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Matched pairs and Yetter–Drinfeld braces
Davide Ferri and Andrea Sciandra

Abstract. It is proven that a matched pair of actions on a Hopf algebra𝐻 is equivalent to the datum of
a Yetter–Drinfeld brace, which is a novel structure generalising Hopf braces. This improves a theorem
by Angiono, Galindo and Vendramin, originally stated for cocommutative Hopf braces. These Yetter–
Drinfeld braces produce Hopf algebras in the category of Yetter–Drinfeld modules over 𝐻 , through
an operation that generalises Majid’s transmutation. A characterisation of Yetter–Drinfeld braces via
1-cocycles, in analogy to the one for Hopf braces, is given.
Every coquasitriangular Hopf algebra𝐻 will be seen to yield a Yetter–Drinfeld brace, where the addi-
tional structure on𝐻 is given by the transmutation. We compute explicit examples of Yetter–Drinfeld
braces on the Sweedler’s Hopf algebra, on the algebras 𝐸 (𝑛) , on SL𝑞 (2) , and an example in the class
of Suzuki algebras.

1 Introduction

The notion of braiding is ubiquitous in Mathematics, encompassing low-dimension

topology, group theory, category theory, and the theory of the Yang–Baxter equation

(YBE). In particular, notions of braided categories [20], braided groups [24, 26, 29],

and (co)quasitriangular Hopf algebras [10, 11, 23, 27, 36] have been defined around

the 1990s, and extensively used ever since.

On the other hand, set-theoretic solutions to the YBE have been studied on sug-

gestion of Drinfeld [12], growing into a vibrant field of research. It is known that

braided groups provide solutions to the set-theoretic YBE, and solutions to the YBE

are associated with a structure group [13] which turns out to be a braided group. Lu,

Yan and Zhu [24] clarified that a braided group is essentially the same as a matched

pair of actions. This is equivalent to bijective 1-cocycles. Afterwards, Guarnieri and

Vendramin [18] proved that this is in turn equivalent to a skew brace structure: a

notion that has become of capital importance, in its several generalisations (a non-

exhaustive list of them being provided by [7, 31, 33]). Skew braces generalise Rump’s

braces [35], and the interplay between skew braces and Yang–Baxter maps generalises

the correspondence between braces and involutive Yang–Baxter maps [16].

A skew brace is the datum of two group structures (𝐺, ·) and (𝐺, •) on the

same set 𝐺 , satisfying a compatibility. An immediate Hopf-theoretic generalisation

is the notion of Hopf brace, which is the datum of two Hopf algebra structures

(𝐻, ·, 1,Δ, 𝜖 , 𝑆) and (𝐻, •, 1,Δ, 𝜖 , 𝑇) on the same coalgebra (𝐻,Δ, 𝜖), satisfying an

analogous compatibility [5]. The correspondence between skew braces, matched pairs

of actions, and bijective 1-cocycles generalises naturally to cocommutative Hopf
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braces, cocommutative matched pairs on a Hopf algebra, and bijective 1-cocycles of

cocommutative Hopf algebras. The correspondence between Hopf braces and bijec-

tive 1-cocycles is true without the assumption of cocommutativity—in fact, the two

structures are strongly related, and the same equivalence holds true in any braided

monoidal category [15]. However, the assumption of cocommutativity is necessary

for the equivalence with matched pairs; which is, in turn, crucial in order to bridge

Hopf braces with the world of braiding operators. Thus, cocommutativity seemed hard

to relax, without sacrificing the backbone of the correspondence theorem: this is the

premise to our investigation.

In this paper, we get rid of the cocommutativity hypothesis. As in [5], we consider

matched pairs of Hopf algebras, satisfying a braided-commutativity condition: we call

them matched pairs of actions on a Hopf algebra (the name being reminiscent of matched

pairs of actions on a group, extensively used by Lu, Yan and Zhu [24] with the name

compatible actions). Then, in §3, we establish a correspondence between such matched

pairs of actions, and Yetter–Drinfeld braces. A Yetter–Drinfeld brace is the datum of

a Hopf algebra 𝐻• = (𝐻, •, 1,Δ, 𝜖 , 𝑇), and a Hopf algebra (𝐻, ·, 1,Δ, 𝜖 , 𝑆) in
𝐻•
𝐻•YD

(which we call the transmutation of 𝐻•
); where the two structures satisfy some tech-

nical hypotheses, and the same compatibility as Hopf braces. It comes out that the

notions of Yetter–Drinfeld brace and of Hopf brace coincide in the cocommutative

case.

It is natural to ask whether Yetter–Drinfeld braces can be interpreted as 1-cocycles

as well. This is positively answered in §4.

In §5, we present a vast class of Yetter–Drinfeld braces that are, generally, not

Hopf braces. Given any coquasitriangular Hopf algebra (𝐻, •, 1,Δ, 𝜖 , 𝑇,R), we shall

be able to construct a second operation · and a linear map 𝑆 : 𝐻 → 𝐻, yielding a

Yetter–Drinfeld brace. In this case, the additional structure on 𝐻 coincides with the

transmutation of 𝐻•
, introduced by Majid [27, 28]. Therefore, we obtain in particular

an interpretation of the theory of transmutation, within the frame of Yetter–Drinfeld

braces. The map 𝜎 : 𝐻 ⊗ 𝐻 → 𝐻 ⊗ 𝐻, 𝜎(𝑎 ⊗ 𝑏) := R−1 (𝑎1 ⊗ 𝑏1)𝑏2 ⊗ 𝑎2R(𝑎3 ⊗ 𝑏3)
is a braiding operator on 𝐻. When (𝐻•,R) is cotriangular, the braiding operator

𝜎 is involutive, and the corresponding algebra (𝐻, ·, 1,Δ, 𝜖 , 𝑆) in Hopf(𝐻•
𝐻•YD) is

braided-commutative with respect to the braiding of
𝐻•
𝐻•YD.

This entire class of Yetter–Drinfeld braces descending from coquasitriangular

Hopf algebras is, in some way, “orthogonal” to the class of cocommutative Hopf braces.

When (𝐻•,R) is a cocommutative coquasitriangular Hopf algebra, the corresponding

Yetter–Drinfeld brace is indeed the trivial Hopf brace (𝐻, •, •).
In conclusion to this paper, §6 presents several examples of coquasitriangular Hopf

algebras, and describes their associated Yetter–Drinfeld braces.

Notations and conventions. We shall denote by (M, ⊗, 1l, 𝜎) a braided monoidal

category, with monoidal product ⊗, unit object 1l, and braiding 𝜎. Comforted by the

MacLane Coherence Theorem, we shall consistently be sloppy on associativity and

unit constraints. In the rest of this paper, we adopt the notation 𝑓 𝑔 for the composition

of maps 𝑓 ◦𝑔. The categories of algebras, coalgebras, bialgebras and Hopf algebras inM
will be denoted by Mon(M), Comon(M), Bimon(M) and Hopf(M), respectively.

We shall usually denote by 𝐻 a bialgebra in M, by 𝐻M, M𝐻 ,
𝐻M, M𝐻

, 𝐻M𝐻 and
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𝐻M𝐻
its category of left and right modules, left and right comodules, bimodules, and

bicomodules, respectively. Unless otherwise specified, our setting will be the category

𝔐 = Veck of vector spaces over k, with braiding given by the canonical flip 𝜏.

Symbols such as •, · will usually signify the multiplication of an algebra 𝐴. Equiv-

alently, the multiplication will be denoted by a map 𝑚, 𝑚 · or 𝑚• : 𝐴 ⊗ 𝐴 → 𝐴. The

unit is denoted by 1 or, equivalently, by a map 𝑢 : k → 𝐴. The comultiplication and

the counit of a coalgebra will be denotedy by Δ and 𝜖 , respectively. Subscripts will be

added for clarity, whenever needed.

In our computations with coalgebras, we shall consistently employ Sweedler’s nota-
tion Δ(𝑎) =

∑
𝑖 𝑎
𝑖
1
⊗ 𝑎𝑖

2
= 𝑎1 ⊗ 𝑎2, omitting the summation. A similar notation is

adopted for left coactions 𝑎 ↦→ 𝑎−1 ⊗ 𝑎0, and for right coactions 𝑎 ↦→ 𝑎0 ⊗ 𝑎1.

2 Preliminaries

In this section, we introduce the main notions that we are going to use throughout the

paper. Namely, we describe matched pairs of actions on a bialgebra, and we survey the

fundamentals on Hopf braces.

2.1 Matched pairs of actions

Matched pairs of groups, enabling to define a Zappa–Szép product, have been known

for a long time. On the other hand, the notion of a matched pair of Hopf algebras was

introduced by Singer [37] in the graded case, and the current notion was introduced

by Majid [25]. We consider matched pairs of actions on Hopf algebras, which will turn

out to be a subclass of matched pairs of Hopf algebras [30, Definition 7.2.1]. Matched

pairs of actions on groups have been already used, e.g. in the seminal work of Lu, Yan

and Zhu [24], and then mutuated in several different contexts, such as for groupoids

by Andruskiewitsch [3].

Definition 2.1 Let 𝐻 be a bialgebra, • be its algebra product. A matched pair of actions
(𝐻,⇀,↼) on 𝐻 is the datum of a left action ⇀ and a right action ↼ of 𝐻 on itself,

such that 𝐻 is a left 𝐻-module coalgebra and a right 𝐻-module coalgebra with the

respective actions, and the following conditions hold for all 𝑎, 𝑏, 𝑐 ∈ 𝐻:

𝑎 ⇀ 1 = 𝜖 (𝑎)1, i.e. 𝑢𝐻 is a morphism in 𝐻𝔐; (mp.1)

1 ↼ 𝑎 = 𝜖 (𝑎)1, i.e. 𝑢𝐻 is a morphism in 𝔐𝐻 ; (mp.2)

𝑎 ⇀ (𝑏 • 𝑐) = (𝑎1 ⇀ 𝑏1) • ((𝑎2 ↼ 𝑏2) ⇀ 𝑐); (mp.3)

(𝑎 • 𝑏) ↼ 𝑐 = (𝑎 ↼ (𝑏1 ⇀ 𝑐1)) • (𝑏2 ↼ 𝑐2); (mp.4)

𝑎 • 𝑏 = (𝑎1 ⇀ 𝑏1) • (𝑎2 ↼ 𝑏2). (★)

A morphism of matched pairs of actions between (𝐻,⇀𝐻 ,↼𝐻 ) and (𝐾,⇀𝐾 ,↼𝐾 ) is a

morphism of bialgebras𝐻 → 𝐾 that intertwines the two left actions and the two right

actions, respectively, in the following sense:

𝑓 (𝑎 ⇀𝐻 𝑏) = 𝑓 (𝑎) ⇀𝐾 𝑓 (𝑏), 𝑓 (𝑎 ↼𝐻 𝑏) = 𝑓 (𝑎) ↼𝐾 𝑓 (𝑏).

The category of matched pairs of actions (in Veck) will be denoted by MP(Veck).
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A pair of actions (⇀,↼) on a bialgebra 𝐻 satisfying (mp.1)–(mp.4) allows one to

construct the double cross product𝐻 ⊲⊳ 𝐻, as described in Majid [30], which is the vector

space 𝐻 ⊗ 𝐻 endowed with the algebra structure given by the product

(𝑎 ⊗ ℎ) (𝑏 ⊗ 𝑔) := 𝑎 • (ℎ1 ⇀ 𝑏1) ⊗ (ℎ2 ↼ 𝑏2) • 𝑔,

with unit 1𝐻 ⊗ 1𝐻 , and the usual tensor product coalgebra structure. Then 𝐻 ⊲⊳ 𝐻

becomes a bialgebra if and only if the additional condition

(𝑎1 ⇀ 𝑏1) ⊗ (𝑎2 ↼ 𝑏2) = (𝑎2 ⇀ 𝑏2) ⊗ (𝑎1 ↼ 𝑏1) (mp.5)

holds; and in this case, (𝐻, 𝐻) is a matched pair of bialgebras in the sense of Majid [30,

Definition 7.2.1]. Notice that (mp.5) is trivially satisfied in case 𝐻 is cocommutative.

