
for λ ∈ (λ̌c

τ
, λ̂c

τ
);

(b) for 0< c< c∗
τ
, �c(λ, τ ) = 0 has no positive root in (0, λc

m) and satisfies �c(λ, τ )< 0 in (0, λc
m).

In such case, �c(λ, τ ) = 0 admits a pair of conjugate complex roots with one lying in the domain D :=
{λ ∈C : Reλ> 0, Imλ> 0};

(c) for c = c∗
τ
, �c(λ, τ ) = 0 has only one positive root in (0, λc

m).

Proof . (i) For any given c> 0, if λ ∈ [λc
m, λc

M) then we have pc
1(λ)pc

2(λ) � 0. It follows that

�c(λ, τ ) = pc
1(λ)pc

2(λ) − h′(0)g′(0)e−λcτ < 0 for λ ∈ [λc
m, λc

M).

If λ ∈ [λc
M, +∞), then pc

1(λ)pc
2(λ) is strictly increasing in λ, which implies that �c(λ, τ ) = pc

1(λ)pc
2(λ) −

h′(0)g′(0)e−λcτ is also strictly increasing with respect to λ in [λc
M, +∞). Note that

�c(λc
M, τ ) = pc

1(λc
M)pc

2(λc
M) − h′(0)g′(0)e−λc

M cτ = −h′(0)g′(0)e−λc
M cτ < 0

and

�c( + ∞, τ ) = +∞.

Then,�c(λ, τ ) = 0 has only one positive root λ̃c
τ

in [λc
m, +∞) and λ̃c

τ
> λc

M. Moreover, for any fixed c> 0
and τ > 0,

d

dλ
�c(λ, τ )

∣∣∣
λ=λ̃c

τ

= (2d1λ̃
c
τ
− c)

[
d2(λ̃c

τ
)2 − cλ̃c

τ
− b2

]
+ (2d2λ̃

c
τ
− c)

[
d1(λ̃c

τ
)2 − cλ̃c

τ
− b1

]
+ 2cτh′(0)g′(0)e−λ̃c

τ cτ

> 0.

(ii) By the proof of Lemma 2.1 in [38], �c(λ, τ ) = 0 has at most three distinct positive roots in
(0, +∞) for any given c> 0 and τ > 0. Thus, from (i) we know that�c(λ, τ ) = 0 has at most two distinct
positive roots in (0, λc

m). Moreover,

�c

(
1√
c

, τ

)
=

(d1

c
− √

c − b1

)(d2

c
− √

c − b2

)
− h′(0)g′(0)e−√

cτ and lim
c→+∞

�c

(
1√
c

, τ

)
= +∞,

which imply that �c( 1√
c
, τ )> 0 and 0< 1√

c
<λc

m for large c. Note that

�c(0, τ ) = b1b2 − h′(0)g′(0)< 0 and �c(λc
m, τ ) = −h′(0)g′(0)e−λc

mcτ < 0.

Therefore, for all large c,�c(λ, τ ) = 0 has exactly two distinct positive roots in (0, λc
m) and then has three

distinct positive roots in (0, +∞). It follows that the set

S(τ ) :=
{
C> 0

∣∣�c(λ, τ ) has three distinct positive zeros in (0, +∞) for all c � C
}

is not empty. Thus,

c∗
τ

:= inf S(τ ) � 0

is well-defined, and we know that �c(λ, τ ) = 0 has three distinct positive roots in (0, +∞) for c> c∗
τ
.

From (i), we deduce that�c(λ, τ ) = 0 has two distinct positive roots in (0, λc
m) for c> c∗

τ
. We denote by

λ̌c
τ
, λ̂c

τ
the two positive roots and assume λ̌c

τ
< λ̂c

τ
, then�c(λ, τ )> 0 for λ ∈ (λ̌c

τ
, λ̂c

τ
), and�c(λ, τ )< 0 for

λ ∈ (0, λ̌c
τ
) ∪ (λ̂c

τ
, λc

m). This completes the proof of (ii)-(a).
We claim that c∗

τ
> 0. Otherwise, for any sequence {cn} satisfying 0< cn < 1 and limn→∞ cn = 0,

�cn (λ, τ ) = 0 has two distinct positive roots λ̌cn
τ

, λ̂cn
τ

in (0, λcn
m ) and one positive root λ̃cn

τ
in (λcn

M , +∞).
Since

https://doi.org/10.1017/S0956792523000220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000220


1150 Q. Chen et al.

0<λcn
m = min

{cn + √
c2

n + 4d1b1

2d1

,
cn + √

c2
n + 4d2b2

2d2

}

<min
{1 + √

1 + 4d1b1

2d1

,
1 + √

1 + 4d2b2

2d2

}
and λ̃cn

τ
satisfies [

d1(λ̃
cn
τ

)2 − cnλ̃
cn
τ

− b1

][
d2(λ̃cn

τ
)2 − cnλ̃

cn
τ

− b2

]
� h′(0)g′(0),

the above sequences {λ̌cn
τ
}, {λ̂cn

τ
}, {λ̃cn

τ
} are uniformly bounded with respect to n. By extracting con-

vergence subsequences and taking n → ∞, we can deduce (λ̌cn
τ

, λ̂cn
τ

, λ̃cn
τ

) → (λ̌0
τ
, λ̂0

τ
, λ̃0

τ
) with some

λ̌0
τ
, λ̂0

τ
, λ̃0

τ
� 0. Note that for any fixed τ > 0, �cn (λ, τ ) →�0(λ, τ ) in C2

loc(R) as n → ∞. It follows that
λ̌0
τ
, λ̂0

τ
, λ̃0

τ
are nonnegative roots of �0(λ, τ ) = 0. Assume that one of three roots is 0, a contradiction

occurs since �0(0, τ )< 0, and the claim is proved. If all the three roots are positive, then there are two
possible cases: (1) at least two of these three roots are not equal; (2) all three roots are equal. On the
other hand, we can directly check that�0(λ, τ ) = 0 has only one positive real root, denoted by λ0

τ
, and

d

dλ
�0(λ, τ )|λ=λ0

τ
> 0. (3.3)

Thus, the first case cannot happen. Next, we consider the second case. Since λ̌cn
τ

, λ̂cn
τ

are two
roots of �cn (λ, τ ) = 0, by the mean value theorem, there exists a ξn between λ̌cn

τ
and λ̂cn

τ
such that

d
dλ
�cn (λ, τ )|λ=ξn = 0. Since limn→∞ λ̌cn

τ
= limn→∞ λ̂cn

τ
= λ0

τ
, we also have limn→∞ ξn = λ0

τ
. By taking n →

∞ in d
dλ
�cn (λ, τ )|λ=ξn = 0, we get d

dλ
�0(λ, τ )|λ=λ0

τ
= 0, which contradicts with (3.3). Then, the claim

holds true.
Now we prove the first part of (ii)-(b). Assume by contradiction that�c1 (λ, τ ) has at least one positive

root in (0, λc1
m ) for some 0< c1 < c∗

τ
, we will show that

c1 � inf S(τ ) = c∗
τ
, (3.4)

which leads to a contradiction. To prove (3.4), it is sufficient to show that �c2 (λ, τ ) has two distinct
positive roots in (0, λc2

m ) for any c2 > c1. In fact, since λc2
m >λ

c1
m , we know that

pc1
1 (λ), pc1

2 (λ), pc2
1 (λ), pc2

2 (λ)< 0 for λ ∈ (0, λc1
m ).

Note that pc
1(λ), pc

2(λ) are decreasing in c. We conclude that pc
1(λ)pc

2(λ) and then �c(λ, τ ) are increasing
with respect to c for λ ∈ (0, λc1

m ). Denote λ̃1 by one positive root of �c1 (λ, τ ) = 0 in (0, λc1
m ), that is,

�c1 (λ̃1, τ ) = 0. Then,

�c2 (λ̃1, τ )>�c1 (λ̃1, τ ) = 0.

It follows that�c2 (λ, τ ) = 0 has exactly two distinct positive root in (0, λc2
m ) for any c2 > c1. Hence, (3.4)

holds and we can get the desired result. Clearly, �c(λ, τ )< 0 in (0, λc
m) for any 0< c< c∗

τ
.

Based on the above discussions, it is easy to know that �c(λ, τ ) = 0 has only one positive root in
(0, λc

m) for c = c∗
τ
, i.e. (ii)-(c) holds. We claim that c∗

τ
< c∗

0. Indeed, by Lemma 3.3 (iii)–(iv) in [35] and
the fact �c(λ, τ )>�c(λ, 0), we know that �c(λ, τ ) = 0 has three distinct positive roots in (0, +∞) for
all c � c∗

0. Thus, c∗
τ
< c∗

0.
Next, we prove the second part of (ii)-(b). We will prove the result by taking τ as a parameter which

continuously increases from 0 to +∞. Since the range (0, c∗
τ
) of c is dependent on τ , we cannot simply

fix a c as τ varies. However, we find that c∗
τ

is decreasing with respect to τ . In fact, we have showed that
�c(λ, τ )< 0 in (0, λc

m) for 0< c< c∗
τ
. If τ̃ > τ , then we can check that

�c(λ, τ̃ )>�c(λ, τ ).

It follows that �c(λ, τ )<�c(λ, τ̃ ) � 0 in (0, λc
m) for 0< c � c∗

τ̃
, which implies that

c∗
τ̃
< c∗

τ
. (3.5)
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Otherwise, �c(λ, τ )< 0 in (0, λc
m) for c = c∗

τ
, which contradicts with (ii)-(c). Therefore, for any fixed

T > 0, we have c∗
T < c∗

τ
for all τ ∈ (0, T). In what follows, by choosing any fixed c ∈ (0, c∗

T) and varying
τ continuously from 0 to T , we prove the existence of complex roots with positive real parts.

Note that the zeros of �c(λ, τ ) are continuous in τ ∈ (0, T) for fixed c ∈ (0, c∗
T). Define λ= α(τ ) +

iβ(τ ), where α(τ ) and β(τ ) are continuous in τ ∈ (0, T). Separating the real and imaginary parts of
�c(λ, τ ) = 0, we derive

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F1(α, β, τ ) =
[
d1(α2 − β2) − cα − b1

][
d2(α2 − β2) − cα − b2

]
−(2d1αβ − cβ)(2d2αβ − cβ) − h′(0)g′(0)e−cτα cos cτβ = 0,

F2(α, β, τ ) = (2d1αβ − cβ)
[
d2(α2 − β2) − cα − b2

]
+(2d2αβ − cβ)

[
d1(α2 − β2) − cα − b1

]
+ h′(0)g′(0)e−cτα sin cτβ = 0.

