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ABSTRACT. We interpret the helioseismological results for the solar rotation law as im-
plying a uniform Qg in depth, if the angular velocity Q(8) is expanded in series of orthogonal
polynomials. One of the possibilities to ensure uniformity of (g is to exclude any anisotropy
from the generating turbulence field, so that only the rotationally originated part of the
heat conductivity tensor survive as a generator of meridional flow and consequently equa-
torial acceleration is produced. In addition to this simplest possible turbulence model, we
discuss some possible forms of the nondiffusive parts of the Reynolds stresses which may
be compatible with the uniformity of €.

1. The solar rotation law

The recent observational results of helioseismology have increasingly revealed the rotation
law of the solar convection zone. Various inversions of the oscillation data have led to nearly
the same results. Apparently the rotation law of the solar convection zone is roughly inde-
pendent on depth and continues the outer well-known rotation law down to the bottom. For
the lower overshooting region the reductions suggest basically rigid rotation (Dziembowski
et al., 1988, Christensen-Dalsgaard and Schou, 1988). Roughly speaking the Q-contours
are cylindrical in the close equatorial region, radial at higher latitudes and disk-like at the
poles (cf. Fig.2 in Libbrecht, 1988). They are in particular far from the over-all cylindri-
cal structure, @ = Q(rsin ), envisaged from the Taylor-Proudman theorem and from the
conservation law of angular momentum under the presense of a meridional circulation with
high Reynolds number. If the often used expression of the surface rotation law

Q=A+ Bcos’0 + Ccos*8 (1)
is transformed to the more physical series
Q=Qo+ QP)/sin0 + QqP}/sinb + ..., (2)

the numerical values will be

Qo = 2.768, Q2 =-0.087, Q4 = -0.011, (3)
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(in prad/s), with a high numerical equality of the surface Qo and the interior Q. The solar
rotation law seems thus to be characterized by the properties

Qo(ri) = Qo(rs) and Qu(r;) =0 for n > 0. (4)

Only Qo enters into the angular momentum expression
J = /pr2 sin2 0 Qdv = 47 /pr"Qo(r)dr, (5)

while the remaining terms in (2) do not contribute at all. The property (4) can thus trivially
be reformulated with (5) so that the angular momentum in the convection zone should be
the same as if it rotates rigidly at the rate of the interior. This statement does not, however,
contain more physical information than (4) already expresses (cf. Gilman et al., 1989).

2. Differential rotation for isotropic turbulence

The correlation tensor (uju}) as well as the turbulent heat flux (T"u}) contain rotationally
induced terms which are nonvanishing for rigid rotation. Due to their existence, rigid
rotation can never be a solution of the equations. We must distinguish, however, between
two different sets of parameters describing the extra terms due to the basic rotation. The
first belongs to the turbulent angular momentum transport (TMT) and exists only for
anisotropic turbulences. In particular, its leading term (V(%)) which has already been used
in the Wasiutinski-Biermann-Kippenhahn formulation of the theory of differential rotation,
generally produces radial gradients of the angular velocity. In opposition, the second set
of parameters associated to the turbulent heat transport (THT) exists also for isotropic
turbulences. They produce meridional circulation by pole-equator differences of the mean
temperature. Strong radial gradients in Q are not characteristic for their action. From this
point of view the helioseismological results could indicate the action of THT-effects alone,
working with isotropic turbulence. We have then a vanishing A-effect and the tensor of
eddy conductivity is exceptionally simple. Only the rotation axis, §2, yields a preferred
direction and hence the complete tensorial structure is

xi; = P(Q)é; + Q()Q9;, (6)
so that simply
Xrr = P+ Qcos?0, xr9=x6r =—Qcosfsinfd, and xgs = Q cos26. (7

Only one parameter, (), describes the latitudinal dependence of the entire conductivity
tensor. It can be expressed with the spectral function of q of the non-rotating turbulence:
Q= 82 / wk? wkt(v? - x?) WP+ vk g
T5X ) @+ ek | (@ + 2kt 1T O X2k Ow

dk dw, (8)

k and w being wavenumber and frequency of the turbulence spectrum. The spectral function
is always non-negative. The quantity @ has no definite sign. It is positive for very steep
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spectral functions, ¢ «x §(w), and it is negative for flat spectra of the “white noise”-type,
¢ =~ const and small Prandtl number.

We can numerically fix, on the other hand, the quantity @ by means of the observed
surface differential rotation law if the depth-dependence of @ is known. With the plausible
idea that already from the dimensional reasons @ depends on the inverse Rossby number

Q= (tcoer)27 (9)

we suggest ) to be constant for a giant flow pattern while a relatively strong inward
increase may reflect turbulence of mixing length type. We have worked thus with the
depth-dependence

Q ~ (zi/2)* (10)

with free A and z; the lower fractional radius of the convection zone. As in Riidiger (1989)
and Tuominen and Riidiger (1989) the Taylor number is 5 x 10°, Prandtl number is 0.33
and normalized surface temperature is T* = 5x 107. Table 1 gives the results. Small values
of A need positive @ for the generation of the observed §2;. They also give very strong basal
differential rotation, much too strong poleward meridional motion, and large pole-equator
temperature difference. When A = 8 there appears a reversal of the basal differential
rotation, meridional flow slows down and the pole-equator temperature difference becomes
reasonably small. Our models favour thus the concept of the mixing-length rather than that
of the global convection. Contours of constant angular velocity are given for two models in
Fig. 1, with A = 0, and for a reasonable one with A = 12.