When𝐻 is a Hopf algebra, a matched pair of bialgebras (𝐻, 𝐻) will be usually called

a matched pair on 𝐻.

Remark 2.1 For any bialgebra 𝐻, the actions 𝑎 ⇀ 𝑏 := 𝜖 (𝑎)𝑏, 𝑎 ↼ 𝑏 := 𝑎 𝜖 (𝑏)
always satisfy (mp.1)–(mp.5). They moreover satisfy (★) if and only if • is commuta-

tive. Notice that (★) is equivalent to asking that 𝑚• : 𝐻 ⊲⊳ 𝐻 → 𝐻 is a morphism of

algebras.

The following result simply follows by an argument of naturality.

Lemma 2.2 LetM be a (strict) braided monoidal category with braiding𝜎, let𝐻 be an object
in M , and 𝑚 : 𝐻 ⊗ 𝐻 → 𝐻, 𝑢 : 1l → 𝐻 any morphisms in M. Then, the following hold:

𝜎𝐻,𝐻 (Id ⊗ 𝑢) = 𝑢 ⊗ Id; (br.1)

𝜎𝐻,𝐻 (𝑢 ⊗ Id) = Id ⊗ 𝑢; (br.2)

𝜎𝐻,𝐻𝑚23 = 𝑚12 (𝜎𝐻,𝐻 )23 (𝜎𝐻,𝐻 )12; (br.3)

𝜎𝐻,𝐻𝑚12 = 𝑚23 (𝜎𝐻,𝐻 )12 (𝜎𝐻,𝐻 )23. (br.4)

Moreover, if𝑚 is a monomorphism in M and 𝜍 : 𝐻 ⊗𝐻 → 𝐻 ⊗𝐻 is a morphism satisfying
(br.1)–(br.4), then 𝜍 satisfies the hexagonal axioms, and hence (𝐻, 𝜍) is a braided object in
M.

Lemma 2.3 (cf. Tambara [40, Proposition 2.2]) Let 𝐻 be a bialgebra. Suppose given a left
action⇀: 𝐻 ⊗ 𝐻 → 𝐻 and a right action↼: 𝐻 ⊗ 𝐻 → 𝐻, such that 𝐻 is a left 𝐻-module
coalgebra and a right𝐻-module coalgebra with the respective actions. Define𝜎𝐻,𝐻 : 𝐻⊗𝐻 →
𝐻 ⊗ 𝐻 by

𝜎𝐻,𝐻 (𝑎 ⊗ 𝑏) := (𝑎1 ⇀ 𝑏1) ⊗ (𝑎2 ↼ 𝑏2).

Then, 𝜎𝐻,𝐻 satisfies (br.1)–(br.4) if and only if⇀ and↼ satisfy (mp.1)–(mp.4).

Proof One has

𝜎𝐻,𝐻𝑚12 (𝑎 ⊗ 𝑏 ⊗ 𝑐) = 𝜎𝐻,𝐻 (𝑎𝑏 ⊗ 𝑐) = (𝑎1𝑏1 ⇀ 𝑐1) ⊗ (𝑎2𝑏2 ↼ 𝑐2),
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while on the other hand

𝑚23 (𝜎𝐻,𝐻 )12 (𝜎𝐻,𝐻 )23 (𝑎 ⊗ 𝑏 ⊗ 𝑐)
= 𝑚23 (𝜎𝐻,𝐻 )12

(
𝑎 ⊗ (𝑏1 ⇀ 𝑐1) ⊗ (𝑏2 ↼ 𝑐2)

)
= 𝑚23

(
(𝑎1 ⇀ (𝑏1 ⇀ 𝑐1)1) ⊗ (𝑎2 ↼ (𝑏1 ⇀ 𝑐1)2) ⊗ (𝑏2 ↼ 𝑐2)

)
= (𝑎1 ⇀ (𝑏1 ⇀ 𝑐1)) ⊗ (𝑎2 ↼ (𝑏2 ⇀ 𝑐2)) (𝑏3 ↼ 𝑐3)
= (𝑎1𝑏1 ⇀ 𝑐1) ⊗ (𝑎2 ↼ (𝑏2 ⇀ 𝑐2)) (𝑏3 ↼ 𝑐3).

If (br.4) holds true then, by applying 𝜖 ⊗ Id on both sides, we obtain (𝑎𝑏) ↼ 𝑐 =

(𝑎 ↼ (𝑏1 ⇀ 𝑐1)) (𝑏2 ↼ 𝑐2), which is (mp.4). If conversely (mp.4) holds true, then

𝜎𝐻,𝐻 clearly satisfies (br.4). One analogously proves that (br.3) is equivalent to (mp.3).

Observe that

𝜎𝐻,𝐻 (1 ⊗ 𝑎) = (1 ⇀ 𝑎1) ⊗ (1 ↼ 𝑎2) = 𝑎1 ⊗ (1 ↼ 𝑎2).

If (br.2) holds true, then

𝑎1 ⊗ (1 ↼ 𝑎2) = 𝑎 ⊗ 1.

Hence, by applying 𝜖 ⊗ Id, we obtain 1 ↼ 𝑎 = 𝜖 (𝑎)1, which is (mp.2). Conversely,

if (mp.2) holds true, then 𝜎𝐻,𝐻 clearly satisfies (br.2). The equivalence between (br.1)

and (mp.1) is proven analogously. ■

Remark 2.4 Let 𝐻 be a bialgebra, and suppose given

𝜎𝐻,𝐻 (𝑥 ⊗ 𝑦) = (𝑥1 ⇀ 𝑦1) ⊗ (𝑥2 ↼ 𝑦2)

where ⇀: 𝐻 ⊗ 𝐻 → 𝐻 and ↼: 𝐻 ⊗ 𝐻 → 𝐻 are such that 𝜖 (𝑎 ⇀ 𝑏) = 𝜖 (𝑎)𝜖 (𝑏) =
𝜖 (𝑎 ↼ 𝑏) for all 𝑎, 𝑏 ∈ 𝐻. Then,⇀ is retrieved as (Id⊗𝜖)𝜎𝐻,𝐻 , and↼ as (𝜖⊗Id)𝜎𝐻,𝐻
(see [30, p. 300]).

Although there are examples of braidings that are obtained from a pair of actions

satisfying (mp.1)–(mp.4) (see §5.2), it is not true that all braidings are obtained from a

pair of maps as in Remark 2.4:

Counterexample 2.5 Consider, for instance, a coquasitriangular bialgebra (𝐻,R) (see

§5.1) and the usual braiding (5.1) on 𝔐𝐻

𝜎𝐻,𝐻 : 𝐻 ⊗ 𝐻 → 𝐻 ⊗ 𝐻, 𝑎 ⊗ 𝑏 ↦→ 𝑏1 ⊗ 𝑎1R(𝑎2 ⊗ 𝑏2).

If we suppose by contradiction that𝜎𝐻,𝐻 (𝑎 ⊗ 𝑏) = (𝑎1 ⇀ 𝑏1) ⊗ (𝑎2 ↼ 𝑏2) for some

maps⇀,↼, then Remark 2.4 yields

𝑎 ⇀ 𝑏 = R(𝑎 ⊗ 𝑏2)𝑏1, 𝑎 ↼ 𝑏 = 𝑎1R(𝑎2 ⊗ 𝑏),

but then

𝑏1 ⊗ 𝑎1R(𝑎2 ⊗ 𝑏2) = 𝜎𝐻,𝐻 (𝑎 ⊗ 𝑏)
= (𝑎1 ⇀ 𝑏1) ⊗ (𝑎2 ↼ 𝑏2)
= R(𝑎1 ⊗ 𝑏2)𝑏1 ⊗ 𝑎2R(𝑎3 ⊗ 𝑏3),
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and this is generally false. As an example, consider the coquasitriangular structure on

the Sweedler’s Hopf algebra described in §6.1, with 𝑎 = 𝑏 = 𝑔: one hasR(𝑔⊗𝑔) = −1,

whence 𝑏1 ⊗ 𝑎1R(𝑎2 ⊗ 𝑏2) = −𝑔 ⊗ 𝑔 and R(𝑎1 ⊗ 𝑏2)𝑏1 ⊗ 𝑎2R(𝑎3 ⊗ 𝑏3) = 𝑔 ⊗ 𝑔,

which differ if char(k) ≠ 2.

Lemma 2.6 (cf. Majid [30, proof of Theorem 7.2.3]) Given a bialgebra 𝐻 and a morphism
𝜎𝐻,𝐻 : 𝐻 ⊗ 𝐻 → 𝐻 ⊗ 𝐻 satisfying (br.1)–(br.4), the morphisms ⇀ := (Id ⊗ 𝜖)𝜎𝐻,𝐻
and↼ := (𝜖 ⊗ Id)𝜎𝐻,𝐻 are left and right 𝐻-actions, respectively.

Proof We compute

1 ⇀ 𝑐 = (Id ⊗ 𝜖)𝜎𝐻,𝐻 (1 ⊗ 𝑐) = (Id ⊗ 𝜖) (𝑐 ⊗ 1) = 𝑐,

and also

𝑎𝑏 ⇀ 𝑐 = (Id ⊗ 𝜖)𝜎𝐻,𝐻𝑚12 (𝑎 ⊗ 𝑏 ⊗ 𝑐)
= (Id ⊗ 𝜖)𝑚23 (𝜎𝐻,𝐻 )12 (𝜎𝐻,𝐻 )23 (𝑎 ⊗ 𝑏 ⊗ 𝑐)
= (Id ⊗ 𝜖 ⊗ 𝜖) (𝜎𝐻,𝐻 )12 (𝜎𝐻,𝐻 )23 (𝑎 ⊗ 𝑏 ⊗ 𝑐)
= (Id ⊗ 𝜖)𝜎𝐻,𝐻 (Id ⊗ Id ⊗ 𝜖) (Id ⊗ 𝜎𝐻,𝐻 ) (𝑎 ⊗ 𝑏 ⊗ 𝑐)
= (Id ⊗ 𝜖)𝜎𝐻,𝐻 (𝑎 ⊗ (𝑏 ⇀ 𝑐))
= 𝑎 ⇀ (𝑏 ⇀ 𝑐).

The proof is analogous for↼. ■

In general, when 𝜎𝐻,𝐻 does not have the form 𝜎𝐻,𝐻 (𝑥 ⊗ 𝑦) = (𝑥1 ⇀ 𝑦1) ⊗ (𝑥2 ↼

𝑦2), the actions⇀ and↼ defined as in the previous lemma need not form a matched

pair, as the following counterexample shows.

Counterexample 2.7 Let us consider again

𝜎𝐻,𝐻 : 𝐻 ⊗ 𝐻 → 𝐻 ⊗ 𝐻, 𝑎 ⊗ 𝑏 ↦→ 𝑏1 ⊗ 𝑎1R(𝑎2 ⊗ 𝑏2)

and the left and right 𝐻-actions

𝑎 ⇀ 𝑏 = R(𝑎 ⊗ 𝑏2)𝑏1, 𝑎 ↼ 𝑏 = 𝑎1R(𝑎2 ⊗ 𝑏).

Then, we have 𝑎 ⇀ 𝑏𝑐 = R(𝑎 ⊗ 𝑏2𝑐2)𝑏1𝑐1, while

(𝑎1 ⇀ 𝑏1) ((𝑎2 ↼ 𝑏2) ⇀ 𝑐) = R(𝑎1 ⊗ 𝑏2)R(𝑎2 ⊗ 𝑐2)R(𝑎3 ⊗ 𝑏3)𝑏1𝑐1

= R(𝑎 ⊗ 𝑏3𝑐2𝑏2)𝑏1𝑐1.

These are generally distinct (consider for instance the Sweedler’s Hopf algebra in §6.1,

𝑎 = 𝑏 = 𝑐 = 𝑔, char(k) ≠ 2).