(3.6)

We divide the rest of proof into four steps.

Step 1. There is a complex root in D provided that τ is small enough.
For τ = 0,�c(λ, 0) = pc

1(λ)pc
2(λ) − h′(0)g′(0), then it follows from Lemma 3.3 in [35] that�c(λ, 0) =

0 has a pair of conjugate complex roots for c ∈ (0, c∗
T) ⊂ (0, c∗

0). We denote one of the complex roots in
D by λ= α + iβ. By direct calculations,

det

⎛
⎝ ∂αF1 ∂βF1

∂αF2 ∂βF2

⎞
⎠ ∣∣∣

τ=0

=
{

(2d1α − c)
[
d2(α2 − β2) − cα − b2

]
+ (2d2α− c)

[
d1(α2 − β2) − cα − b1

]
− 2d1β

2(2d2α− c) − 2d2β
2(2d1α− c)

}2

+
{

2d1β
[
d2(α2 − β2) − cα − b2

]
+ 2d2β

[
d1(α2 − β2) − cα − b1

]
+ (2d1αβ − cβ)(2d2α − c) + (2d2αβ − cβ)(2d1α − c)

}2

� 0.

Since τ = 0, λ= α+ iβ satisfies (3.6), it follows from the second equation of (3.6) that

(2d1α − c)
[
d2(α2 − β2) − cα − b2

]
+ (2d2α− c)

[
d1(α2 − β2) − cα − b1

]
= 0.

Thus,

det

⎛
⎝ ∂αF1 ∂βF1

∂αF2 ∂βF2

⎞
⎠ ∣∣∣

τ=0

= 4β4
[
d1(2d2α− c) + d2(2d1α − c)

]2 + 4β2
{

d1

[
d2(α2 − β2) − cα − b2

]
+d2

[
d1(α2 − β2) − cα − b1

]
+ (2d1α− c)(2d2α− c)

}2

� 0,

where the equality holds if and only if
⎧⎨
⎩

d1(2d2α− c) + d2(2d1α − c) = 0,

d1

[
d2(α2 − β2) − cα − b2

]
+ d2

[
d1(α2 − β2) − cα − b1

]
+ (2d1α − c)(2d2α− c) = 0.

(3.7)
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In view of the first equation of (3.7), we have α = cd1+cd2
4d1d2

> 0. Substituting this α into the second equation
of (3.7) gives

6d1d2α
2 + d1(−d2β

2 − b2) + d2(−d1β
2 − b1) − 3cd1α − 3cd2α

= 3

2
α(cd1 + cd2) + d1(−d2β

2 − b2) + d2(−d1β
2 − b1) − 3cd1α − 3cd2α

= −3

2
cd1α − 3

2
cd2α+ d1(−d2β

2 − b2) + d2(−d1β
2 − b1) = 0,

which is not solvable for β. Therefore, we get

det

⎛
⎝ ∂αF1 ∂βF1

∂αF2 ∂βF2

⎞
⎠ ∣∣∣

τ=0
> 0.

Then, the implicit function theorem indicates that, for small τ > 0, �c(λ, τ ) = 0 with c ∈ (0, c∗
T) admits

a pair of complex solutions near α+ iβ, and thus in the open domain D.

Step 2. If λ= α(τ ) + iβ(τ ) touches the pure imaginary axis at some τ = τ0 ∈ (0, T), i.e. α(τ0) = 0,
then α′(τ0)> 0. Moreover, β0 := β(τ0)> 0.

Since α(τ0) and β(τ0) satisfy (3.6), we get{
(d1β

2
0 + b1)(d2β

2
0 + b2) − c2β2

0 − h′(0)g′(0) cos cτ0β0 = 0,

cβ0(d2β
2
0 + b2) + cβ0(d1β

2
0 + b1) + h′(0)g′(0) sin cτ0β0 = 0.

(3.8)

Besides,

det

⎛
⎝ ∂αF1 ∂βF1

∂αF2 ∂βF2

⎞
⎠ ∣∣∣

τ=τ0

=
{

c(d2β
2
0 + b2) + c(d1β

2
0 + b1) + 2d1cβ2

0 + 2d2cβ2
0 + 2cτh′(0)g′(0) cos cτ0β0

}2

+
{

2d1β0(d2β
2
0 + b2) + 2d2β0(d1β

2
0 + b1) − 2c2β0 + 2cτh′(0)g′(0) sin cτ0β0

}2

� 0,

where the equality holds if and only if{
3d1β

2
0 + 3d2β

2
0 + b1 + b2 + 2cτh′(0)g′(0) cos cτ0β0 = 0,

2d1β
2
0 (d2β

2
0 + b2) + 2d2β

2
0 (d1β

2
0 + b1) − 2c2β2

0 + 2cβτh′(0)g′(0) sin cτ0β0 = 0.
(3.9)

Substituting (3.8) into (3.9), we give{
3d1β

2
0 + 3d2β

2
0 + b1 + b2 − 2τc2β2

0 + 2τ (d1β
2
0 + b1)(d2β

2
0 + b2) = 0,

2d1β
2
0 (d2β

2
0 + b2) + 2d2β

2
0 (d1β

2
0 + b1) − 2c2β2

0 − 2τc2β2
0 (d1β

2
0 + d2β

2
0 + b1 + b2) = 0.

(3.10)

Multiplying the first equation in (3.10) by d1β
2
0 + d2β

2
0 + b1 + b2, and then subtracting it from the second

equation in (3.10), we get

2d1d2β
4
0 + 3d2

2β
4
0 + 3d2

1β
4
0 + d2b1β

2
0 + d1b2β

2
0 + 3d2

1β
2
0 + 3d2

2β
2
0 + 2c2β2

0 + b1d1β
2
0

+b2d2β
2
0 + (b1 + b2)2 + 2τ (d1β

2
0 + b1)(d2β

2
0 + b2)(d1β

2
0 + d2β

2
0 + b1 + b2) = 0,

which is not solvable for β0 > 0. Thus,

det

⎛
⎝ ∂αF1 ∂βF1

∂αF2 ∂βF2

⎞
⎠ ∣∣∣

τ=τ0
> 0.
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Moreover, ⎛
⎝ ∂τF1

∂τF2

⎞
⎠ ∣∣∣

τ=τ0
= 2h′(0)g′(0)cβ0

⎛
⎝ sin cτ0β0

cos cτ0β0

⎞
⎠ .

Consequently, the implicit function theorem indicates that⎛
⎝α′(τ )

β ′(τ )

⎞
⎠ ∣∣∣

τ=τ0
= −

⎛
⎝ ∂αF1 ∂βF1

∂αF2 ∂βF2

⎞
⎠

−1 ∣∣∣
τ=τ0

⎛
⎝ ∂τF1

∂τF2

⎞
⎠ ∣∣∣

τ=τ0
.

Direct computation induces that

α′(τ0) = − (∂βF2∂τF1 − ∂βF1∂τF2)|τ=τ0

det

⎛
⎝ ∂αF1 ∂βF1

∂αF2 ∂βF2

⎞
⎠ ∣∣∣

τ=τ0

.

Besides, by (3.8), we have

(∂βF2∂τF1 − ∂βF1∂τF2)|τ=τ0
=

[
c(d2β

2
0 + b2) + c(d1β

2
0 + b1) + 2d1cβ2

0 + 2d2cβ2
0 + 2cτh′(0)g′(0) cos cτ0β0

]
×

(
2h′(0)g′(0)cβ0 sin cτ0β0

)
+

[
2d1β0(−d2β

2
0 − b2) + 2d2β0(−d1β

2
0 − b1) + 2c2β0 − 2cτh′(0)g′(0)cβ0 sin cτ0β0

]
×

(
2h′(0)g′(0)cβ0 cos cτ0β0

)
=

[
c(d2β

2
0 + b2) + c(d1β

2
0 + b1) + 2d1cβ2

0 + 2d2cβ2
0 + 2cτ (d1β

2
0 + b1)(d2β

2
0 + b2)

− 2τc3β2
0

]
×

[
−2c2β2

0 (d2β
2
0 + b2) − 2c2β2

0 (d1β
2
0 + b1)

]
+

[
2d1β0(−d2β

2
0 − b2) + 2d2β0(−d1β

2
0 − b1) + 2c2β0 + 2τc2β0(d2β

2
0 + b2)

+ 2τc2β0(d1β
2
0 + b1)

]
×

[
2cβ0(d1β

2
0 + b1)(d2β

2
0 + b2) − 2c3β3

0

]
= −2c3β2

0

[
(d2β

2
0 + b2) + (d1β

2
0 + b1) + 2d1β

2
0 + 2d2β

2
0 + 2τ (d1β

2
0 + b1)(d2β

2
0 + b2)

]
×

[
(d2β

2
0 + b2) + (d1β

2
0 + b1)

]
+ 4τc5β4

0

[
(d2β

2
0 + b2) + (d1β

2
0 + b1)

]
− 4cβ2

0

[
d1(d2β

2
0 + b2) + d2(d1β

2
0 + b1)

]
×

[
(d1β

2
0 + b1)(d2β

2
0 + b2)

]
− 4c5β4

0

[
1 + τ (d2β

2
0 + b2) + τ (d1β

2
0 + b1)

]
+ 4c3β4

0

[
d1(d2β

2
0 + b2) + d2(d1β

2
0 + b1)

]
+ 4c3β2

0

[
1 + τ (d2β

2
0 + b2) + τ (d1β

2
0 + b1)

]
×

[
(d1β

2
0 + b1)(d2β

2
0 + b2)

]
= −

[
2c3β2

0 (d2β
2
0 + b2)2 + 2c3β2

0 (d1β
2
0 + b1)2 + 4d2c3β4

0 (d2β
2
0 + b2)

+ 4d1c3β4
0 (d1β

2
0 + b1) + 4d1cβ2

0 (d1β
2
0 + b1)(d2β

2
0 + b2)2

+ 4d2cβ2
0 (d1β

2
0 + b1)2(d2β

2
0 + b2) + 4c5β4

0

]
< 0.