Table 1: Characteristic values for the isotropic turbulence models of the solar differential
rotation. Angular velocity values has been here scaled so that at the surface . = 1.06 and
Qp = 0.76. The table gives for different A the surface values of Q;, @ at the bottom, polar
and equatorial 2 at the bottom, surface meridional flow (m/s), and surface pole-equator
temperature difference.

A Q/Q Qi 0,/ u (T.—-T,)/T.
0] -214 .19 0.30/1.16 -63 -.027
2] -015 27 -416/1.90 -625 -.18
3 044 -91 2.12/0.85 +176 +.045
4 086 -46 1.40/0.98 +73 -.011
8 152 -.26  0.96/1.05 +16 +.0033
12 152 -.26  0.88/1.07 +4 +.0018
15 141 -28 0.85/1.07 -0.6 -.0010

3. The horizontal Reynolds stress

Let us interprete sunspot proper motions traditionally, with respect to the mean flow, i.e.
with respect to the differential rotation as well as to stochastic component of the flow. As
we know that the latter is reflected by the horizontal correlation (uguy), first derived by
means of proper motions of sunspot groups by Ward (1965). In the mean-field approach an
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isotropic turbulence field causes non-vanishing horizontal correlations via a positive eddy
viscosity, defined by

(upuy) = —VT‘;—? sin @ (11)

so that the correlation is negative in the northern hemisphere and positive in the southern.
The observed signs are just opposite, so that an extra term must be added:

(upuy) = —VT%% sin 0 + vrQHW sin® @ cos 8 (12)

(Riidiger, 1977). This term is a part of the “A-effect” and reflects the rotational influence on
the correlation tensor of anisotropic turbulences. Observations require a numerical value of
about 1.6 for the quantity H(®). If the radial profile of d2/d# is known from helioseismology
and if the radial profile of (ujuy) is known from statistics of the sunspot proper motions,
then the radial distribution of H() can be derived containing information on the inner
turbulence regime. In particular this concerns the radial distribution of the correlation
time because we have similarly as in (9)

HD & (100 )? (13)

According to this idea, the results from the statistics of sunspot group proper motions can
be interpreted in the following way: the rotational velocity decreases with the age of groups
(about 5%) and the horizontal correlation decreases as well, being three times larger for
the youngest groups than for the old recurrent ones (Tuominen and Virtanen, 1989). Let
us locate the information given by the youngest groups at the botom of the convection
zone and older ones correspondingly to higher layers. If we assume that the 5% outward
decrease of angular velocity occurs in the lower half of tlic convection zone, we obtain, from
the outward decreasing horizontal correlation, for the value of A about 6-8 in the relation
(4). This outward decrease of angular velocity in the lower part of convection zone may
not be in conflict with the helioseismological inversions (see Dziembovski et al., 1989).

4. Radial A-effect

Qo is also exceptional insofar as the conservation law of angular momentum allows a first
integration

afo/dr = ~6400/5pr" + (VO + TV O)0/r (14)

with A denoting the stream function of the meridional flow and V(9 and V() representing
the A-effect up to the same order as H() in (12):

(upuy) = VT(“%%% + VO 4 vWsin? 9)sin 692. (15)

Uniform Qo is thus not only possible for vanishing Vs but also if the sum V(© + $y()
becomes small. Opposite signs of V(%) and V() are indeed characteristic for very broad
classes of turbulences (Riidiger, 1989). In Table 2 we present numerical results for such
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Figure 1. Angular velocity contours for the isotropic turbulence models with A = 0 (left)
and A = 12 (right).

Figure 2. Angular velocity contours for the models with A = 0 (left) and A = 8 (right) for
VO = .1and V) = 5/4,
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models, again with small and large A. V(9 is taken uniform through the whole convection
zone. THT-effects are neglected. The numbers clearly demonstrate the existence of some
medium where the observed smooth angular velocity profile can be reproduced. A positive
V() reproduces strong basal differential rotation. The circulation has correct direction and
size. On the contrary, the models with a negative V(9 (Fig. 2) have correctly smaller
differential rotation at the bottom than at the surface, although for A=0 it is everywhere
too strong. In this case, however, the -contours have the directions similar to observations.

The results demonstrate the complex nature of the A-effect. Furthermore, as we have
noted earlier (Riidiger and Tuominen, 1987; Riidiger, 1989) with a somewhat larger Taylor
number the system becomes unstable (the determinant of the linear system of equations
vanishes). It is possible that in this region nonlinear effects in Reynolds stresses become
important, limiting the amplitude of A-effect by nonlinear feedback, and influence the
angular momentum balance in the convection zone.

Table 2: Characteristic numbers for the models with A-effect. Scaling of Q as in Table 1.

v vy g Q /Q, (sur)  Q,/Q. (bot)  up
1 -5/4 1 0.72/1.07 0.37/1.16 -13
1 54 1  082/1.04  043/0.85 -10
1 5/4 1 029/1.18  064/1.10 -3
-1 5/4 1 0.77/1.06 1.08/1.28  -0.2
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