2.2 Hopf braces

A skew brace, defined by Guarnieri and Vendramin [18] generalising Rump [35], is

the datum of two group operations on the same set, satisfying a compatibility. Skew

braces are ubiquitous in the theory of braidings and the Yang–Baxter equation, and
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hence yearned for a Hopf-theoretic version. This was defined by Angiono, Galindo

and Vendramin [5]:

Definition 2.2 A Hopf brace (𝐻, ·, •, 1,Δ, 𝜖 , 𝑆, 𝑇) is the datum of two Hopf alge-

bra structures (𝐻, ·, 1,Δ, 𝜖 , 𝑆) and (𝐻, •, 1′,Δ, 𝜖 , 𝑇) on the same coalgebra (𝐻,Δ, 𝜖),
satisfying the following compatibility:

𝑎 • (𝑏 · 𝑐) = (𝑎1 • 𝑏) · 𝑆(𝑎2) · (𝑎3 • 𝑐). (hbc)

Notice that the compatibility condition forces 1 = 1
′

(see [5, Remark 1.3]).

When no confusion arises, we shall simply indicate a Hopf brace by (𝐻, ·, •). We

recall the following characterisation:

Proposition 2.8 (Angiono, Galindo and Vendramin [5, Theorems 1.12, 3.3, and Corol-
lary 2.4]) Given a Hopf algebra 𝐻, the following data are equivalent:

i. a Hopf brace structure (𝐻, ·, •) on 𝐻;
ii. a Hopf algebra 𝐴, an action ⇀ of 𝐴 on 𝐻 such that 𝐻 is a left 𝐴-module algebra, and an

isomorphism of coalgebras 𝜋 : 𝐴 → 𝐻 which is a 1-cocycle of bialgebras; i.e., 𝜋(𝑎𝑏) =

𝜋(𝑎1) (𝑎2 ⇀ 𝜋(𝑏)).

In case 𝐻 is cocommutative, the previous two are also equivalent to

iii. a matched pair on 𝐻, satisfying the additional condition (★).

Moreover, in the cocommutative case,

𝜎𝐻,𝐻 : 𝑎 ⊗ 𝑏 ↦→ (𝑎1 ⇀ 𝑏1) ⊗ (𝑎2 ↼ 𝑏2)

is a coalgebra isomorphism and a solution to the braid equation on 𝐻.

The additional condition (★) is the braided commutativity of • with respect to the

braiding operator 𝜎𝐻,𝐻 .

Remark 2.9 In the cocommutative case, the matched pair obtained from a Hopf brace

(𝐻, ·, •) is given by ℎ ⇀ 𝑘 = 𝑆(ℎ1) · (ℎ2 • 𝑘) and ℎ ↼ 𝑘 = 𝑇 (ℎ1 ⇀ 𝑘1) • ℎ2 • 𝑘2.

Then, the corresponding solution of the braid equation is

𝜎𝐻,𝐻 (𝑥 ⊗ 𝑦) =
(
𝑆(𝑥1) · (𝑥2 • 𝑦1)

)
⊗
(
𝑇 (𝑆(𝑥3) · (𝑥4 • 𝑦2)) • 𝑥5 • 𝑦3

)
.

3 Matched pairs of actions and Yetter–Drinfeld braces

In this section, we generalise the correspondence of Proposition 2.8 by dropping the

hypothesis of cocommutativity. As a result, we shall obtain a correspondence between

matched pairs of actions on a Hopf algebra, and novel structures which we call Yetter–
Drinfeld braces.
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3.1 Yetter–Drinfeld braces

Let (𝐻, •, 1,Δ, 𝜖 , 𝑇) be a Hopf algebra, (𝐻,⇀,↼) be a matched pair of actions on

𝐻. We begin by defining a second operation · and a map 𝑆 : 𝐻 → 𝐻, mimicking [5,

Proposition 3.2]:

𝑎 · 𝑏 := 𝑎1 • (𝑇 (𝑎2) ⇀ 𝑏); (3.1)

𝑆(𝑎) := 𝑎1 ⇀ 𝑇 (𝑎2). (3.2)

Notice that • is retrieved from · as

𝑎 • 𝑏 = 𝑎1 • (𝑇 (𝑎2) ⇀ (𝑎3 ⇀ 𝑏)) = 𝑎1 · (𝑎2 ⇀ 𝑏). (3.3)

Recall that the linearity of Δ and 𝜖 with respect to⇀ read as:

Δ(𝑎 ⇀ 𝑏) = (𝑎1 ⇀ 𝑏1) ⊗ (𝑎2 ⇀ 𝑏2), 𝜖 (𝑎 ⇀ 𝑏) = 𝜖 (𝑎)𝜖 (𝑏),

similarly for the linearity of Δ and 𝜖 with respect to↼.

Remark 3.1 The condition (★) allows one to retrieve the right action from the left

action, and vice versa. Indeed, by the linearity of Δ and 𝜖 with respect to ⇀, (★) is

equivalent to

𝑎 ↼ 𝑏 = 𝑇 (𝑎1 ⇀ 𝑏1) • 𝑎2 • 𝑏2. (3.4)

Moreover, (3.4) is clearly equivalent to

𝑇 (𝑎 ⇀ 𝑏) = (𝑎1 ↼ 𝑏1) • 𝑇 (𝑏2) • 𝑇 (𝑎2). (3.5)

From (3.5) one can easily deduce

𝑇 (𝑎1 ⇀ 𝑇 (𝑎2)) = 𝑎1 ↼ 𝑇 (𝑎2). (3.6)

Remark 3.2 Let us observe that 𝑆2
is given on an element 𝑎 ∈ 𝐻 by

𝑆2 (𝑎) = 𝑆(𝑎1 ⇀ 𝑇 (𝑎2))
= (𝑎1 ⇀ 𝑇 (𝑎4)) ⇀ 𝑇 (𝑎2 ⇀ 𝑇 (𝑎3))

(3.6)

= (𝑎1 ⇀ 𝑇 (𝑎4)) ⇀ (𝑎2 ↼ 𝑇 (𝑎3)).

Lemma 3.3 One has Δ(𝑎 · 𝑏) = (𝑎1 • (𝑇 (𝑎3) ⇀ 𝑏1)) ⊗ (𝑎2 · 𝑏2).

Proof We compute

Δ(𝑎 · 𝑏) = Δ(𝑎1 • (𝑇 (𝑎2) ⇀ 𝑏))
= (𝑎1 • (𝑇 (𝑎3) ⇀ 𝑏)1) ⊗ (𝑎2 • (𝑇 (𝑎3) ⇀ 𝑏)2)
= (𝑎1 • (𝑇 (𝑎4) ⇀ 𝑏1)) ⊗ (𝑎2 • (𝑇 (𝑎3) ⇀ 𝑏2))
= (𝑎1 • (𝑇 (𝑎3) ⇀ 𝑏1)) ⊗ (𝑎2 · 𝑏2).

■
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Although · is not a morphism of coalgebras inVeck, this will be sorted out by setting

ourselves in a suitable category.

An immediate computation shows the form of the twice iterated Δ, which is going

to come in handy later:

(Δ ⊗ Id)Δ (𝑎 · 𝑏) = Δ(𝑎1 • (𝑇 (𝑎3) ⇀ 𝑏1)) ⊗ (𝑎2 · 𝑏2)
= (𝑎1 • (𝑇 (𝑎5) ⇀ 𝑏1)) ⊗ (𝑎2 • (𝑇 (𝑎4) ⇀ 𝑏2)) ⊗ (𝑎3 · 𝑏3)
= (𝑎1 • (𝑇 (𝑎6) ⇀ 𝑏1)) ⊗ (𝑎2 • (𝑇 (𝑎5) ⇀ 𝑏2))

⊗ (𝑎3 • (𝑇 (𝑎4) ⇀ 𝑏3)).

(3.7)

Proposition 3.4 Let (𝐻, •, 1,Δ, 𝜖 , 𝑇) be a Hopf algebra, (𝐻,⇀,↼) a matched pair of
actions. Define · and 𝑆 as in (3.1), (3.2). Then, (𝐻, ·, 1) becomes an algebra, 𝜖 is a morphism
of algebras with respect to this structure, and 𝑆 satisfies 𝑎1 · 𝑆(𝑎2) = 𝜖 (𝑎)1 = 𝑆(𝑎1) · 𝑎2.
Moreover, one has

𝑎 ⇀ 𝑏 = 𝑆(𝑎1) · (𝑎2 • 𝑏) (3.8)

and the two operations • and · satisfy the Hopf brace compatibility (hbc).

Proof We first observe that

𝑎 · 1 = 𝑎1 • (𝑇 (𝑎2) ⇀ 1) = 𝑎1 • 𝜖 (𝑇 (𝑎2))1 = 𝑎1𝜖 (𝑎2) = 𝑎,
1 · 𝑎 = 1 • (𝑇 (1) ⇀ 𝑎) = 𝑎,

for all 𝑎 ∈ 𝐻. We now prove that · is associative. Given 𝑎, 𝑏, 𝑐 ∈ 𝐻 we have:

𝑎 · (𝑏 · 𝑐) = 𝑎 ·
(
𝑏1 • (𝑇 (𝑏2) ⇀ 𝑐)

)
= 𝑎1 •

(
𝑇 (𝑎2) ⇀

(
𝑏1 • (𝑇 (𝑏2) ⇀ 𝑐)

) )
(mp.3)

= 𝑎1 •
(
𝑇 (𝑎3) ⇀ 𝑏1

)
•
(
(𝑇 (𝑎2) ↼ 𝑏2) ⇀ (𝑇 (𝑏3) ⇀ 𝑐)

)
(3.4)

= 𝑎1 • (𝑇 (𝑎4) ⇀ 𝑏1)

•
(
𝑇
(
𝑇 (𝑎3) ⇀ 𝑏2

)
⇀

(
𝑇 (𝑎2) ⇀ (𝑏3 ⇀ (𝑇 (𝑏4) ⇀ 𝑐))

) )
= 𝑎1 • (𝑇 (𝑎4) ⇀ 𝑏1) •

(
𝑇
(
𝑇 (𝑎3) ⇀ 𝑏2

)
⇀

(
𝑇 (𝑎2) ⇀ 𝑐

) )
= 𝑎1 • (𝑇 (𝑎4) ⇀ 𝑏1) •

(
𝑇
(
𝑎2 • (𝑇 (𝑎3) ⇀ 𝑏2)

)
⇀ 𝑐

)
= 𝑎1 • (𝑇 (𝑎3) ⇀ 𝑏1) •

(
𝑇 (𝑎2 · 𝑏2) ⇀ 𝑐

)
= (𝑎 · 𝑏)1 •

(
𝑇
(
(𝑎 · 𝑏)2

)
⇀ 𝑐

)
= (𝑎 · 𝑏) · 𝑐,

as desired. We then compute

𝜖 (𝑎 · 𝑏) = 𝜖 (𝑎1 • (𝑇 (𝑎2) ⇀ 𝑏)) = 𝜖 (𝑎1)𝜖 (𝑇 (𝑎2) ⇀ 𝑏)
= 𝜖 (𝑇 (𝑎))𝜖 (𝑏) = 𝜖 (𝑎)𝜖 (𝑏).
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Moreover, one has

𝑎1 · 𝑆(𝑎2) = 𝑎1 • (𝑇 (𝑎2) ⇀ 𝑆(𝑎3))
= 𝑎1 • (𝑇 (𝑎2) ⇀ (𝑎3 ⇀ 𝑇 (𝑎4)))
= 𝑎1 • (𝑇 (𝑎2) • 𝑎3 ⇀ 𝑇 (𝑎4))
= 𝑎1 • 𝑇 (𝑎2)
= 𝜖 (𝑎)1

and

𝑆(𝑎1) · 𝑎2 = 𝑆(𝑎1)1 • (𝑇 (𝑆(𝑎1)2) ⇀ 𝑎2)
= (𝑎11

⇀ 𝑇 (𝑎2)1) • (𝑇 (𝑎12
⇀ 𝑇 (𝑎2)2) ⇀ 𝑎3)

= (𝑎1 ⇀ 𝑇 (𝑎4)) • (𝑇 (𝑎2 ⇀ 𝑇 (𝑎3)) ⇀ 𝑎5)
(3.6)

= (𝑎1 ⇀ 𝑇 (𝑎4)) •
( (
𝑎2 ↼ 𝑇 (𝑎3)

)
⇀ 𝑎5

)
= (𝑎11

⇀ 𝑇 (𝑎2)1) •
( (
𝑎12

↼ 𝑇 (𝑎2)2

)
⇀ 𝑎3

)
(mp.3)

= 𝑎1 ⇀ (𝑇 (𝑎2) • 𝑎3)
= 𝜖 (𝑎)1.