Due to det

⎛
⎝ ∂αF1 ∂βF1

∂αF2 ∂βF2

⎞
⎠ ∣∣∣

τ=τ0
> 0, hence α′(τ0)> 0.

Step 3. As τ varies from 0 to T , the complex root cannot touch the real axis at some τ1 ∈ (0, T) for
c ∈ (0, c∗

T).
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If not, then the complex root changes into λ̃ > 0 at τ = τ1. Since complex roots appear in conjugate
pairs, the multiplicity of λ̃ is larger than two. However, due to �c(λ, τ1)< 0 in (0, λc

m) for c ∈ (0, c∗
T) ⊂

(0, c∗
τ1

), we know that λ̃must satisfies λ̃ ∈ [λc
m, +∞). From (i), λ̃ is a simple root. This is a contradiction.

Step 4. Since T > 0 is arbitrary, by Steps 1–3 we can obtain that as τ continuously increases from 0
to +∞, the complex root cannot escape the first quadrant of the complex plane. Thus, it always stays in
D. This completes the proof of this lemma.

Lemma 3.2. For any c � c∗
τ
, problem (3.1) admits no monotone solution.

Proof . Assume on the contrary that (3.1) has a monotone solution (φ,ψ) for some c � c∗
τ
. Clearly,

(φ(s),ψ(s)) � (u∗, v∗) for s ∈R. From the first equation in (3.1), we have

φ(s) = 1

d1(λ+
1 − λ−

1 )

[ ∫ s

0

(eλ
−
1 (s−ξ ) − eλ

−
1 s−λ+

1 ξ )h(ψ(ξ − cτ1))dξ

+
∫ +∞

s

(eλ
+
1 (s−ξ ) − eλ

−
1 s−λ+

1 ξ )h(ψ(ξ − cτ1))dξ
]

(3.11)

for all s> 0. By direct calculations,

|φ ′(s)| � 1

d1(λ+
1 − λ−

1 )

∣∣∣ ∫ s

0

λ−
1 (eλ

−
1 (s−ξ ) − eλ

−
1 s−λ+

1 ξ )h(ψ(ξ − cτ1))dξ

+
∫ +∞

s

(λ+
1 eλ

+
1 (s−ξ ) − λ−

1 eλ
−
1 s−λ+

1 ξ )h(ψ(ξ − cτ1))dξ
∣∣∣

� h(v∗)

d1(λ+
1 − λ−

1 )
(1 − λ−

1

λ+
1

)eλ
−
1 s � h(v∗)

d1λ
+
1

= :C1

and

|φ ′′(s)| = |cφ ′ − h(ψ(s − cτ1)) + b1φ|
d1

� cC1 + h(v∗) + b1u∗

d1

= :C2.

Similarly, there exist C3 > 0 and C4 > 0 such that |ψ ′(s)|� C3 and |ψ ′′(s)|� C4. Denote the derivatives
of (φ,ψ) by (φ(i),ψ (i)) for i = 1, 2, then∫ ∞

0
φ(i)(s)e−λ0sds<∞,

∫ ∞
0
ψ (i)(s)e−λ0sds<∞, i = 0, 1, 2,∫ ∞

0
ψ(s − cτ1)e−λ0sds<∞,

∫ ∞
0
φ(s − cτ2)e−λ0sds<∞,

for each λ> 0. From Lemma 3.1 (ii),�c(λ, τ ) = 0 has a positive root λ0 ∈ (0, λc
m) for c � c∗

τ
(when c> c∗

τ

we only choose one of positive roots). Next, multiplying the equations in (3.1) by e−λ0s and integrating
from 0 to +∞, we obtain

0< d1φ
′(0) = pc

1(λ0)
∫ +∞

0
φ(s)e−λ0sds + ∫ +∞

0
h(ψ(s − cτ1))e−λ0sds,

0< d2ψ
′(0) = pc

2(λ0)
∫ +∞

0
ψ(s)e−λ0sds + ∫ +∞

0
g(φ(s − cτ2))e−λ0sds.

Since h(z) � h′(0)z and g(z)< g′(0)z for z> 0 by Taylor’s formula and the concavity of h, g, we have

h(ψ(s − cτ1)) � h′(0)ψ(s − cτ1), g(φ(s − cτ2)) � g′(0)φ(s − cτ2),

which imply that

pc
1(λ0)

∫ +∞
0

φ(s)e−λ0sds + h′(0)
∫ +∞

0
ψ(s − cτ1)e−λ0sds> 0,

pc
2(λ0)

∫ +∞
0

ψ(s)e−λ0sds + g′(0)
∫ +∞

0
φ(s − cτ2)e−λ0sds> 0. (3.12)
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Hence,

0 < pc
1(λ0)

∫ +∞

0

φ(s)e−λ0sds + h′(0)
∫ +∞

0

ψ(s − cτ1)e−λ0sds

= pc
1(λ0)eλ0cτ

g′(0)

[
g′(0)e−λ0cτ

∫ +∞

0

φ(s)e−λ0sds + h′(0)g′(0)e−λ0cτ

pc
1(λ0)

∫ +∞

0

ψ(s − cτ1)e−λ0sds
]

= pc
1(λ0)eλ0cτ

g′(0)

[
g′(0)e−λ0cτ1

∫ +∞

cτ2

φ(s′ − cτ2)e−λ0s′ds′ + pc
2(λ0)e

−λ0cτ1

∫ +∞

−cτ1

ψ(s′)e−λ0s′ds′
]

= pc
1(λ0)eλ0cτ2

g′(0)

[
g′(0)

∫ +∞

0

φ(s′ − cτ2)e−λ0s′ds′ + pc
2(λ0)

∫ +∞

0

ψ(s′)e−λ0s′ds′
]
. (3.13)

By (3.12) and (3.13), we have pc
1(λ0)> 0. On the other hand, since λ0 ∈ (0, λc

m), we can deduce that
pc

1(λ0)< 0, which is a contradiction.

Next, we establish the existence of monotone solutions to (3.1) for 0< c< c∗
τ
.

In [10, 28], to get the monotone increasing solutions of semi-wave problems with one time delay τ >
0, lower solutions were constructed by complex roots with imaginary part Imλ ∈ (0, π

cτ
). However, we

cannot derive a suitable upper bound of Imλ for the transcendental equation (3.2) in the above Lemma 3.1
(ii)-b, which together with the influence of two time delays (τ1, τ2) bring some difficulties in constructing
lower solution of (3.1).

To get the monotone increasing solutions of (3.1), we first consider the corresponding perturbed
problem ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cφ ′(s) − d1φ
′′(s) = h(ψ(s − cτ1)) − b1φ(s), s> 0,

cψ ′(s) − d2ψ
′′(s) = g(φ(s − cτ2)) − b2ψ(s), s> 0,

(φ(s),ψ(s)) = (δu∗, δv∗), s � 0,

(φ( + ∞),ψ( + ∞)) = (u∗, v∗),

(3.14)

where δ ∈ (0, 1
2
) is a small parameter, and then get the desired solution of (3.1) by taking δ→ 0. The

idea of approximation is motivated by the works on semi-wave problems with nonlocal diffusion (see
[14]).

In the following, we establish sufficient conditions for the existence of monotone solutions to (3.14)
by employing the lower-upper solutions technique and the Schauder fixed point theorem, which was
proposed in [25].

For a fixed

σ ∈ (0, min
i=1,2

{−λ−
i , λ+

i }),

we introduce the Banach space (Xσ (R, R2), | · |σ ) with

Xσ (R, R2) :=
{
� ∈ C(R, R2); |�|σ := sup

s∈R
|�(s)|e−σ |s| <∞

}
.

For i = 1, 2, we define the mapping

Fi : Xσ (R, R2) → C(R)

�= (φ,ψ) �→ Fi(�)(s)
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by

F1(�)(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δu∗eλ

−
1 s + 1

d1(λ+
1 − λ−

1 )

[ ∫ s

0
(eλ

−
1 (s−ξ ) − eλ

−
1 s−λ+

1 ξ )h(ψ(ξ − cτ1))dξ

+ ∫ +∞
s

(eλ
+
1 (s−ξ ) − eλ

−
1 s−λ+

1 ξ )h(ψ(ξ − cτ1))dξ
]
, s> 0,

δu∗, s � 0

(3.15)

and

F2(�)(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δv∗eλ

−
1 s + 1

d2(λ+
2 − λ−

2 )

[ ∫ s

0
(eλ

−
2 (s−ξ ) − eλ

−
2 s−λ+

2 ξ )g(φ(ξ − cτ2))dξ

+ ∫ +∞
s

(eλ
+
2 (s−ξ ) − eλ

−
2 s−λ+

2 ξ )g(φ(ξ − cτ2))dξ
]
, s> 0,

δv∗, s � 0.

(3.16)

By direct calculations, we see that (F1, F2) is well-defined and satisfies⎧⎪⎨
⎪⎩

c(F1(�))′(s) − d1(F1(�))′′(s) = h(ψ(s − cτ1)) − b1F1(�)(s), s> 0,

c(F2(�))′(s) − d2(F2(�))′′(s) = g(φ(s − cτ2)) − b2F2(�)(s), s> 0,

(F1(�)(s), F2(�)(s)) = (δu∗, δv∗), s � 0.

Clearly, any fixed point of (F1, F2) in Xσ (R, R2) is a solution of (3.14). Moreover, the mapping (F1, F2)
satisfies the following monotonicity properties.

Lemma 3.3. (i) If �1 = (φ1,ψ1), �2 = (φ2,ψ2) ∈Xσ (R, R2) satisfy �1 ��2, then
(F1(�1)(s), F2(�1)(s)) � (F1(�2)(s), F2(�2)(s)) for s ∈R.

(ii) If�= (φ,ψ) ∈Xσ (R, R2) is monotone increasing, then (F1(�)(s), F2(�)(s)) is monotone increas-
ing in s ∈R for all δ ∈ (0, 1).

Proof . Since h, g are strictly increasing functions, we can directly get (i) from (3.15) and (3.16).
Now we prove (ii). It is sufficient to consider the case s> 0. Differentiating (3.15) with respect to s,
we have

(F1(�))′(s) = δλ−
1 u∗eλ

−
1 s + 1

d1(λ+
1 − λ−

1 )

[ ∫ s

0

λ−
1 (eλ

−
1 (s−ξ ) − eλ

−
1 s−λ+

1 ξ )h(ψ(ξ − cτ1))dξ

+
∫ +∞

s

(λ+
1 eλ

+
1 (s−ξ ) − λ−

1 eλ
−
1 s−λ+

1 ξ )h(ψ(ξ − cτ1))dξ
]
.

Since h(ψ(s − cτ1)) is monotone increasing in s ∈R and h(ψ(s − cτ1)) � h(δv∗)> 0, we have

(F1(�))′(s) � δλ−
1 u∗eλ

−
1 s + 1

d1(λ+
1 − λ−

1 )

[ ∫ s

0

λ−
1 eλ

−
1 s(e−λ−

1 ξ − e−λ+
1 ξ )h(ψ(s − cτ1))dξ

+
∫ +∞

s

(λ+
1 eλ

+
1 (s−ξ ) − λ−

1 eλ
−
1 s−λ+

1 ξ )h(ψ(s − cτ1))dξ
]

= δλ−
1 u∗eλ

−
1 s + h(ψ(s − cτ1))

d1(λ+
1 − λ−

1 )

[
λ−

1 eλ
−
1 s

∫ s

0

(e−λ−
1 ξ − e−λ+

1 ξ )dξ

+
∫ +∞

s

(λ+
1 eλ

+
1 (s−ξ ) − λ−

1 eλ
−
1 s−λ+

1 ξ )dξ
]

= δλ−
1 u∗eλ

−
1 s + h(ψ(s − cτ1))

d1λ
+
1

eλ
−
1 s

� δλ−
1 u∗eλ

−
1 s + h(δv∗)

d1λ
+
1

eλ
−
1 s.
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Since δ ∈ (0, 1), we have h(δv∗) � δh(v∗), which together with the fact b1u∗ = h(v∗) imply that

(F1(�))′(s) � δλ−
1 u∗eλ

−
1 s + δ

h(v∗)

d1λ
+
1

eλ
−
1 s = δλ−

1 u∗eλ
−
1 s + δ

b1u∗

d1λ
+
1

eλ
−
1 s

= δu∗eλ
−
1 s(λ−

1 + b1

d1λ
+
1

) = 0.

This completes the proof.

Now we introduce the definition of lower and upper solutions to (3.14). If (φ,ψ) and (φ̄, ψ̄)
are continuous from R into [δu∗, u∗] × [δv∗, v∗], twice continuously differentiable on R+\{ξi}n

i=1, and
satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cφ ′(s) − d1φ
′′(s) � h(ψ(s − cτ1)) − b1φ(s), s> 0, s /∈ {ξi}n

i=1,

cψ ′(s) − d2ψ
′′(s) � g(φ(s − cτ2)) − b2ψ(s), s> 0, s /∈ {ξi}n

i=1,

φ ′
+(ξi) � φ ′

−(ξi), ψ ′
+(ξi) �ψ ′

−(ξi), 1 � i � n,

(φ(s),ψ(s)) = (δu∗, δv∗), s � 0,

(φ( + ∞),ψ( + ∞)) � (u∗, v∗)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cφ̄ ′(s) − d1φ̄
′′(s) � h(ψ̄(s − cτ1)) − b1φ̄(s), s> 0, s /∈ {ξi}n

i=1,

cψ̄ ′(s) − d2ψ̄
′′(s) � g(φ̄(s − cτ2)) − b2ψ̄(s), s> 0, s /∈ {ξi}n

i=1,

φ̄ ′
+(ξi) � φ̄ ′

−(ξi), ψ̄ ′
+(ξi) � ψ̄ ′

−(ξi), 1 � i � n,

(φ̄(s), ψ̄(s)) = (δu∗, δv∗), s � 0,

(φ̄( + ∞), ψ̄( + ∞)) = (u∗, v∗),

then (φ,ψ) and (φ̄, ψ̄) are called a lower solution and an upper solution of (3.14), respectively.
Given a pair of lower and upper solutions (φ,ψ) and (φ̄, ψ̄) satisfying

sup
t�s

(φ(t),ψ(t)) � (φ̄(s), ψ̄(s)), ∀s ∈R,

then the set

� :=
{

(φ,ψ) ∈Xσ (R, R2) : (φ,ψ) � (φ,ψ) � (φ̄, ψ̄) and (φ,ψ) is monotone increasing on R+
}

�= ∅

since (φ(s),ψ(s)) = supt�s (φ(t),ψ(t)) ∈ �. Next, we prove that (F1, F2) maps � into itself and is
completely continuous.

Lemma 3.4. (F1, F2)(�) ⊂ � and (F1, F2) is a continuous compact mapping on �.

Proof . We first prove (F1, F2)(�) ⊂ �. Let �(s) = (φ(s),ψ(s)) and �̄(s) = (φ̄(s), ψ̄(s)). By Lemma 3.3,
it is sufficient to prove that�(s) � (F1(�)(s), F2(�)(s)) � (F1(�̄)(s), F2(�̄)(s)) � �̄(s) for all s ∈R+. Let
ξ0 = 0 and ξm+1 = ∞. Assume that s ∈ (ξi, ξi+1) for some i, then we have
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F1(�)(s) = δu∗eλ
−
1 s + 1

d1(λ+
1 − λ−

1 )

[ ∫ s

0

(eλ
−
1 (s−ξ ) − eλ

−
1 s−λ+

1 ξ )h(ψ(ξ − cτ1))dξ

+
∫ +∞

s

(eλ
+
1 (s−ξ ) − eλ

−
1 s−λ+

1 ξ )h(ψ(ξ − cτ1))dξ
]

� δu∗eλ
−
1 s + 1

d1(λ+
1 − λ−

1 )

[ ∫ s

0

(eλ
−
1 (s−ξ ) − eλ

−
1 s−λ+

1 ξ )(b1φ(ξ ) − d1φ
′′(ξ ) + cφ ′(ξ ))dξ

+
∫ +∞

s

(eλ
+
1 (s−ξ ) − eλ

−
1 s−λ+

1 ξ )(b1φ(ξ ) − d1φ
′′(ξ ) + cφ ′(ξ ))dξ

]

= δu∗eλ
−
1 s − eλ

−
1 sφ(0) + φ(s) + 1

(λ+
1 − λ−

1 )

[ i∑
k=1

(eλ
−
1 (s−ξk) − eλ

−
1 s−λ+

1 ξk )(φ ′
+(ξk) − φ ′

−(ξk))

+
m∑

k=i+1

(eλ
+
1 (s−ξk) − eλ

−
1 s−λ+

1 ξk )(φ ′
+(ξk) − φ ′

−(ξk))
]

� φ(s).

Similarly, we can prove that F2(�)(s) �ψ(s) and (F1(�̄)(s), F2(�̄)(s)) � (φ̄(s), ψ̄(s)) for all s ∈ (ξi, ξi+1).
By the continuity, we can get the same results for the endpoints ξi (i = 1, · · · , m). Thus, (F1, F2)(�) ⊂ �.

The continuity and compactness of (F1, F2) can be obtained by similar arguments in Lemmas 2.4–2.5
of [35], here we omit the details.

Lemma 3.5. Suppose that (3.14) admits a pair of lower and upper solutions (φ(s),ψ(s)) and
(φ̄(s), ψ̄(s)) satisfying supt�s (φ(t),ψ(t)) � (φ̄(s), ψ̄(s)), ∀s ∈R. Then, (3.14) has a monotone increasing
solution.

Proof . From Lemma 3.4, (F1, F2) has a fixed point �= (φ,ψ) ∈ � by the Schauder’s fixed point
theorem. Note that (φ̄(s), ψ̄(s)) = (φ(s),ψ(s)) = (δu∗, δv∗) for s � 0. We have (φ(s),ψ(s)) = (δu∗, δv∗)
for s � 0. Since (φ,ψ) is monotone increasing and bounded, lims→+∞ (φ(s),ψ(s)) is well-defined. By
Lemma 2.3 in [37], we can deduce that lims→+∞ (φ(s),ψ(s)) = (u∗, v∗), which implies �= (φ,ψ) ∈ �
is a monotone increasing solution of (3.14).

Theorem 3.1. For any fixed c> 0, the perturbed problem (3.14) has a monotone increasing solution
(φδ(s),ψδ(s)). Moreover, (φδ(s),ψδ(s)) obtained in this way is strictly increasing in δ ∈ (0, 1

2
).

Proof . By Lemma 3.5, it is sufficient to construct a pair of lower and upper solutions of (3.14).
Take

(φ(s),ψ(s)) = (δu∗, δv∗), s ∈R.

Since

h(ψ(s − cτ1)) = h(δv∗) � δh(v∗), g(φ(s − cτ1)) = g(δu∗) � δg(u∗),

we can check that (φ(s),ψ(s)) satisfies
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cφ ′(s) − d1φ
′′(s) = 0 � h(ψ(s − cτ1)) − b1φ(s), s> 0,

cψ ′(s) − d2ψ
′′(s) = 0 � g(φ(s − cτ2)) − b2ψ(s), s> 0,

(φ(s),ψ(s)) = (δu∗, δv∗), s � 0,

(φ( + ∞),ψ( + ∞)) � (u∗, v∗).

Thus, (φ(s),ψ(s)) is a lower solution of (3.14).
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Now, we construct an upper solution of (3.14). Choose k> 0 large enough such that

0<
1

k
<min

{
cτ1, cτ2,

c

b1

,
c

b2

}
.

Define

φ̄(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δu∗, s � 0,

u∗
[
−k2(1 − δ)

(
s − 1

k

)2

+ 1
]
, 0< s � 1

k
,

u∗, s>
1

k
and

ψ̄(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δv∗, s � 0,

v∗
[
−k2(1 − δ)

(
s − 1

k

)2

+ 1
]
, 0< s � 1

k
,

v∗, s>
1

k
.