As for (3.8), observe that

𝑎 ⇀ 𝑏 = 𝑆(𝑎1) · 𝑎2 · (𝑎3 ⇀ 𝑏) (3.3)

= 𝑆(𝑎1) · (𝑎2 • 𝑏).

We finally prove the Hopf brace compatibility (hbc):

𝑎 • (𝑏 · 𝑐) = 𝑎 • 𝑏1 • (𝑇 (𝑏2) ⇀ 𝑐)
= 𝑎1 • 𝑏1 • (𝑇 (𝑏2) • 𝑇 (𝑎2) • 𝑎3 ⇀ 𝑐)
= 𝑎1 • 𝑏1 • (𝑇 (𝑎2 • 𝑏2) ⇀ (𝑎3 ⇀ 𝑐))
= (𝑎1 • 𝑏) · (𝑎2 ⇀ 𝑐)

(3.8)

= (𝑎1 • 𝑏) · 𝑆(𝑎2) · (𝑎3 • 𝑐).

■

As promised, we now reinterpret this additional operation · in a suitable category,

which is going to be the category of Yetter–Drinfeld modules over 𝐻.

Definition 3.1 Let (𝐻, •, 1,Δ, 𝜖 , 𝑇) be a Hopf algebra. A (left-left) Yetter–Drinfeld mod-
ule on 𝐻 is the datum of a left 𝐻-module 𝑋 with an action ⇀ : 𝐻 ⊗ 𝑋 → 𝑋 , which

is also a left 𝐻-comodule with a coaction 𝜌 : 𝑋 → 𝐻 ⊗ 𝑋 , satisfying the following

compatibility for all 𝑥 ∈ 𝑋 , 𝑎 ∈ 𝐻:

𝜌(𝑎 ⇀ 𝑥) = 𝑎1 • 𝑥−1 • 𝑇 (𝑎3) ⊗ (𝑎2 ⇀ 𝑥0). (yd)

A morphism of Yetter–Drinfeld modules is a morphism of both left 𝐻-modules and

left𝐻-comodules. We denote by
𝐻
𝐻
YD the category of Yetter–Drinfeld modules over

𝐻.
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Lemma 3.5 Let (𝐻, •, 1,Δ, 𝜖 , 𝑇) be a Hopf algebra. Suppose that ⇀ : 𝐻 ⊗ 𝐻 → 𝐻 is a
morphism of coalgebras,↼ : 𝐻 ⊗𝐻 → 𝐻 is a linear map satisfying 𝜖 (𝑎 ↼ 𝑏) = 𝜖 (𝑎)𝜖 (𝑏),
and (★) is satisfied. The following conditions are equivalent, and they are all equivalent to
(mp.5):

(𝑎 ↼ 𝑏)1 ⊗ (𝑎 ↼ 𝑏)2 = (𝑎1 ↼ 𝑏1) ⊗ (𝑎2 ↼ 𝑏2),
i.e. ↼ is a morphism of coalgebras ;

(3.9)(
(𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3)

)
⊗
(
(𝑎2 ⇀ 𝑏2) • (𝑎4 ↼ 𝑏4)

)
=
(
(𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3)1

)
⊗
(
(𝑎2 ⇀ 𝑏2) • (𝑎3 ↼ 𝑏3)2

)
;

(3.10)

(𝑎2 ↼ 𝑏2) ⊗
(
(𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3)

)
= (𝑎1 ↼ 𝑏1) ⊗ (𝑎2 • 𝑏2); (3.11)(

(𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3)
)
⊗ (𝑎2 ⇀ 𝑏2) = (𝑎1 • 𝑏1) ⊗ (𝑎2 ⇀ 𝑏2); (3.12)

In particular, having a matched pair of actions (𝐻,⇀,↼) all the previous equalities hold true.

Proof First, we notice that(
(𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3)1

)
⊗
(
(𝑎2 ⇀ 𝑏2) • (𝑎3 ↼ 𝑏3)2

)
=
(
(𝑎1 ⇀ 𝑏1)1 • (𝑎2 ↼ 𝑏2)1

)
⊗
(
(𝑎1 ⇀ 𝑏1)2 • (𝑎2 ↼ 𝑏2)2

)
=
(
(𝑎1 ⇀ 𝑏1) • (𝑎2 ↼ 𝑏2)

)
1
⊗
(
(𝑎1 ⇀ 𝑏1) • (𝑎2 ↼ 𝑏2)

)
2

(★)

= (𝑎 • 𝑏)1 ⊗ (𝑎 • 𝑏)2

= (𝑎1 • 𝑏1) ⊗ (𝑎2 • 𝑏2).

Now, we check that (3.10) and (3.9) are equivalent:

(3.10) ⇔
(
𝑇 (𝑎1 ⇀ 𝑏1) • (𝑎2 ⇀ 𝑏2) • (𝑎4 ↼ 𝑏4)

)
⊗
(
(𝑎3 ⇀ 𝑏3) • (𝑎5 ↼ 𝑏5)

)
=
(
𝑇 (𝑎1 ⇀ 𝑏1) • (𝑎2 ⇀ 𝑏2) • (𝑎4 ↼ 𝑏4)1

)
⊗
(
(𝑎3 ⇀ 𝑏3) • (𝑎4 ↼ 𝑏4)2

)
⇔ (𝑎2 ↼ 𝑏2) ⊗

(
(𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3)

)
= (𝑎2 ↼ 𝑏2)1 ⊗

(
(𝑎1 ⇀ 𝑏1) • (𝑎2 ↼ 𝑏2)2

)
⇔ (𝑎3 ↼ 𝑏3) ⊗

(
𝑇 (𝑎1 ⇀ 𝑏1) • (𝑎2 ⇀ 𝑏2) • (𝑎4 ↼ 𝑏4)

)
= (𝑎3 ↼ 𝑏3)1 ⊗

(
𝑇 (𝑎1 ⇀ 𝑏1) • (𝑎2 ⇀ 𝑏2) • (𝑎3 ↼ 𝑏3)2

)
⇔ (𝑎1 ↼ 𝑏1) ⊗ (𝑎2 ↼ 𝑏2) = (𝑎 ↼ 𝑏)1 ⊗ (𝑎 ↼ 𝑏)2.

We prove that (3.11) and (3.12) are both equivalent to (3.10). One has

(𝑎2 ↼ 𝑏2) ⊗
(
(𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3)

)
= (𝑎1 ↼ 𝑏1) ⊗ (𝑎2 • 𝑏2)

⇔
(
(𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3)

)
⊗
(
(𝑎2 ⇀ 𝑏2) • (𝑎4 ↼ 𝑏4)

)
=
(
(𝑎1 ⇀ 𝑏1) • (𝑎2 ↼ 𝑏2)

)
⊗ (𝑎3 • 𝑏3)

⇔
(
(𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3)

)
⊗
(
(𝑎2 ⇀ 𝑏2) • (𝑎4 ↼ 𝑏4)

)
= (𝑎1 • 𝑏1) ⊗ (𝑎2 • 𝑏2)

⇔ (3.10).
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and

(3.10) ⇔
(
(𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3)

)
⊗
(
(𝑎2 ⇀ 𝑏2) • (𝑎4 ↼ 𝑏4)

)
= (𝑎1 • 𝑏1) ⊗ (𝑎2 • 𝑏2)

⇔
(
(𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3)

)
⊗
(
(𝑎2 ⇀ 𝑏2) • (𝑎4 ↼ 𝑏4)

)
= (𝑎1 • 𝑏1) ⊗

(
(𝑎2 ⇀ 𝑏2) • (𝑎3 ↼ 𝑏3)

)
⇔

(
(𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3)

)
⊗ (𝑎2 ⇀ 𝑏2) = (𝑎1 • 𝑏1) ⊗ (𝑎2 ⇀ 𝑏2),

where we use the fact that (3.10) implies (3.9) and 𝜖 (𝑎 ↼ 𝑏) = 𝜖 (𝑎)𝜖 (𝑏) in the latter

equivalence. This completes the proof that (3.9)–(3.12) are equivalent. Finally, using

the assumption (★), (mp.5) clearly implies (3.11); and, conversely, assuming (3.11) (and

thus (3.9)) we immediately retrieve (mp.5). ■

Corollary 3.6 Let (𝐻, •, 1,Δ, 𝜖 , 𝑇) be a Hopf algebra. Every matched pair of actions (𝐻,⇀
,↼) is a matched pair (𝐻, 𝐻) on 𝐻.

Lemma 3.7 Let (𝐻,⇀,↼) be as in the setting of Proposition 3.4. Then, (𝐻,⇀,Ad𝐿) is in
𝐻
𝐻
YD , where Ad𝐿 : 𝐻 → 𝐻 ⊗𝐻, 𝑎 ↦→ 𝑎1 •𝑇 (𝑎3) ⊗ 𝑎2 is the left 𝐻-adjoint coaction. As a

consequence, denoted by 𝜎YD the braiding of 𝐻
𝐻
YD , one has that 𝜎YD

𝐻,𝐻
: 𝐻 ⊗𝐻 → 𝐻 ⊗𝐻

is explicitly described by 𝜎YD
𝐻,𝐻

: 𝑎 ⊗ 𝑏 ↦→ (𝑎1 • 𝑇 (𝑎3) ⇀ 𝑏) ⊗ 𝑎2.

Proof We already know that (𝐻,⇀) is a left 𝐻-module and (𝐻,Ad𝐿) is a left 𝐻-

comodule. Since↼ is a morphism of coalgebras, the equivalent conditions of Lemma

3.5 hold true. We check the compatibility of Yetter–Drinfeld modules (yd):

Ad𝐿 (𝑎 ⇀ 𝑏) =
(
(𝑎1 ⇀ 𝑏1) • 𝑇 (𝑎3 ⇀ 𝑏3)

)
⊗ (𝑎2 ⇀ 𝑏2)

(3.5)

= (𝑎1 ⇀ 𝑏1) • (𝑎3 ↼ 𝑏3) • 𝑇 (𝑏4) • 𝑇 (𝑎4) ⊗ (𝑎2 ⇀ 𝑏2)
(3.12)

= 𝑎1 • 𝑏1 • 𝑇 (𝑏3) • 𝑇 (𝑎3) ⊗ (𝑎2 ⇀ 𝑏2)
= 𝑎1 • 𝑏−1 • 𝑇 (𝑎3) ⊗ (𝑎2 ⇀ 𝑏0).

■

Remark 3.8 Notice that the braiding 𝜎YD
𝐻,𝐻

coincides with the flip map 𝜏 in case the

adjoint coaction Ad𝐿 is trivial, i.e. 𝑎1 • 𝑇 (𝑎3) ⊗ 𝑎2 = 1 ⊗ 𝑎, which clearly happens in

the cocommutative case. Conversely, if 𝑎1 • 𝑇 (𝑎3) ⊗ 𝑎2 = 1 ⊗ 𝑎, then

𝑎1 • 𝑇 (𝑎3) ⊗ 𝑎2 = 1 ⊗ 𝑎 = 1 ⊗ 𝑎1𝜖 (𝑎2) = 𝑎2 • 𝑇 (𝑎3) ⊗ 𝑎1

and so 𝑎1 ⊗ 𝑎2 = 𝑎2 ⊗ 𝑎1, i.e. 𝐻 is cocommutative. Furthermore, let us also observe

that 𝜎YD
𝐻,𝐻

coincides with 𝜏 also in case⇀ is the trivial action.