Obviously, (φ̄(s), ψ̄(s)) satisfies (φ̄(s), ψ̄(s)) = (δu∗, δv∗) for s � 0 and (φ̄( + ∞), ψ̄( + ∞)) = (u∗, v∗).
We claim that (φ̄, ψ̄) is an upper solution of (3.14). In fact, for 0< s< 1

k
, we have ψ̄(s − cτ1) = δv∗ and

cφ̄ ′(s) − d1φ̄
′′(s) − h(ψ̄(s − cτ1)) + b1φ̄(s)

= u∗k2(1 − δ)
[
2d1 − 2c

(
s − 1

k

)
− b1

(
s − 1

k

)2 ]
+ b1u∗ − h(δv∗)

= u∗k2(1 − δ)
[
2d1 − 2c

(
s − 1

k

)
− b1

(
s − 1

k

)2 ]
+ h(v∗) − h(δv∗).

Since − c
b1
<− 1

k
� s − 1

k
< 0, we can deduce 2d1 − 2c(s − 1

k
) − b1(s − 1

k
)2 > 0 and then

cφ̄ ′(s) − d1φ̄
′′(s) − h(ψ̄(s − cτ1)) + b1φ̄(s)> h(v∗) − h(δv∗) � 0.

For s> 1
k
, we have

cφ̄ ′(s) − d1φ̄
′′(s) − h(ψ̄(s − cτ1)) + b1φ̄(s) = −h(ψ̄(s − cτ1)) + b1u∗

= −h(ψ̄(s − cτ1)) + h(v∗) � 0.

Thus,

cφ̄ ′(s) − d1φ̄
′′(s) − h(ψ̄(s − cτ1)) + b1φ̄(s) � 0 for s ∈R+ \

{
1

k

}
.

We can similarly obtain

cψ̄ ′(s) − d2ψ̄
′′(s) − g(φ̄(s − cτ2)) + b2ψ̄(s) � 0 for s ∈R+ \

{
1

k

}
.

Moreover, φ̄ ′
+( 1

k
) = φ̄ ′

−( 1
k
) = 0 and ψ̄ ′

+( 1
k
) = ψ̄ ′

−( 1
k
) = 0. Therefore, (φ̄, ψ̄) is an upper solution of (3.14).

It follows that the perturbed problem (3.14) admits a monotone increasing solution (φδ(s),ψδ(s)).
Next, we prove that if δ1, δ2 ∈ (0, 1

2
) and δ1 > δ2, then the solutions obtained in the above way sat-

isfy (φδ1 (s),ψδ1 (s))> (φδ2 (s),ψδ2 (s)) for all s ∈R. Let φ̃(s) = φδ1 (s) − φδ2 (s) and ψ̃(s) =ψδ1 (s) −ψδ2 (s).
Without loss of generality, we assume τ1 < τ2.

First, we consider s ∈ [0, cτ1]. For this case, h(ψδi (s − cτ1)) = h(δiv∗) and g(φδi (s − cτ2)) = g(δiu∗).
Then, (φ̃, ψ̃) satisfies⎧⎪⎪⎨

⎪⎪⎩
cφ̃ ′(s) − d1φ̃

′′(s) = h(δ1v∗) − h(δ2v∗) − b1φ̃(s)>−b1φ̃(s), 0< s � cτ1,

cψ̃ ′(s) − d2ψ̃
′′(s) = g(δ1u∗) − g(δ2u∗) − b2ψ̃(s)>−b2ψ̃(s), 0< s � cτ1,

(φ̃(0), ψ̃(0)) = (δ1u∗ − δ2u∗, δ1v∗ − δ2v∗)> (0, 0).
https://doi.org/10.1017/S0956792523000220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000220


1160 Q. Chen et al.

By the maximum principle, we have φ̃(s)> 0 and ψ̃(s)> 0 for s ∈ [0, cτ1]. Thus, φδ1 (s)>φδ2 (s) and
ψδ1 (s)>ψδ2 (s) for s ∈ (−∞, cτ1].

For s ∈ [cτ1, 2cτ1], we have s − cτ1, s − cτ2 ∈ (−∞, cτ1]. By the above result, h(ψδ1 (s − cτ1))>
h(ψδ2 (s − cτ1)) and g(φδ1 (s − cτ2))> g(φδ2 (s − cτ2)). It follows that (φ̃, ψ̃) satisfies⎧⎪⎪⎨

⎪⎪⎩
cφ̃ ′(s) − d1φ̃

′′(s)>−b1φ̃(s), cτ1 < s � 2cτ1,

cψ̃ ′(s) − d2ψ̃
′′(s)>−b2ψ̃(s), cτ1 < s � 2cτ1,

(φ̃(cτ1), ψ̃(cτ1))> (0, 0).

By the maximum principle, we have φ̃(s)> 0 and ψ̃(s)> 0 for s ∈ [cτ1, 2cτ1], which imply that φδ1 (s)>
φδ2 (s) and ψδ1 (s)>ψδ2 (s) for s ∈ (−∞, 2cτ1].

By repeating the above steps, we conclude that (φδ1 (s),ψδ1 (s))> (φδ2 (s),ψδ2 (s)) for s ∈R.

In what follows, we exhibit the existence and uniqueness of monotone increasing solutions to (3.1).

Lemma 3.6. For any c ∈ (0, c∗
τ
), (3.1) has a unique monotone increasing solution, which is strictly

increasing on R+.

Proof . (i) (Uniqueness of Monotone Increasing Solutions) Suppose that (3.1) has two monotone increas-
ing solutions (φ1,ψ1) and (φ2,ψ2). Then (0, 0)< (φi,ψi)< (u∗, v∗) in (0, +∞) and (φi( + ∞),ψi( +
∞)) = (u∗, v∗) for i = 1, 2. The Hopf boundary lemma implies that ((φi)′

+(0), (ψi)′
+(0))> (0, 0) for

i = 1, 2.
Define

ρ1 := inf
{φ1(s)

φ2(s)

∣∣∣s> 0
}

, ρ2 := inf
{ψ1(s)

ψ2(s)

∣∣∣s> 0
}

and

ρ∗ := min{ρ1, ρ2}.
By the L’Hôpital’s rule, it is easy to see that

lim
s→0+

(φ1(s)

φ2(s)
,
ψ1(s)

ψ2(s)

)
=

( (φ1)′
+(0)

(φ2)′
+(0)

,
(ψ1)′

+(0)

(ψ2)′
+(0)

)
> (0, 0).

Moreover, lims→+∞ ( φ1(s)
φ2(s)

, ψ1(s)
ψ2(s)

) = (1, 1). Thus, ρ1, ρ2 are well-defined and ρ∗ ∈ (0, 1].
We claim that ρ∗ ≡ 1. Assume on the contrary that ρ∗ ∈ (0, 1). Let

φ̃(s) = φ1(s) − ρ∗φ2(s), ψ̃(s) =ψ1(s) − ρ∗ψ2(s).

Obviously, (φ̃(s), ψ̃(s)) � (0, 0) for s> 0, (φ̃(0), ψ̃(0)) = (0, 0), (φ̃( + ∞), ψ̃( + ∞)) = ((1 −
ρ∗)u∗, (1 − ρ∗)v∗)> (0, 0), and

cφ̃ ′(s) − d1φ̃
′′(s) + b1φ̃(s)

= h(ψ1(s − cτ1)) − ρ∗h(ψ2(s − cτ1))

� h(ψ1(s − cτ1)) − h(ρ∗ψ2(s − cτ1)) � 0 for s> 0.

Similarly, we have

cψ̃ ′(s) − d2ψ̃
′′(s) + b2ψ̃(s) � g(φ1(s − cτ2)) − g(ρ∗φ2(s − cτ2)) � 0 for s> 0.

From the Hopf boundary lemma, we can deduce that (0, 0)< (φ̃ ′
+(0), ψ̃ ′

+(0)) = ((φ1)′
+(0) −

ρ∗(φ2)′
+(0), (ψ1)′

+(0) − ρ∗(ψ2)′
+(0)), which implies

lim
s→0+

(φ1(s)

φ2(s)
,
ψ1(s)

ψ2(s)

)
> (ρ∗, ρ∗).

Therefore, by the definition of ρ∗, there exists s0 ∈ (0, +∞) such that φ̃(s0) = 0 or ψ̃(s0) = 0. By the max-
imum principle, we know φ̃(s) ≡ 0 or ψ̃(s) ≡ 0 for s � 0, which is a contradiction since (φ̃( + ∞), ψ̃( +
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∞)) = ((1 − ρ∗)u∗, (1 − ρ∗)v∗)> (0, 0). Thus, ρ∗ ≡ 1. It follows that (φ1(s),ψ1(s)) � (φ2(s),ψ2(s)) for
s> 0.

Clearly, the same method can be employed to prove (φ1(s),ψ1(s)) � (φ2(s),ψ2(s)) for s> 0. Hence,
the uniqueness follows directly.

(ii) (Strict Monotonicity of Solution on R+) Assume that (φ,ψ) is a monotone increasing solution of
(3.1). For any ϑ > 0, by (3.11), we get

φ(s + ϑ) = 1

d1(λ+
1 − λ−

1 )

[ ∫ s+ϑ

0

(eλ
−
1 (s+ϑ−ξ ) − eλ

−
1 (s+ϑ)−λ+

1 ξ )h(ψ(ξ − cτ1))dξ

+
∫ +∞

s+ϑ
(eλ

+
1 (s+ϑ−ξ ) − eλ

−
1 (s+ϑ)−λ+

1 ξ )h(ψ(ξ − cτ1))dξ
]

= 1

d1(λ+
1 − λ−

1 )

[ ∫ s

−ϑ
(eλ

−
1 (s−ξ ′) − eλ

−
1 (s+ϑ)−λ+

1 (ξ ′+ϑ))h(ψ(ξ ′ + ϑ − cτ1))dξ ′

+
∫ +∞

s

(eλ
+
1 (s−ξ ′) − eλ

−
1 (s+ϑ)−λ+

1 (ξ ′+ϑ))h(ψ(ξ ′ + ϑ − cτ1))dξ ′
]

>
1

d1(λ+
1 − λ−

1 )

[ ∫ s

0

(eλ
−
1 (s−ξ ′) − eλ

−
1 s−λ+

1 ξ
′
)h(ψ(ξ ′ − cτ1))dξ ′

+
∫ +∞

s

(eλ
+
1 (s−ξ ′) − eλ

−
1 s−λ+

1 ξ
′
)h(ψ(ξ ′ − cτ1))dξ ′

]
= φ(s), ∀s ∈R+.