Proposition 3.9 Let 𝐻 be a Hopf algebra, (𝐵, ·, 1𝐵,Δ𝐵, 𝜖𝐵) a bialgebra in 𝐻
𝐻
YD. Suppose

that 𝑆 : 𝐵 → 𝐵 is linear map, and a convolution inverse of Id𝐵: then, 𝐵 is a Hopf algebra in
𝐻
𝐻
YD , with antipode 𝑆.
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Proof 1
Define can : 𝐵⊗ 𝐵 → 𝐵⊗ 𝐵 as can := (𝑚𝐵 ⊗𝑚𝐵) (Id𝐵 ⊗𝜎YD

𝐵,𝐵
⊗ Id𝐵) (Id𝐵 ⊗

𝑢𝐵 ⊗ Δ𝐵) which is a composition of morphisms in
𝐻
𝐻
YD, and hence a morphism in

𝐻
𝐻
YD. The map can is explicitly given by can(𝑎 ⊗ 𝑏) = (𝑎 · 𝑏1) ⊗ 𝑏2. Since 𝑆 is a

convolution inverse of Id𝐵, can is invertible with inverse given by can
−1

: 𝑎 ⊗ 𝑏 ↦→
(𝑎 · 𝑆(𝑏1)) ⊗ 𝑏2. Since can is invertible and it is a morphism in

𝐻
𝐻
YD, the inverse is

also a morphism in
𝐻
𝐻
YD. Now observe that 𝑆 = (Id𝐵 ⊗ 𝜖𝐵)can

−1 (𝑢𝐵 ⊗ Id𝐵), thus

𝑆 is a composition of morphisms in
𝐻
𝐻
YD: thus 𝑆 is a morphism in

𝐻
𝐻
YD, and hence

𝐵 is in Hopf(𝐻
𝐻
YD). ■

We merge the previous results in the following theorem:

Theorem 3.10 Let (𝐻, •, 1,Δ, 𝜖 , 𝑇) be a Hopf algebra, (𝐻,⇀,↼) a matched pair of
actions. Define · and 𝑆 as in (3.1),(3.2). Then:

i. (𝐻, ·, 1,Δ, 𝜖 , 𝑆) is in Hopf(𝐻
𝐻
YD) with the action ⇀ and the adjoint coaction Ad𝐿 ;

ii. the two operations • and · satisfy the compatibility condition (hbc).

Proof The compatibility (hbc) is satisfied by Proposition 3.4.

We first check that · is a morphism of coalgebras in
𝐻
𝐻
YD. Using Lemma 3.3 we

obtain:

Δ(𝑎 · 𝑏) = (𝑎1 • (𝑇 (𝑎3) ⇀ 𝑏1)) ⊗ (𝑎2 · 𝑏2)
(3.3)

= (𝑎1 · (𝑎2 ⇀ (𝑇 (𝑎4) ⇀ 𝑏1))) ⊗ (𝑎3 · 𝑏2)
= 𝑎1 · (𝑎2 • 𝑇 (𝑎4) ⇀ 𝑏1) ⊗ (𝑎3 · 𝑏2),

i.e., Δ𝑚 · = (𝑚 · ⊗ 𝑚 ·) (Id ⊗ 𝜎YD
𝐻,𝐻

⊗ Id) (Δ ⊗ Δ). By Proposition 3.4 we also know that

𝜖 (𝑎 · 𝑏) = 𝜖 (𝑎)𝜖 (𝑏). Together, they are the compatibility conditions of a bialgebra in

𝐻
𝐻
YD.

Our next step is proving that (𝐻,Δ, 𝜖) is a coalgebra in
𝐻
𝐻
YD. We know that Δ

and 𝜖 are left 𝐻-linear with respect to ⇀. We thereby prove that they are also left

𝐻-colinear. We compute

(Id ⊗ Δ)Ad𝐿 (𝑎) = (Id ⊗ Δ) (𝑎1 • 𝑇 (𝑎3) ⊗ 𝑎2)
= 𝑎1 • 𝑇 (𝑎4) ⊗ 𝑎2 ⊗ 𝑎3

= (𝑎1 • 𝑇 (𝑎3) • 𝑎4 • 𝑇 (𝑎6)) ⊗ 𝑎2 ⊗ 𝑎5

= (𝑎11
• 𝑇 (𝑎13

)) • (𝑎21
• 𝑇 (𝑎23

)) ⊗ 𝑎12
⊗ 𝑎22

,

and

(Id ⊗ 𝜖)Ad𝐿 (𝑎) = (𝑎1 • 𝑇 (𝑎3)) ⊗ 𝜖 (𝑎2) = (𝑎1 • 𝑇 (𝑎2)) ⊗ 1k = 𝜖 (𝑎)1𝐻 ⊗ 1k.

This concludes the proof that (𝐻,Δ, 𝜖) is a coalgebra in
𝐻
𝐻
YD.

Clearly, the unit 𝑢 : 1k ↦→ 1𝐻 is left 𝐻-linear and left 𝐻-colinear, so in order to

conclude that (𝐻, ·, 1) is in Mon(𝐻
𝐻
YD) we only need to verify that · is left 𝐻-linear

and left 𝐻-colinear.

1
We are grateful to A. Ardizzoni for suggesting this proof.
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First we show that · is left 𝐻-linear with respect to⇀. Therefore, we compute

𝑎 ⇀ (𝑏 · 𝑐) (3.1)

= 𝑎 ⇀ (𝑏1 • (𝑇 (𝑏2) ⇀ 𝑐))
(mp.3)

= (𝑎1 ⇀ 𝑏1) • ((𝑎2 ↼ 𝑏2) ⇀ (𝑇 (𝑏3) ⇀ 𝑐))
(3.3)

= (𝑎1 ⇀ 𝑏1) · ((𝑎2 ⇀ 𝑏2) ⇀ ((𝑎3 ↼ 𝑏3) ⇀ (𝑇 (𝑏4) ⇀ 𝑐))
= (𝑎1 ⇀ 𝑏1) · (((𝑎2 ⇀ 𝑏2) • (𝑎3 ↼ 𝑏3)) ⇀ (𝑇 (𝑏4) ⇀ 𝑐))
(★)

= (𝑎1 ⇀ 𝑏1) · (𝑎2 • 𝑏2 ⇀ (𝑇 (𝑏3) ⇀ 𝑐))
= (𝑎1 ⇀ 𝑏1) · (𝑎2 • 𝑏2 • 𝑇 (𝑏3) ⇀ 𝑐))
= (𝑎1 ⇀ 𝑏) · (𝑎2 ⇀ 𝑐).

We now check that · is left𝐻-colinear with respect to Ad𝐿 . We already know that (3.7)

holds, i.e.

(Δ⊗ Id)Δ(𝑎 ·𝑏) = (𝑎1• (𝑇 (𝑎6) ⇀ 𝑏1)) ⊗ (𝑎2• (𝑇 (𝑎5) ⇀ 𝑏2)) ⊗ (𝑎3• (𝑇 (𝑏4) ⇀ 𝑏3)).

The request that · is colinear with respect to the adjoint coaction Ad𝐿 reads as follows:

(𝑎 · 𝑏)1 • 𝑇 ((𝑎 · 𝑏)3) ⊗ (𝑎 · 𝑏)2 = 𝑎1 • 𝑇 (𝑎3) • 𝑏1 • 𝑇 (𝑏3) ⊗ (𝑎2 · 𝑏2). (3.13)

We now rephrase the condition (3.13). One has

(𝑎 · 𝑏)1 • 𝑇 ((𝑎 · 𝑏)3) ⊗ (𝑎 · 𝑏)2

=

(
𝑎1 • (𝑇 (𝑎6) ⇀ 𝑏1) • 𝑇

(
𝑎3 • (𝑇 (𝑎4) ⇀ 𝑏3)

))
⊗
(
𝑎2 • (𝑇 (𝑎5) ⇀ 𝑏2)

)
=

(
𝑎1 • (𝑇 (𝑎6) ⇀ 𝑏1) • 𝑇

(
𝑇 (𝑎4) ⇀ 𝑏3

)
• 𝑇 (𝑎3)

)
⊗
(
𝑎2 • (𝑇 (𝑎5) ⇀ 𝑏2)

)
=

(
𝑎1 • (𝑇 (𝑎6) ⇀ 𝑏1) • 𝑇

(
𝑇 (𝑎4) ⇀ 𝑏3

)
• 𝑇 (𝑎3) • 𝑏4 • 𝑇 (𝑏5)

)
⊗
(
𝑎2 • (𝑇 (𝑎5) ⇀ 𝑏2)

)
(3.4)

=

(
𝑎1 • (𝑇 (𝑎5) ⇀ 𝑏1) • (𝑇 (𝑎3) ↼ 𝑏3) • 𝑇 (𝑏4)

)
⊗
(
𝑎2 • (𝑇 (𝑎4) ⇀ 𝑏2)

)
.

Therefore, (3.13) becomes(
𝑎1 • (𝑇 (𝑎5) ⇀ 𝑏1) • (𝑇 (𝑎3) ↼ 𝑏3) • 𝑇 (𝑏4)

)
⊗
(
𝑎2 • (𝑇 (𝑎4) ⇀ 𝑏2)

)
=

(
𝑎1 • 𝑇 (𝑎4) • 𝑏1 • 𝑇 (𝑏3)

)
⊗
(
𝑎2 • (𝑇 (𝑎3) ⇀ 𝑏2)

)
.

(3.14)

But now, using the antipode, we obtain

(3.14) ⇔
(
(𝑇 (𝑎4) ⇀ 𝑏1) • (𝑇 (𝑎2) ↼ 𝑏3)

)
⊗
(
𝑎1 • (𝑇 (𝑎3) ⇀ 𝑏2)

)
=
(
𝑇 (𝑎3) • 𝑏1

)
⊗
(
𝑎1 • (𝑇 (𝑎2) ⇀ 𝑏2)

)
⇔

(
(𝑇 (𝑎3) ⇀ 𝑏1) • (𝑇 (𝑎1) ↼ 𝑏3)

)
⊗
(
𝑇 (𝑎2) ⇀ 𝑏2

)
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=
(
𝑇 (𝑎2) • 𝑏1

)
⊗
(
𝑇 (𝑎1) ⇀ 𝑏2

)
.

Thus, we obtain that (3.13) is equivalent to

(𝑇 (𝑎3) ⇀ 𝑏1) • (𝑇 (𝑎1) ↼ 𝑏3) ⊗ (𝑇 (𝑎2) ⇀ 𝑏2)
=
(
𝑇 (𝑎2) • 𝑏1

)
⊗
(
𝑇 (𝑎1) ⇀ 𝑏2

)
.

(3.15)

The latter is implied by (3.12), which holds true since ↼ is a morphism of coalgebras

(and is in fact equivalent to (3.12) when 𝑇 is bijective). This concludes the proof that

(𝐻, ·, 1) is an algebra in
𝐻
𝐻
YD, and hence (𝐻, ·, 1,Δ, 𝜖) is a bialgebra in

𝐻
𝐻
YD for

what already observed.

We already know from Proposition 3.4 that 𝑆 satisfies 𝑆(𝑎1) · 𝑎2 = 𝜖 (𝑎)1𝐻 = 𝑎1 ·
𝑆(𝑎2), thus we only need to prove that 𝑆 is a morphism of Yetter–Drinfeld modules.

This follows from Proposition 3.9. ■

Definition 3.2 Given a matched pair (𝐻,⇀,↼) on a Hopf algebra (𝐻, •, 1,Δ, 𝜖 , 𝑇),
the second structure 𝐻

.
from Theorem 3.10 i. will be called the transmutation of 𝐻•

with respect to the matched pair.

In Remark 5.6, we shall see that this is indeed a generalisation of Majid’s transmu-

tation [28].