Similarly, we can prove ψ(s + ϑ)>ψ(s) on R+ for any ϑ > 0.
(iii) (Existence of Monotone Increasing Solution) For the existence, we divide the proof into the

following steps.

Step 1. For any fixed c> 0, we prove that the equations{
cφ ′(s) − d1φ

′′(s) = h(ψ(s − cτ1)) − b1φ(s), s ∈R,

cψ ′(s) − d2ψ
′′(s) = g(φ(s − cτ2)) − b2ψ(s), s ∈R

have a monotone increasing solution (φ,ψ) satisfying either

(a) (φ(−∞),ψ(−∞)) = (0, 0), (φ( + ∞),ψ( + ∞)) = (u∗, v∗),

or

(b) (φ(s),ψ(s)) = (0, 0) for s � 0, (φ( + ∞),ψ( + ∞)) = (u∗, v∗).

For the case (a), (u(t, x), v(t, x)) := (φ(x + ct),ψ(x + ct)) is a travelling wave solution of⎧⎪⎪⎨
⎪⎪⎩
∂u

∂t
= d1

∂2u

∂x2
− b1u + h(v(t − τ1, x)), t> 0, x ∈R,

∂v

∂t
= d2

∂2v

∂x2
− b2v + g(u(t − τ2, x)), t> 0, x ∈R.

(3.17)

For the case (b), (φ(s),ψ(s)) is a monotone increasing solution of (3.1), and (u(t, x), v(t, x)) := (φ(x +
ct),ψ(x + ct)) is called a semi-wave solution of (3.17). Thus, the conclusion of this step implies that
(3.17) has either a monotone travelling wave or a monotone semi-wave with speed c for any fixed c> 0.

Take a sequence {δn}∞
n=1 satisfying δn ∈ (0, 1

2
) and δn ↘ 0 as n → ∞, and let (φn,ψn) be the mono-

tone increasing solution of (3.14) with δ replaced by δn, which is obtained in Theorem 3.1. Then,
sn := max{s : φn(s) = 1

2
u∗} is well-defined. By Theorem 3.1, we know that sn is monotone increasing

in n.
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Define (φ̃n(s), ψ̃n(s)) := (φn(s + sn),ψn(s + sn)) for s ∈R. Then, φ̃n(0) = 1
2
u∗ and (φ̃n(s), ψ̃n(s))

satisfies ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cφ̃ ′
n(s) − d1φ̃

′′
n (s) = h(ψ̃n(s − cτ1)) − b1φ̃n(s), s>−sn,

cψ̃ ′
n(s) − d2ψ̃

′′
n (s) = g(φ̃n(s − cτ2)) − b2ψ̃n(s), s>−sn,

(φ̃n(s), ψ̃n(s)) = (δnu∗, δnv∗), s �−sn,

(φ̃n( + ∞), ψ̃n( + ∞)) = (u∗, v∗).

Since sn is monotone increasing in n, we have s0 := limn→∞ sn ∈ (0, +∞].
From the proof of Lemma 3.2, we know that there exists a positive constant C independent of n such

that

|φn(s)|, |φ ′
n(s)|, |φ ′′

n (s)|, |ψn(s)|, |ψ ′
n(s)|, |ψ ′′

n (s)|� C

for all s ∈R+. That is, φn and ψn are uniformly bounded in C2(R+), from which we can deduce that
φn(s), φ ′

n(s), ψn(s) and ψ ′
n(s) are equicontinuous on R+. Applying the equations in (3.14), we know that

φ ′′
n (s) and ψ ′′

n (s) are also equicontinuous on R+. By the Arzela–Ascoli theorem, there is a subsequence,
still denoted by (φ̃n, ψ̃n), converges to (φ̃, ψ̃) in C2

loc(R). It is easy to know that (φ̃(s), ψ̃(s)) is monotone
increasing in s and satisfies φ̃(0) = 1

2
u∗.

(a) If s0 = +∞, then (φ̃(s), ψ̃(s)) satisfies{
cφ̃ ′(s) − d1φ̃

′′(s) = h(ψ̃(s − cτ1)) − b1φ̃(s), s ∈R,

cψ̃ ′(s) − d2ψ̃
′′(s) = g(φ̃(s − cτ2)) − b2ψ̃(s), s ∈R.

Since (φ̃(s), ψ̃(s)) is monotone increasing and uniformly continuous on R+, by Lemma 2.3 in [37] we
can deduce that lims→∞ φ̃ ′(s) = lims→∞ φ̃ ′′(s) = 0 and lims→∞ ψ̃ ′(s) = lims→∞ ψ̃ ′′(s) = 0, which imply
(φ̃( ± ∞), ψ̃( ± ∞)) = (0, 0) or (u∗, v∗). In view of φ̃(0) = 1

2
u∗, we know that (φ̃(−∞), ψ̃(−∞)) = (0, 0)

and (φ̃( + ∞), ψ̃( + ∞)) = (u∗, v∗).
(b) If s0 ∈ (0, +∞), then (φ̃(s), ψ̃(s)) satisfies⎧⎪⎪⎨

⎪⎪⎩
cφ̃ ′(s) − d1φ̃

′′(s) = h(ψ̃(s − cτ1)) − b1φ̃(s), s>−s0,

cψ̃ ′(s) − d2ψ̃
′′(s) = g(φ̃(s − cτ2)) − b2ψ̃(s), s>−s0,

(φ̃(s), ψ̃(s)) = (0, 0), s �−s0.

Let (φ(s),ψ(s)) = (φ̃(s − s0), ψ̃(s − s0)), we can also prove (φ( + ∞),ψ( + ∞)) = (u∗, v∗). Obviously,
(φ(s),ψ(s)) = (0, 0) for s � 0. This completes the proof of Step 1.

Step 2. For any c ∈ (0, c∗
τ
), we prove that (3.17) has no travelling wave solution.

We claim that c∗
τ

is the minimal wave speed for travelling wave solutions of (3.17), that is, (3.17)
admits a monotone travelling wave solution for c � c∗

τ
and has no monotone travelling wave solution for

c ∈ (0, c∗
τ
).

Indeed, for the quasi-monotone system (3.17), applying the theory of monotone semiflows developed
by Liang and Zhao [22], we can prove that c∗

τ
is the asymptotic spreading speed and coincides with the

minimal wave speed. The proof is similar as that of Theorem 5.1 in [22], Theorems 2.1–2.2 in [17] and
Theorem 3.1 in [21]. The key step in the proof is verifying the conditions in [22].

We first introduce some notations. Let C = C([−τ2, 0] ×R, R) × C([−τ1, 0] ×R, R), C̄ = C([−
τ2, 0], R) × C([−τ1, 0], R), X = (C ∩ L∞)(R, R2),

C(u∗ ,v∗) =
{

(ϕ1, ϕ2) ∈ C;0 � ϕ1(θ , x) � u∗on [−τ2, 0] ×R, 0 � ϕ2(θ , x) � v∗on [−τ1, 0] ×R

}
and

C̄(u∗ ,v∗) =
{

(ϕ1, ϕ2) ∈ C̄;0 � ϕ1(θ ) � u∗on [−τ2, 0], 0 � ϕ2(θ ) � v∗on [−τ1, 0]
}

.
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Clearly, any element in C̄ or X can be regarded as a function in C. We equip C with the compact open
topology and define the metric function d(·, ·) in C with respect to this topology by

d((ϕ1, ϕ2), (ϕ̃1, ϕ̃2))

=
∞∑

k=1

maxθ∈[−τ2,0],|x|�k |ϕ1(θ , x) − ϕ̃1(θ , x)| + maxθ∈[−τ1,0],|x|�k |ϕ2(θ , x) − ϕ̃2(θ , x)|
2k

for any (ϕ1, ϕ2), (ϕ̃1, ϕ̃2) ∈ C, so that (C, d) is a metric space.
Define f : C −→ X by

f (ϕ1, ϕ2)(x) =
(

f1(ϕ1, ϕ2)(x), f2(ϕ1, ϕ2)(x)
)

=
(
−b1ϕ1(0, x) + h(ϕ2(−τ1, x)), −b2ϕ2(0, x) + g(ϕ1(−τ2, x))

)
.

We can then rewrite (3.17) as follows⎧⎪⎪⎨
⎪⎪⎩
∂u

∂t
= d1

∂2u

∂x2
+ f1(ut, vt)(x),

∂v

∂t
= d2

∂2v

∂x2
+ f2(ut, vt)(x),

(3.18)

where (ut, vt) ∈ C with ut(θ , x) = u(t + θ , x) for θ ∈ [−τ2, 0] and vt(θ , x) = v(t + θ , x) for θ ∈ [−τ1, 0]. The
condition (A1) in [22] is satisfied by the property that both (u(t, −x), v(t, −x)) and (u(t, x + y), v(t, x +
y)), ∀y ∈R, are also solutions when (u(t, x), v(t, x)) is a solution.

By Lemma 2.9 in [38], there exists a solution map Qt = (Qu
t , Qv

t ) : C(u∗ ,v∗) → C(u∗ ,v∗) for t> 0:

Qu
t [(ϕ1, ϕ2)](θ , x) = ut(θ , x;ϕ1, ϕ2), ∀(θ , x) ∈ [−τ2, 0] ×R,

Qv
t [(ϕ1, ϕ2)](θ , x) = vt(θ , x;ϕ1, ϕ2), ∀(θ , x) ∈ [−τ1, 0] ×R,

and Qt:C(u∗ ,v∗) → C(u∗ ,v∗) is monotone. Thus, the condition (A4) in [22] holds. Similar as the proof of
Lemma 2.2 in [17] and Lemma 3.2 in [21], we can show that Qt is continuous in (ϕ1, ϕ2) with respect
to the compact open topology uniformly for t ∈ [0, t0] with any t0 > 0. Since (3.18) is an autonomous
system, {Qt}t�0 is a semiflow on C(u∗ ,v∗). Thus, the condition (A2) in [22] holds.

Let Q̂t be the restriction of Qt to C̄(u∗ ,v∗). It is easy to see that Q̂t : C̄(u∗ ,v∗) → C̄(u∗ ,v∗) is the solution
semiflow generated by {

u′(t) = f1(ut, vt),

v′(t) = f2(ut, vt)
(3.19)

with the initial data (ϕ1, ϕ2) ∈ C̄(u∗ ,v∗). By Corollary 5.3.5 in [27], Q̂t is eventually strongly monotone
on C̄(u∗ ,v∗). In the proof of Theorem 2.3 (iv), we have known that s(Df̂ (0, 0)) = max{Reλ; det (λI −
Df̂ (0, 0)) = 0}> 0. By Corollary 5.5.2 in [27], (0̂, 0̂) is an unstable equilibrium of (3.19). By the Dancer-
Hess connecting orbit lemma (see, e.g. Section 2.1 in [41]), the semiflow Q̂t admits a strongly monotone
full orbit connecting (0, 0) to (u∗, v∗). Thus, the condition (A5) holds for each Qt, t> 0.

Similar as the proof of Lemma 2.3 in [17] and Lemma 3.3 in [21], we can prove that the following
two statements hold:

(a) for (t1, t2) ∈ (τ2, +∞) × (τ1, +∞), (Qu
t1

[C(u∗ ,v∗)], Qv
t2

[C(u∗ ,v∗)]) is precompact in C(u∗ ,v∗);
(b) for (t1, t2) ∈ [0, τ2] × [0, τ1], (Qu

t1
[C(u∗ ,v∗)](0, ·), Qv

t2
[C(u∗ ,v∗)](0, ·)) is precompact in X, and there

are positive numbers (ζ , ϑ) � (τ2, τ1) such that Qu
t1

[(u, v)](θ , ·) = u(θ + ζ , x) for −τ2 � θ �−ζ ,
Qv

t2
[(u, v)](θ , ·) = v(θ + ϑ , x) for −τ1 � θ �−ϑ , and the operators
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S1[(u, v)](θ , x) =
{

u(0, x), θ ∈ [−τ2, −ζ ),

Qu
t1

[(u, v)](θ , x), θ ∈ [−ζ , 0],

S2[(u, v)](θ , x) =
{

v(0, x), θ ∈ [−τ1, −ϑ),

Qv
t2

[(u, v)](θ , x), θ ∈ [−ϑ , 0]

have the property that S1[D], S2[D] are precompact in C(u∗ ,v∗) for any T-invariant set D ⊂ C(u∗ ,v∗) with
D(0, ·) precompact in X. Thus, the condition (A6)(a), (b′) in [22] holds. By the theory of monotone
semiflows developed in [22], there exists c∗ > 0 such that c∗ is the asymptotic spreading speed, which
coincides with the minimal wave speed.

Next, we prove c∗ = c∗
τ
. Let Mt = (Mu

t , Mv
t ) : C → C be the solution map at time t of the following

linear equations ⎧⎪⎪⎨
⎪⎪⎩
∂u

∂t
= d1

∂2u

∂x2
− b1u + h′(0)vt,

∂v

∂t
= d2

∂2v

∂x2
− b2v + g′(0)ut.

(3.20)

For λ� 0, we define the linear map Bt = (Bu
t , Bv

t ) : C̄ → C̄ by

Bu
t [(ϕ1, ϕ2)](θ ) = Mu

t [(ϕ1, ϕ2)e
−λx](θ , 0), ∀θ ∈ [−τ2, 0],

Bv
t [(ϕ1, ϕ2)](θ ) = Mv

t [(ϕ1, ϕ2)e−λx](θ , 0), ∀θ ∈ [−τ1, 0].

Then, Bt = (Bu
t , Bv

t ) : C̄ → C̄ is the solution map of the following equations{
u′(t) = d1λ

2u(t) − b1u(t) + h′(0)vt,

v′(t) = d2λ
2v(t) − b2v(t) + g′(0)ut.

(3.21)

Let

A(χ ) =
⎛
⎝ d1λ

2 − b1 h′(0)e−χτ1

g′(0)e−χτ2 d2λ
2 − b2

⎞
⎠ .

Since (3.21) is a cooperative and irreducible delay equations, it follows that

det (χ I − A(χ )) = 0,

i.e.

χ 2 − [(d1λ
2 − b1) + (d2λ

2 − b2)]χ + (d1λ
2 − b1)(d2λ

2 − b2) − h′(0)g′(0)e−χ (τ1+τ2) = 0,

admits a real root χ (λ) which is greater than the real parts of all other ones (see Theorem 5.5.1 in [27]).
Define �(λ) = χ (λ)

λ
. By Theorem 3.10 in [22], we know c∗ = infλ>0 �(λ) = infλ>0

χ (λ)
λ

. Let c = χ (λ)
λ

,
then c∗ satisfies c∗ =�(λ∗) and dc

dλ
|λ=λ∗=0. Then, (c∗, λ∗) can be determined as the positive solution to

the system

�c(λ, τ ) = 0,
∂�c(λ, τ )

∂λ
= 0, (3.22)

where�c(λ, τ ), as a function of c and λ, is defined in (3.2). From the conclusions of Lemma 3.1, c∗ = c∗
τ
.

This completes the proof of the claim.
We should mention that the existence of monotone travelling wave solution to (3.17) for c � c∗

τ
has

also been proved in [38] by the method of lower and upper solutions.

Step 3. For any c ∈ (0, c∗
τ
), we prove that (3.17) has a monotone semi-wave with speed c, or

equivalently, (3.1) has a monotone increasing solution.
By the conclusions in Steps 1–2, we can immediately get the desired result.

https://doi.org/10.1017/S0956792523000220 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000220


European Journal of Applied Mathematics 1165

Figure 2. Dichotomy between semi-waves and travelling waves.

Remark 3.1. From Lemma 3.2, Lemma 3.6 and its proof (Step 2), we conclude that there is a dichotomy
between monotone semi-waves and monotone travelling waves for (3.17). More precisely, for each c> 0,
(3.17) has either a monotone semi-wave solution with speed c or a monotone travelling wave solution
with speed c, but not both. c∗

τ
is the critical value. The ranges of c for both cases are shown in Figure 2.

Lemma 3.7. Let (φc,ψ c) be the unique strictly increasing solution of (3.1) with any fixed c ∈ (0, c∗
τ
).

Then, the following conclusions hold.
(i) If 0< c1 < c2 < c∗

τ
, then ((φc1 )′

+(0), (ψ c1 )′
+(0))> ((φc2 )′

+(0), (ψ c2 )′
+(0)) and (φc1 (s),ψ c1 (s))>

(φc2 (s),ψ c2 (s)) for s> 0.
(ii) For any fixed μ> 0, there exists a unique cμ(τ ) ∈ (0, c∗

τ
) such that μ(φcμ(τ ))′

+(0) = cμ(τ ).
Moreover, cμ(τ ) is strictly increasing in μ and limμ→+∞ cμ(τ ) = c∗

τ
.

(iii) If (τ̃1, τ̃2) � (τ1, τ2), then cμ(τ̃ ) � cμ(τ ) with τ̃ = τ̃1 + τ̃2 and τ = τ1 + τ2.

Proof . (i) Since 0< c1 < c2 and ((φc2 )′(s), (ψ c2 )′(s))> (0, 0) for s ∈R+, we have{
c1(φc2 )′(s) − d1(φc2 )′′(s)< h(ψ c2 (s − cτ1)) − b1φ

c2 (s), s> 0,

c1(ψ c2 )′(s) − d2(ψ c2 )′′(s)< g(φc2 (s − cτ2)) − b2ψ
c2 (s), s> 0

with (φci (s),ψ ci (s)) = (0, 0) for s � 0 and (φci ( + ∞),ψ ci ( + ∞)) = (u∗, v∗) (i = 1, 2). The compari-
son principle implies (φc1 (s),ψ c1 (s))> (φc2 (s),ψ c2 (s)) for s> 0. Let φ̃(s) = φc1 (s) − φc2 (s) and ψ̃(s) =
ψ c1 (s) −ψ c2 (s), then⎧⎪⎪⎨

⎪⎪⎩
c1φ̃

′(s) − d1φ̃
′′(s) + b1φ̃(s) = h(ψ c1 (s − cτ1)) − h(ψ c2 (s − cτ1))> 0, s> 0,

c1ψ̃
′(s) − d2ψ̃

′′(s) + b2ψ̃(s) = g(φc1 (s − cτ2)) − g(φc2 (s − cτ2))> 0, s> 0,

(φ̃(0), ψ̃(0)) = (0, 0).

By the Hopf boundary lemma, we obtain (φ̃ ′
+(0), ψ̃ ′

+(0))> (0, 0) and then

((φc1 )′
+(0), (ψ c1 )′

+(0))> ((φc2 )′
+(0), (ψ c2 )′

+(0)).

(ii) Similar as the proof of Lemma 3.11 in [35], we can show that the mapping c �→ (φc,ψ c) is contin-
uous from (0, c∗

τ
) to [C2

loc([0, +∞)]2 and satisfies limc↗c∗
τ

(φc,ψ c) = (0, 0) in [C2
loc([0, +∞)]2. It follows

that ξμ(c;τ ) := (φc)′
+(0) − c

μ
is continuous on (0, c∗

τ
) and limc↗c∗

τ
ξμ(c;τ ) = − c∗

τ

μ
< 0. From (i), we see

that ξμ(c;τ ) is strictly decreasing in c ∈ (0, c∗
τ
). Note that ξμ(0;τ )> 0. Therefore, there exists a unique

cμ(τ ) ∈ (0, c∗
τ
) such that ξμ(cμ(τ );τ ) = 0, i.e. μ(φcμ(τ ))′

+(0) = cμ(τ ).
Since ξμ(c;τ ) is strictly increasing in μ, we know that cμ(τ ) is also strictly increasing in μ for

c ∈ (0, c∗
τ
). Thus, c̄ := limμ→+∞ cμ(τ ) is well-defined and c̄ ∈ [0, c∗

τ
]. We claim that c̄ = cτ∗. In fact, assume

by contradiction that c̄< cτ∗, then limμ→+∞ (φcμ(τ ))′
+(0) = limμ→+∞

cμ(τ )

μ
= 0, which yields (φ c̄)′

+(0) =
limc↗c̄ (φc)′

+(0) = 0. By (i), we have limc↗c∗
τ

(φc)′
+(0)< (φ c̄)′

+(0) = 0, which is a contradiction. Thus,
limμ→+∞ cμ(τ ) = c∗

τ
.