Remark 3.11 By [4, Remark 1.8] the Hopf algebra (𝐻, ·, 1,Δ, 𝜖 , 𝑆) is, in particular, a

braided Hopf algebra in the sense of Kharchenko [22, §2.2]. If moreover𝑇 is bijective,

then the braiding𝜎YD
is bijective, hence (𝐻, ·, 1,Δ, 𝜖 , 𝑆) is a braided Hopf algebra in

the sense of Majid [29]; see also [39, Definition 5.1].

Remark 3.12 In case 𝐻 is cocommutative, 𝜎YD
𝐻,𝐻

coincides with the flip 𝜏, hence

(𝐻, ·, 1,Δ, 𝜖 , 𝑆) becomes a standard Hopf algebra and we recover the definition of

Hopf brace [5].

Corollary 3.13 Let (𝐻, •, 1,Δ, 𝜖 , 𝑇) be a Hopf algebra and (𝐻,⇀,↼) a matched pair of
actions. Define · as in (3.1), and 𝑆 as in (3.2). Then, the following is a bialgebra structure on
𝐻 ⊗ 𝐻:

(𝑎 ⊗ ℎ) ·# (𝑎′ ⊗ ℎ′) := 𝑎 · 𝑆(ℎ1) · (ℎ2 • 𝑎′) ⊗ ℎ3 • ℎ′,
Δ# (𝑎 ⊗ ℎ) := 𝑎1 ⊗ 𝑎2 • 𝑇 (𝑎4) • ℎ1 ⊗ 𝑎3 ⊗ ℎ2,

𝑆# (𝑎 ⊗ ℎ) := 𝑆
(
𝑇 (𝑇 (𝑎3) • ℎ3)

)
·
(
𝑇 (𝑇 (𝑎4) • ℎ2) • 𝑇 (𝑎2)

)
⊗ 𝑇 (𝑎1 • 𝑇 (𝑎5) • ℎ1).

Proof Let 𝐻•
:= (𝐻, •) and 𝐻

.
:= (𝐻, ·) denote the two multiplicative structures.

By Theorem 3.10 we have that (𝐻, ·, 1,Δ, 𝜖) is in Bimon(𝐻
𝐻
YD), thus the bosonisa-

tion (𝐻.
#𝐻•, ·#, 1⊗1,Δ#, 𝜖𝐻⊗𝜖𝐻 ) is a bialgebra, where (𝑎⊗ℎ) ·# (𝑎′⊗ℎ′) := 𝑎 · (ℎ1 ⇀

𝑎′) ⊗ ℎ2 • ℎ′ and Δ# (𝑎 ⊗ ℎ) := 𝑎1 ⊗ 𝑎2−1
• ℎ1 ⊗ 𝑎20

⊗ ℎ2 denote the smash product and

the smash coproduct, respectively, see e.g. Heckenberger and Schneider [19, Proposi-

tion 3.8.4]. Moreover, since 𝐻•
and 𝐻

.
are both Hopf algebras, we obtain an antipode

on 𝐻
.
#𝐻•

given by 𝑆# (𝑎 ⊗ ℎ) :=
(
𝑇 (𝑎−1 • ℎ2) ⇀ 𝑆(𝑎0)

)
⊗ 𝑇 (𝑎−2 • ℎ1); see e.g. [19,
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Theorem 3.8.10]. Thus, we compute

𝑆# (𝑎 ⊗ ℎ) =
(
𝑇 (𝑎−1 • ℎ2) ⇀ 𝑆(𝑎0)

)
⊗ 𝑇 (𝑎−2 • ℎ1)

=
(
𝑇 (𝑎2 • 𝑇 (𝑎4) • ℎ2) ⇀ 𝑆(𝑎3)

)
⊗ 𝑇 (𝑎1 • 𝑇 (𝑎5) • ℎ1)

=
(
𝑇 (𝑇 (𝑎5) • ℎ2) • 𝑇 (𝑎2) ⇀ (𝑎3 ⇀ 𝑇 (𝑎4))

)
⊗ 𝑇 (𝑎1 • 𝑇 (𝑎6) • ℎ1)

=
(
𝑇 (𝑇 (𝑎3) • ℎ2) ⇀ 𝑇 (𝑎2)

)
⊗ 𝑇 (𝑎1 • 𝑇 (𝑎4) • ℎ1)

= 𝑆
(
𝑇 (𝑇 (𝑎3) • ℎ3)

)
·
(
𝑇 (𝑇 (𝑎4) • ℎ2) • 𝑇 (𝑎2)

)
⊗ 𝑇 (𝑎1 • 𝑇 (𝑎5) • ℎ1).

■

Theorem 3.10 suggests us the following definition:

Definition 3.3 A Yetter–Drinfeld brace (or YD-brace) (𝐻, ·, •, 1,Δ, 𝜖 , 𝑆, 𝑇) is the

datum of a Hopf algebra 𝐻• = (𝐻, •, 1,Δ, 𝜖 , 𝑇), a second operation · on 𝐻, and a

linear map 𝑆 : 𝐻 → 𝐻 such that:

i. (𝐻, ·, 1,Δ, 𝜖 , 𝑆) is in Hopf(𝐻•
𝐻•YD) with the action⇀ defined by 𝑎 ⇀ 𝑏 := 𝑆(𝑎1) ·

(𝑎2 • 𝑏), and the coaction given by Ad𝐿 ;

ii. if we define 𝑎 ↼ 𝑏 := 𝑇 (𝑎1 ⇀ 𝑏1) • 𝑎2 • 𝑏2, the two maps⇀,↼ satisfy (mp.5);

iii. the two operations • and · satisfy the Hopf brace compatibility (hbc).

Given two Yetter–Drinfeld braces 𝐻 and 𝐾 , a morphism of Yetter–Drinfeld braces is a

map 𝑓 : 𝐻 → 𝐾 that is a morphism in Hopf(Veck) between the respective Hopf

algebras in Veck, and satisfies

𝑓 (𝑎 ·𝐻 𝑏) = 𝑓 (𝑎) ·𝐾 𝑓 (𝑏).

In particular, this implies 𝑆𝐾 𝑓 = 𝑓 𝑆𝐻 , 𝑓 ⇀𝐻 = ⇀𝐾 ( 𝑓 ⊗ 𝑓 ) and (Ad𝐿)𝐾 𝑓 =

( 𝑓 ⊗ 𝑓 ) (Ad𝐿)𝐻 . We denote the category of Yetter–Drinfeld braces by YDBr(Veck).

Remark 3.14 Let 𝑓 : 𝐻 → 𝐾 be a morphism of Yetter–Drinfeld braces. Since

𝑓 : 𝐻• → 𝐾•
is a morphism of bialgebras, one can regard 𝐾

.
as a left 𝐻•

-module

through 𝑓 , so that the condition 𝑓 (𝑎 ⇀𝐻 𝑏) = 𝑓 (𝑎) ⇀𝐾 𝑓 (𝑏) means that 𝑓 is a

morphism in 𝐻•𝔐; and 𝐻
.

as a left 𝐾•
-comodule through 𝑓 , so that the condition

(Ad𝐿)𝐾 𝑓 = ( 𝑓 ⊗ 𝑓 ) (Ad𝐿)𝐻 means that 𝑓 is a morphism in
𝐾•
𝔐. One can consider

the category
𝐾•
𝐻•YD of relative Yetter–Drinfeld modules; see [8, §4.4, p. 183]. Clearly

𝐻
.

and 𝐾
.

are in
𝐾•
𝐻•YD. Indeed, given 𝑎, 𝑏 ∈ 𝐻, we compute:

(𝑎1 ⇀𝐻 𝑏)𝐾−1
•𝐾 𝑓 (𝑎2) ⊗ (𝑎1 ⇀𝐻 𝑏)𝐾

0
= 𝑓 ((𝑎1 ⇀𝐻 𝑏)−1 •𝐻 𝑎2) ⊗ (𝑎1 ⇀𝐻 𝑏)0

= 𝑓 (𝑎1 •𝐻 𝑏−1) ⊗ (𝑎2 ⇀𝐻 𝑏0)
= 𝑓 (𝑎1) •𝐾 𝑏𝐾−1

⊗ (𝑎2 ⇀𝐻 𝑏𝐾
0
),

where 𝑎−1 ⊗ 𝑎0 = (Ad𝐿)𝐻 (𝑎) is the usual adjoint 𝐻•
-coaction on 𝐻, while 𝑎𝐾−1

⊗
𝑎𝐾

0
= ( 𝑓 ⊗ Id) (Ad𝐿)𝐻 (𝑎) denotes the 𝐾•

-coaction on 𝐻
.

induced by Ad𝐿 through 𝑓 .

The Yetter–Drinfeld compatibility for 𝐾
.

is deduced analogously. Hence we obtain

that 𝑓 is a morphism in
𝐾•
𝐻•YD. Moreover, one clearly has that 𝐻

.
and 𝐾

.
are in

Mon(𝐾•
𝐻•YD) and Comon(𝐾•

𝐻•YD); thus the condition 𝑓 (𝑎 ·𝐻 𝑏) = 𝑓 (𝑎) ·𝐾 𝑓 (𝑏)
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means that 𝑓 : 𝐻
. → 𝐾

.
is a morphism in Mon(𝐾•

𝐻•YD). Notice that 𝑓 is

automatically a morphism in Comon(𝐾•
𝐻•YD).

From Theorem 3.10, we obtain:

Corollary 3.15 Let (𝐻, •, 1,Δ, 𝜖 , 𝑇) be a Hopf algebra, (𝐻,⇀,↼) a matched pair of
actions. Define · and 𝑆 as in (3.1), (3.2). Then, (𝐻, ·, •, 1,Δ, 𝜖 , 𝑆, 𝑇) is a Yetter–Drinfeld
brace.

Remark 3.16 Define ↼ as in Definition 3.3 ii. Since ⇀ is a morphism of coalgebras,

it is clear that⇀,↼ satisfy (★):

(𝑎1 ⇀ 𝑏1) • (𝑎2 ↼ 𝑏2) = (𝑎1 ⇀ 𝑏1) • 𝑇 (𝑎2 ⇀ 𝑏2) • 𝑎3 • 𝑏3

= 𝜖 (𝑎1 ⇀ 𝑏1)𝑎2 • 𝑏2 = 𝑎 • 𝑏.

Observe that 𝜖 (𝑎 ↼ 𝑏) = 𝜖 (𝑎)𝜖 (𝑏), thus we are in the hypotheses of Lemma 3.5.

Consequently, Definition 3.3 ii. is equivalent to the request that ↼ is a morphism of

coalgebras.

Remark 3.17 Notice that Definition 3.3 makes as much sense when we replace Veck
with a braided monoidal category. Although this exceeds the scope of this work, we

may expect several of our results in Veck to hold more in general. Furthermore, Defi-

nition 3.3 can be dualised to define Yetter–Drinfeld cobraces, leading to a generalisation

of commutative Hopf cobraces [5].

Clearly, in a Yetter–Drinfeld brace, the map⇀ defined as in Definition 3.3 i. is a left

𝐻•
-action, and (𝐻, ·, 1) is a left 𝐻•

-module algebra. In fact, this is true under weaker

assumptions:

Lemma 3.18 Let 𝐻• = (𝐻, •, 1,Δ, 𝜖) be a bialgebra and (𝐻, ·, 1,Δ, 𝜖) be an algebra and
a coalgebra, endowed with a map 𝑆 : 𝐻 → 𝐻 satisfying 𝑆(𝑎1) · 𝑎2 = 𝜖 (𝑎)1 = 𝑎1 · 𝑆(𝑎2).
Suppose that the Hopf brace compatibility (hbc) between • and · is satisfied. Then

𝑎 ⇀ 𝑏 := 𝑆(𝑎1) · (𝑎2 • 𝑏)

is a left𝐻•-action on𝐻. Moreover, (𝐻, ·, 1) is a left𝐻•-module algebra and, if 𝜖 is a morphism
of algebras with respect to ·, then 𝜖 is left 𝐻•-linear with respect to⇀.