(iii) To stress the dependence of the solution to (3.1) on time delays, we denote it by (φc
τ
,ψ c

τ
). Since

τ̃ > τ , from (3.5) we have c∗
τ̃
< c∗

τ
, which implies that ξμ(c;τ̃ ), ξμ(c;τ ) are well-defined for c ∈ (0, c∗

τ̃
). To

get cμ(τ̃ ) � cμ(τ ), it is sufficient to prove that ξμ(c;τ̃ )< ξμ(c;τ ) on (0, c∗
τ̃
), or equivalently, (φc

τ̃
)′
+(0)<

(φc
τ
)′
+(0).
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Since (φc
τ̃
(s),ψ c

τ̃
(s)) is increasing on R, we have (φc

τ̃
(s − cτ̃1),ψ c

τ̃
(s − cτ̃2)) � (φc

τ̃
(s − cτ1),ψ c

τ̃
(s −

cτ1)). It follows that (φc
τ̃
(s),ψ c

τ̃
(s)) satisfies⎧⎪⎨

⎪⎩
c(φc

τ̃
)′(s) − d1(φc

τ̃
)′′(s) + b1φ

c
τ̃
(s) = h(ψ c

τ̃
(s − cτ̃1)) � h(ψ c

τ̃
(s − cτ1)), s> 0,

c(ψ c
τ̃
)′(s) − d2(ψ c

τ̃
)′′(s) + b2ψ

c
τ̃
(s) = g(φc

τ̃
(s − cτ̃2)) � g(φc

τ̃
(s − cτ2)), s> 0,

φc
τ̃
(s) =ψ c

τ̃
(s) = 0, s � 0,

which implies that (φc
τ̃
(s),ψ c

τ̃
(s)) is a lower solution of the following problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�t = d1�ss − c�s − b1�+ h(�(t, s − cτ1)), t> 0, s> 0,

�t = d2�ss − c�s − b2� + g(�(t, s − cτ2)), t> 0, s> 0,

�(t, s) =�(t, s) = 0, t> 0, s � 0,

(�(0, s),�(0, s)) = (φc
τ̃
(s),ψ c

τ̃
(s)).

(3.23)

By the maximum principle, we know that the solution (�(t, s),�(t, s)) of (3.23) is increasing in t � 0 and
satisfies limt→+∞ (�(t, s),�(t, s)) = (φ∗(s),ψ∗(s)), where (φ∗(s),ψ∗(s)) is a solution of (3.1). Clearly, the
uniqueness of the solutions to (3.1) ensures that (φ∗(s),ψ∗(s)) = (φc

τ
(s),ψ c

τ
(s)). Thus, for all s> 0, we

have

(φc
τ̃
(s),ψ c

τ̃
(s)) = (�(0, s),�(0, s)) � (�(t, s),�(t, s))

� (�( + ∞, s),�( + ∞, s)) = (φc
τ
(s),ψ c

τ
(s)).

Let φ̂(s) = φc
τ
(s) − φc

τ̃
(s), then φ̂ satisfies⎧⎪⎪⎨

⎪⎪⎩
cφ̂ ′(s) − d1φ̂

′′(s) + b1φ̂(s) = h(ψ c
τ
(s − cτ1)) − h(ψ c

τ̃
(s − cτ̃1))

� h(ψ c
τ
(s − cτ̃1)) − h(ψ c

τ̃
(s − cτ̃1)) � 0, s> 0,

φ̂(0) = 0.

The Hopf boundary lemma yields φ̂ ′(0)> 0, that is, (φc
τ
)′
+(0)> (φc

τ̃
)′
+(0). This completes the proof.

3.2 Asymptotic spreading speed when spreading happens

In this subsection, we present the asymptotic spreading speed of (1.4) when spreading happens.

Theorem 3.2. Assume that R0 > 1 and s2,∞ − s1,∞ = +∞. Then limt→∞
s2(t)

t
= limt→∞

−s1(t)
t

= cμ(τ ).

Proof . It is sufficient to show limt→∞
s2(t)

t
= cμ(τ ), since the limit of −s1(t)

t
can be similarly proved by

considering the free boundary problem for (u(t, −x), v(t, −x), −s2(t), −s1(t)).
We first prove lim supt→∞

s2(t)
t
� cμ(τ ). For any sufficiently small constant ε > 0, let (φc

ε
,ψ c

ε
) be the

unique strictly increasing solution of the following semi-wave problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cφ ′(s) − d1φ
′′(s) = h(ψ(s − cτ1)) − (b1 − ε)φ(s), s> 0,

cψ ′(s) − d2ψ
′′(s) = g(φ(s − cτ2)) − (b2 − ε)ψ(s), s> 0,

(φ(s),ψ(s)) = (0, 0), s � 0,

(φ( + ∞),ψ( + ∞)) = (u∗
ε
, v∗

ε
),

(3.24)

where (u∗
ε
, v∗

ε
) is defined as the positive equilibrium of (3.24). By Lemma 3.7, there exists some cε

μ
(τ )> 0

such that

μ(φ
cεμ(τ )
ε )′

+(0) = cε
μ
(τ ), lim

ε→0
cε
μ
(τ ) = cμ(τ ).
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Let ε0 = ε

2
, it is easy to check that (u∗

ε
, v∗

ε
)> (u∗

ε0
, v∗

ε0
)> (u∗, v∗), which together with (2.10)–(2.11) imply

that there exists some t0 > 0 such that
u(t, x) � u∗

ε0
for (t, x) ∈ [t0 − τ2, +∞) × [s1(t), s2(t)],

v(t, x) � v∗
ε0

for (t, x) ∈ [t0 − τ1, +∞) × [s1(t), s2(t)].

In view of (φc
ε
( + ∞),ψ c

ε
( + ∞)) = (u∗

ε
, v∗

ε
), we have

(φc
ε
(l0 − s2(t0)),ψ

c
ε
(l0 − s2(t0)))> (u∗

ε0
, v∗

ε0
) for some l0 > s2(t0).

Define

s̄2(t) =
{

cε
μ
(τ )(t − t0) + l0, t ∈ [t0, +∞),

l0, t ∈ [t0 − max{τ1, τ2}, t0],

ū(t, x) =
{
φc
ε
(s̄2(t) − x), t ∈ [t0, +∞), x ∈ [0, s̄2(t)),

φc
ε
(l0 − x), t ∈ [t0 − τ2, t0], x ∈ [0, s̄2(t)) = [0, l0),

v̄(t, x) =
{
ψ c
ε
(s̄2(t) − x), t ∈ [t0, +∞), x ∈ (0, s̄2(t)),

ψ c
ε
(l0 − x), t ∈ [t0 − τ1, t0], x ∈ [0, s̄2(t)) = [0, l0).

Clearly, straightforward computation yields that (ū(t, x), v̄(t, x), s̄2(t)) is an upper solution of (1.4) with
(s1(t), s2(t)) replaced by (0, s2(t)). It follows from Lemma 2.2 that s̄2(t) � s2(t) for t � t0. Therefore,

lim sup
t→∞

s2(t)

t
� lim sup

t→∞

s̄2(t)

t
� cε

μ
(τ ).

Taking ε→ 0, we have lim supt→∞
s2(t)

t
� cμ(τ ).

Next, we prove lim inft→∞
s2(t)

t
� cμ(τ ). For any sufficiently small constant ε > 0, let (φc

ε
,ψ c

ε
) be the

unique strictly increasing solution of the following semi-wave problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cφ ′(s) − d1φ
′′(s) = h(ψ(s − cτ1)) − (b1 + ε)φ(s), s> 0,

cψ ′(s) − d2ψ
′′(s) = g(φ(s − cτ2)) − (b2 + ε)ψ(s), s> 0,

(φ(s),ψ(s)) = (0, 0), s � 0,

(φ( + ∞),ψ( + ∞)) = (u∗
ε
, v∗

ε
),

where (u∗
ε
, v∗

ε
) is the unique positive equilibrium and satisfies (u∗

ε
, v∗

ε
)< (u∗, v∗). Since (φc

ε
,ψ c

ε
) is strictly

increasing, we have (φc
ε
(s),ψ c

ε
(s))< (u∗

ε
, v∗

ε
) for any s � 0. Note that limt→∞ (u(t, x), v(t, x)) = (u∗, v∗)

locally uniformly for x ∈R when spreading occurs. Thus, for any L0 > 0 there exists T0 >max{τ1, τ2}
such that

s2(T0 − max{τ1, τ2})> L0,

(u(t, x), v(t, x)) � (u∗
ε
, v∗

ε
) for any (t, x) ∈ [T0 − max{τ1, τ2}, +∞) × [−L0, L0].

From Lemma 3.7, there exists some cε
μ
(τ )> 0 such that μ(φ

cεμ(τ )
ε )′

+(0) = cε
μ
(τ ) and limε→0 cε

μ
(τ ) =

cμ(τ ). Define

s2(t) =
{

cε
μ
(τ )(t − T0) + L0, t ∈ [T0, +∞),

L0, t ∈ [T0 − max{τ1, τ2}, T0],

u(t, x) =
{
φc
ε
(s2(t) − x), t ∈ [T0, +∞), x ∈ [0, s2(t)),

φc
ε
(L0 − x), t ∈ [T0 − τ2, T0], x ∈ [0, s2(t)) = [0, L0),

v(t, x) =
{
ψ c
ε
(s2(t) − x), t ∈ [T0, +∞), x ∈ (0, s2(t)),

ψ c
ε
(L0 − x), t ∈ [T0 − τ1, T0], x ∈ [0, s2(t)) = [0, L0).
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It is easy to check that (u(t, x), v(t, x), s2(t)) is a lower solution of (1.4) with (s1(t), s2(t)) replaced
by (0, s2(t)). Then, the comparison principle implies that s2(t) � s2(t) for t � T0. It follows
that lim inft→∞

s2(t)
t
� lim inft→∞

s2(t)

t
� cε

μ
(τ ). Taking ε→ 0, we have lim inft→∞

s2(t)
t
� cμ(τ ). Thus,

limt→∞
s2(t)

t
= cμ(τ ), which completes the proof.

Remark 3.2. In Theorem 3.2, when R0 > 1 and spreading occurs we obtain that s1(t) = −cμ(τ )t + o(t)
and s2(t) = cμ(τ )t + o(t) as t → ∞. However, finer estimates of |s1(t) + cμ(τ )t| and |s2(t) − cμ(τ )t| are
still unknown, which will be considered in the future work.
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