Proof First we compute 1 ⇀ 𝑏 = 𝑆(1) · (1 • 𝑏) = 𝑏. Moreover, we have

𝑎 ⇀ (𝑏 ⇀ 𝑐) = 𝑎 ⇀ (𝑆(𝑏1) · (𝑏2 • 𝑐))

= 𝑆(𝑎1) ·
(
𝑎2 •

(
𝑆(𝑏1) · (𝑏2 • 𝑐)

) )
= 𝑆(𝑎1) · (𝑎2 • 𝑆(𝑏1)) · 𝑆(𝑎3) · (𝑎4 • 𝑏2 • 𝑐)
(†)
= 𝑆(𝑎1 • 𝑏1) · 𝑎2 · 𝑆(𝑎3) · (𝑎4 • 𝑏2 • 𝑐)
= 𝑆(𝑎1 • 𝑏1) · (𝑎2 • 𝑏2 • 𝑐)
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= (𝑎 • 𝑏) ⇀ 𝑐,

where the equality marked with (†) follows from the relation 𝑆(𝑎1 • 𝑏) · 𝑎2 = 𝑆(𝑎1) ·
(𝑎2 • 𝑆(𝑏)), whose proof is the same as in [5, Lemma 1.7] and simply follows from

(hbc). Moreover, we have

𝑎 ⇀ (𝑏·𝑐) = 𝑆(𝑎1)·(𝑎2•(𝑏·𝑐)) = 𝑆(𝑎1)·(𝑎2•𝑏)·𝑆(𝑎3)·(𝑎4•𝑐) = (𝑎1 ⇀ 𝑏)·(𝑎2 ⇀ 𝑐)

and

𝑎 ⇀ 1 = 𝑆(𝑎1) · (𝑎2 • 1) = 𝑆(𝑎1) · 𝑎2 = 𝜖 (𝑎)1, (3.16)

hence (𝐻, ·, 1) is a left 𝐻•
-module algebra. Finally, we have

𝜖 (𝑎 ⇀ 𝑏) = 𝜖 (𝑆(𝑎1) · (𝑎2 • 𝑏))
(‡)
= 𝜖 (𝑎1)𝜖 (𝑎2)𝜖 (𝑏) = 𝜖 (𝑎)𝜖 (𝑏),

where (‡) follows from the fact that 𝜖 is a morphism of algebras with respect to ·. ■

3.2 A general example

We now construct an easy example of a Yetter–Drinfeld brace on a Hopf algebra

𝐻. This construction depends on the assumption that the adjoint action on 𝐻 is

compatible with the comultiplication.

Lemma 3.19 Let 𝐻•
:= (𝐻, •, 1,Δ, 𝜖 , 𝑇) be a Hopf algebra, ⇀ the left adjoint action

𝑎 ⇀ 𝑏 := 𝑎1 • 𝑏 • 𝑇 (𝑎2), and ↼ the trivial action. Then, (𝐻,⇀,↼) is a matched pair of
actions if and only if Δ is left linear with respect to⇀.

Proof Notice that 𝐻•
is automatically a right 𝐻-module coalgebra. We verify

(mp.1)–(mp.4) and (★). Clearly 𝑎 ⇀ 1 = 𝜖 (𝑎)1 holds, while (mp.2) is automatically

true. Moreover, we compute

(𝑎1 ⇀ 𝑏1) • ((𝑎2 ↼ 𝑏2) ⇀ 𝑐) = 𝑎1 • 𝑏 • 𝑇 (𝑎2) • (𝑎3 ⇀ 𝑐)
= 𝑎1 • 𝑏 • 𝑇 (𝑎2) • 𝑎3 • 𝑐 • 𝑇 (𝑎4) = 𝑎 ⇀ (𝑏 • 𝑐),

and

(𝑎 ↼ (𝑏1 ⇀ 𝑐1)) • (𝑏2 ↼ 𝑐2) = 𝑎 𝜖 (𝑏1 ⇀ 𝑐1) • 𝑏2 𝜖 (𝑐2) = (𝑎 • 𝑏) ↼ 𝑐.

Finally,

(𝑎1 ⇀ 𝑏1) • (𝑎2 ↼ 𝑏2) = 𝑎1 • 𝑏1 • 𝑇 (𝑎2) • 𝑎3𝜖 (𝑏2) = 𝑎 • 𝑏.

Thus, (𝐻,⇀,↼) is a matched pair of actions if and only if 𝐻•
is a left 𝐻-module

coalgebra. Since 𝜖 (𝑎 ⇀ 𝑏) = 𝜖 (𝑎)𝜖 (𝑏) is automatically satisfied, 𝐻•
is a left 𝐻-

module coalgebra if and only if Δ is left linear with respect to⇀; as desired. ■

Remark 3.20 The linearity condition of Δ with respect to⇀, i.e. Δ(𝑎 ⇀ 𝑏) = (𝑎1 ⇀

𝑏1) ⊗ (𝑎2 ⇀ 𝑏2), explicitly reads:

𝑎1 • 𝑏1 • 𝑇 (𝑎4) ⊗ 𝑎2 • 𝑏2 • 𝑇 (𝑎3) = 𝑎1 • 𝑏1 • 𝑇 (𝑎2) ⊗ 𝑎3 • 𝑏2 • 𝑇 (𝑎4).
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The latter is equivalent to𝑇 (𝑎3) ⊗ 𝑎1 •𝑏 •𝑇 (𝑎2) = 𝑇 (𝑎1) ⊗ 𝑎2 •𝑏 •𝑇 (𝑎3), and then to

𝑎1 • 𝑇 (𝑎4) ⊗ 𝑎2 • 𝑏 • 𝑇 (𝑎3) = 1 ⊗ 𝑎1 • 𝑏 • 𝑇 (𝑎2), (3.17)

i.e., (Id⊗ ⇀) (Ad𝐿⊗Id) = (𝑢𝐻⊗⇀), where Ad𝐿 denotes again the left adjoint coaction

on 𝐻. From the matched pair of actions (𝐻,⇀,↼) of Lemma 3.19, we can define · as

in (3.1), and 𝑆 as in (3.2), obtaining

𝑎 · 𝑏 = 𝑎1 • 𝑇 (𝑎3) • 𝑏 • 𝑇 (𝑇 (𝑎2)), 𝑆(𝑎) = 𝑎1 • 𝑇 (𝑎3) • 𝑇 (𝑎2). (3.18)

Notice that (3.17) clearly holds in the commutative and cocommutative cases (where

the latter was already considered, e.g., in Masuoka [32, Remark p. 302]). If 𝐻•
is com-

mutative, then (𝐻, •, •) is an example of a Yetter–Drinfeld brace. On the other hand,

if 𝐻•
is cocommutative, then the previous construction reduces to the almost trivial

Hopf brace (𝐻, •op, •) (the terminology is adapted from [18]).

In §5, we shall see other explicit examples coming from coquasitriangular struc-

tures. In particular, the first example will be the Sweedler’s Hopf algebra 𝐻4. Gen-

eralisations of 𝐻4 are given by the Taft algebras 𝐻𝑛2 , which do not admit any

(co)quasitriangular structure for 𝑛 > 2 (see Gelaki [17]). Matched pairs (𝐻𝑛2 , 𝐻𝑛2 )
on 𝐻𝑛2 are classified by Agore [1, Theorem 2.1], and it is not difficult to see that none

of these matched pairs satisfy (★). This explicitly shows that matched pairs of actions

(𝐻,⇀,↼) correspond to a proper subclass of the matched pairs (𝐻, 𝐻) on 𝐻.

3.3 A converse connection

In order to show that our definition of Yetter–Drinfeld braces is optimal, we now

prove that the correspondence of Theorem 3.10 has a converse. Therefore, a Yetter–

Drinfeld brace and a matched pair of actions are essentially the same thing. This is in

fact, as we shall point out, an isomorphism of categories.

Theorem 3.21 Let (𝐻, ·, •, 1,Δ, 𝜖 , 𝑆, 𝑇) be a Yetter–Drinfeld brace. Define

𝑎 ↼ 𝑏 := 𝑇 (𝑎1 ⇀ 𝑏1) • 𝑎2 • 𝑏2.

Then, (𝐻,⇀,↼) is a matched pair of actions.

Proof Since 𝐻 is in Comon(𝐻•
𝐻•YD), one has that Δ and 𝜖 are left 𝐻•

-linear with

respect to ⇀, and hence 𝐻 is a left 𝐻•
-module coalgebra. From the definition of ⇀

we immediately have 𝑎 • 𝑏 = 𝑎1 · 𝑆(𝑎2) · (𝑎3 • 𝑏) = 𝑎1 · (𝑎2 ⇀ 𝑏), whence also

𝑎 · 𝑏 = 𝑎1 · (𝑎2 ⇀ (𝑇 (𝑎3) ⇀ 𝑏)) = 𝑎1 • (𝑇 (𝑎2) ⇀ 𝑏).

We therefore compute

𝑎 ↼ (𝑏 • 𝑐) = 𝑇 (𝑎1 ⇀ (𝑏1 • 𝑐1)) • 𝑎2 • (𝑏2 • 𝑐2)
= 𝑇 (𝑆(𝑎1) · (𝑎2 • 𝑏1 • 𝑐1)) • 𝑎3 • 𝑏2 • 𝑐2

= 𝑇 (𝑆(𝑎1) · (𝑎2 • 𝑏1) · 𝑆(𝑎3 • 𝑏2) · (𝑎4 • 𝑏3 • 𝑐1)) • 𝑎5 • 𝑏4 • 𝑐2

= 𝑇
(
(𝑎1 ⇀ 𝑏1) · ((𝑎2 • 𝑏2) ⇀ 𝑐1)

)
• 𝑎3 • 𝑏3 • 𝑐2

2025/03/27 11:54

https://doi.org/10.4153/S0008414X25000239 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000239


20 Davide Ferri and Andrea Sciandra

= 𝑇

(
(𝑎1 ⇀ 𝑏1) •

(
𝑇 (𝑎2 ⇀ 𝑏2) ⇀ ((𝑎3 • 𝑏3) ⇀ 𝑐1)

) )
• 𝑎4 • 𝑏4 • 𝑐2

= 𝑇

( (
𝑇 (𝑎2 ⇀ 𝑏2) • 𝑎3 • 𝑏3

)
⇀ 𝑐1

)
• 𝑇 (𝑎1 ⇀ 𝑏1) • 𝑎4 • 𝑏4 • 𝑐2

= (𝑇 (𝑎1 ⇀ 𝑏1) • 𝑎2 • 𝑏2) ↼ 𝑐

= (𝑎 ↼ 𝑏) ↼ 𝑐.

Moreover, we have 𝑎 ↼ 1 = 𝑇 (𝑎1 ⇀ 1) • 𝑎2 • 1 = 𝑇 (𝜖 (𝑎1)1) • 𝑎2 = 𝑎, thus ↼

is a right 𝐻•
-action. By Remark 3.16 we already know that Δ is right 𝐻•

-linear with

respect to ↼, i.e. Δ(𝑎 ↼ 𝑏) = (𝑎1 ↼ 𝑏1) ⊗ (𝑎2 ↼ 𝑏2); that 𝐻 is a right 𝐻•
-module

coalgebra, and that (★) is satisfied. We already know that (mp.1) is satisfied. Moreover,

(mp.2) also holds:

1 ↼ 𝑎 = 𝑇 (1 ⇀ 𝑎1) • 1 • 𝑎2 = 𝑇 (𝑎1) • 𝑎2 = 𝜖 (𝑎)1. (3.19)

In order to show that (𝐻,⇀,↼) is a matched pair of actions on𝐻, it remains to prove

that (mp.3) and (mp.4) are satisfied. We thereby compute

(𝑎1 ⇀ 𝑏1) •
( (
𝑎2 ↼ 𝑏2

)
⇀ 𝑐

)
= (𝑎1 ⇀ 𝑏1) •

( (
𝑇 (𝑎2 ⇀ 𝑏2) • 𝑎3 • 𝑏3

)
⇀ 𝑐

)
= (𝑎1 ⇀ 𝑏1) •

(
𝑇 (𝑎2 ⇀ 𝑏2) ⇀

(
𝑎3 • 𝑏3 ⇀ 𝑐

) )
= (𝑎1 ⇀ 𝑏1) ·

(
𝑎2 • 𝑏2 ⇀ 𝑐

)
= (𝑎1 ⇀ 𝑏1) · (𝑎2 ⇀ (𝑏2 ⇀ 𝑐))
(†)
= 𝑎 ⇀ (𝑏1 · (𝑏2 ⇀ 𝑐))
= 𝑎 ⇀ (𝑏 • 𝑐),

where (†) follows since (𝐻, ·, 1) is a left 𝐻•
-module algebra. Finally, one has

(𝑎 ↼ (𝑏1 ⇀ 𝑐1)) • (𝑏2 ↼ 𝑐2) = 𝑇 (𝑎1 ⇀ (𝑏1 ⇀ 𝑐1)) • 𝑎2 • (𝑏2 ⇀ 𝑐2) • (𝑏3 ↼ 𝑐3)
(★)

= 𝑇 (𝑎1 ⇀ (𝑏1 ⇀ 𝑐1)) • 𝑎2 • 𝑏2 • 𝑐2

= 𝑇 (𝑎1 • 𝑏1 ⇀ 𝑐1) • 𝑎2 • 𝑏2 • 𝑐2

= (𝑎 • 𝑏) ↼ 𝑐.

■

The previous construction is converse to the one of Theorem 3.10.

Theorem 3.22 The correspondence established in Theorem 3.10 and Theorem 3.21 is an
isomorphism between YDBr(Veck) and MP(Veck).

Proof Since the constructions of Theorem 3.10 and of Theorem 3.21 are converse to

each other, if we prove that these constructions are functorial then they automatically

yield an isomorphism of categories.

Let 𝐹 : MP(Veck) → YDBr(Veck) be the assignment defined in Theorem 3.10.

We define the assignment on morphisms as follows: if 𝑓 : (𝐻,⇀𝐻 ,↼𝐻 ) → (𝐾,⇀𝐾

,↼𝐾 ) is a morphism in MP(Veck), the corresponding morphism in YDBr(Veck)
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is 𝑓 : 𝐻 → 𝐾 read as a morphism of Hopf algebras. Since 𝑚 ·𝐻 = 𝑚•𝐻 (Id𝐻⊗ ⇀𝐻

) (Id𝐻 ⊗ 𝑇𝐻 ⊗ Id𝐻 ) (Δ𝐻 ⊗ Id𝐻 ) (and a similar formula holds for 𝑚 ·𝐾 ), one has

𝑚 ·𝐾 ( 𝑓 ⊗ 𝑓 ) = 𝑚•𝐾 (Id𝐾⊗ ⇀𝐾 ) (Id𝐾 ⊗ 𝑇𝐾 ⊗ Id𝐾 ) (Δ𝐾 ⊗ Id𝐾 ) ( 𝑓 ⊗ 𝑓 )
= 𝑚•𝐾 (Id𝐾⊗ ⇀𝐾 ) (Id𝐾 ⊗ 𝑇𝐾 ⊗ Id𝐾 ) ( 𝑓 ⊗ 𝑓 ⊗ 𝑓 ) (Δ𝐻 ⊗ Id𝐻 )
= 𝑚•𝐾 (Id𝐾⊗ ⇀𝐾 ) ( 𝑓 ⊗ 𝑓 ⊗ 𝑓 ) (Id𝐻 ⊗ 𝑇𝐻 ⊗ Id𝐻 ) (Δ𝐻 ⊗ Id𝐻 )
= 𝑚•𝐾 ( 𝑓 ⊗ 𝑓 ) (Id𝐻⊗ ⇀𝐻 ) (Id𝐻 ⊗ 𝑇𝐻 ⊗ Id𝐻 ) (Δ𝐻 ⊗ Id𝐻 )
= 𝑓 𝑚•𝐻 (Id𝐻⊗ ⇀𝐻 ) (Id𝐻 ⊗ 𝑇𝐻 ⊗ Id𝐻 ) (Δ𝐻 ⊗ Id𝐻 )
= 𝑓 𝑚 ·𝐻 ,

thus 𝑓 is indeed a morphism in YDBr(Veck). Moreover, it is clear that 𝐹 sends

the identity morphism into the identity morphism. Finally, let 𝑓 : (𝐻,⇀𝐻 ,↼𝐻 ) →
(𝐾,⇀𝐾 ,↼𝐾 ) and 𝑔 : (𝐾,⇀𝐾 ,↼𝐾 ) → (𝐿,⇀𝐿 ,↼𝐿) be morphisms in MP(Veck),
then 𝐹 sends the composition 𝑔 𝑓 in MP(Veck) into the set-theoretic composition of

maps 𝑔 𝑓 , which is the composition of morphisms in YDBr(Veck).
Analogously, one proves that the assignment 𝐺 : YDBr(Veck) → MP(Veck)

defined in Theorem 3.21 is a functor. ■

4 Yetter–Drinfeld braces as 1-cocycles

It is known (see Angiono, Galindo and Vendramin [5, Theorem 1.12], and Fernández

Vilaboa and Gonzáles Rodríguez [15, Theorem 2.7]) that a Hopf brace in a braided

monoidal category M is tantamount to a 1-cocycle of bialgebras in M. We are going

to recover an analogous characterisation for Yetter–Drinfeld braces.

Definition 4.1 Let (𝐻, •, 1,Δ, 𝜖 , 𝑇) be a Hopf algebra, (𝐴, ·𝐴, 1,Δ, 𝜖) be a bialgebra

in
𝐻
𝐻
YD, and let the action of 𝐻 on 𝐴 be denoted by ⇀𝐴. A Yetter–Drinfeld 1-cocycle

is an isomorphism of coalgebras 𝜋 : 𝐻 → 𝐴 satisfying the 1-cocycle condition

𝜋(𝑎 • 𝑏) = 𝜋(𝑎1) ·𝐴 (𝑎2 ⇀𝐴 𝜋(𝑏)) (1c)

and satisfying the following conditions for all 𝑎, 𝑏 ∈ 𝐻:

(𝑎1 ⇀𝐴 𝜋𝑇 (𝑎2)) ·𝐴 𝜋(𝑎3) = 𝜖 (𝑎)1𝐴; (4.1)

𝑇𝜋−1 (𝑎2 ⇀𝐴 𝜋(𝑏2)) • 𝑎3 • 𝑏3 ⊗ 𝜋−1 (𝑎1 ⇀𝐴 𝜋(𝑏1))
= 𝑇𝜋−1 (𝑎1 ⇀𝐴 𝜋(𝑏1)) • 𝑎2 • 𝑏2 ⊗ 𝜋−1 (𝑎3 ⇀𝐴 𝜋(𝑏3)).

(4.2)

Given two Yetter–Drinfeld 1-cocycles 𝜋 : 𝐻 → 𝐴 and 𝜛 : 𝐾 → 𝐵, a morphism of
Yetter–Drinfeld 1-cocycles 𝜋 → 𝜛 is a pair ( 𝑓 , 𝑔), where 𝑓 : 𝐻 → 𝐾 is a morphism of

Hopf algebras, and 𝑔 : 𝐴→ 𝐵 is a morphism of algebras and coalgebras satisfying

𝑔 ⇀𝐴 = ⇀𝐵 ( 𝑓 ⊗ 𝑔), 𝑔𝜋 = 𝜛 𝑓 .

We denote by YD1C(Veck) the category of Yetter–Drinfeld 1-cocycles thus

obtained.
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Remark 4.1 Observe that, choosing 𝑎 = 𝑏 = 1𝐻 in (1c), we obtain 𝜋(1𝐻 ) = 𝜋(1𝐻 ) ·𝐴
𝜋(1𝐻 ). Moreover, taking 𝑎 = 1𝐻 in (4.1), we obtain 𝜋(1𝐻 ) ·𝐴 𝜋(1𝐻 ) = 1𝐴. Hence

𝜋(1𝐻 ) = 1𝐴 (4.3)

is automatically satisfied. The same is true for 1-cocycles of Hopf algebras [5].

Theorem 4.2 Let 𝐻•
:= (𝐻, •, 1,Δ, 𝜖 , 𝑇) be a Hopf algebra. The following data are

equivalent:

i. a coalgebra 𝐴 and an isomorphism of coalgebras 𝜋 : 𝐻 → 𝐴, such that 𝐴 with the coaction
𝜌 := (Id ⊗ 𝜋)Ad𝐿𝜋

−1 is in Bimon(𝐻•
𝐻•YD), and 𝜋 is a Yetter–Drinfeld 1-cocycle;

ii. a second operation · and a map 𝑆, providing a Yetter–Drinfeld brace structure on 𝐻.

This defines an equivalence of categories between the subcategory of YD1C(Veck) given
by Yetter–Drinfeld 1-cocycles 𝜋 : 𝐻 → 𝐴 where 𝐴 has coaction (Id ⊗ 𝜋)Ad𝐿𝜋

−1 and
YDBr(Veck).

Proof The proof is fundamentally the same as for Hopf braces [5, Theorem 1.12].

i. to ii. Suppose given a Yetter–Drinfeld 1-cocycle 𝜋 : 𝐻 → 𝐴. Define the second

structure 𝐻
.

on 𝐻 by pulling back the multiplication ·𝐴 of 𝐴:

𝑎 · 𝑏 := 𝜋−1 (𝜋(𝑎) ·𝐴 𝜋(𝑏)).

This is clearly associative and, from (4.3), it is immediate that 𝐻
.

is unitary with unit

1𝐻 . Define 𝑆(𝑎) := 𝜋−1 (𝑎1 ⇀𝐴 𝜋𝑇 (𝑎2)), and consequently let

𝑎 ⇀ 𝑏 := 𝑆(𝑎1) · (𝑎2 • 𝑏)
= 𝜋−1 (𝜋𝑆(𝑎1) ·𝐴 𝜋(𝑎2 • 𝑏))

(1c)

= 𝜋−1 ((𝑎1 ⇀𝐴 𝜋𝑇 (𝑎2)) ·𝐴 𝜋(𝑎3) ·𝐴 (𝑎4 ⇀𝐴 𝜋(𝑏)))
(4.1)

= 𝜋−1 (𝑎 ⇀𝐴 𝜋(𝑏)).

In particular 𝑆 satisfies 𝑆(𝑎) = 𝑎1 ⇀ 𝑇 (𝑎2), which is (3.2). Since ⇀ is just the

action ⇀𝐴 pulled back through 𝜋, this is clearly a left action of 𝐻•
on itself. By

assumption, 𝐴 is in Bimon(𝐻•
𝐻•YD) with coaction 𝜌(𝑎) = (Id ⊗ 𝜋)Ad𝐿𝜋

−1 (𝑎) =

𝜋−1 (𝑎1) • 𝑇 (𝜋−1 (𝑎3)) ⊗ 𝑎2, hence 𝜌 and ⇀ satisfy the compatibility condition of a

Yetter–Drinfeld module:

𝜌(𝑎 ⇀𝐴 𝑏) = 𝑎1 • 𝜋−1 (𝑏1) • 𝑇 (𝜋−1 (𝑏3)) • 𝑇 (𝑎3) ⊗ (𝑎2 ⇀𝐴 𝑏2),

moreover ·𝐴 and Δ satisfy the bialgebra compatibility in
𝐻•
𝐻•YD:

Δ(𝑎 ·𝐴 𝑏) = 𝑎1 ·𝐴 (𝜋−1 (𝑎2) • 𝑇 (𝜋−1 (𝑎4)) ⇀𝐴 𝑏1) ⊗ (𝑎3 ·𝐴 𝑏2). (4.4)

It easily follows that (𝐻.
,⇀,Ad𝐿) is in

𝐻•
𝐻•YD, and that 𝑚 · , 𝑢, Δ and 𝜖 are left linear

with respect to⇀.

We show that 𝑆 is a convolution inverse of Id𝐻 with respect to the algebra structure

𝐻
.
:

𝑎1 · 𝑆(𝑎2) = 𝑎1 · 𝜋−1 (𝑎2 ⇀𝐴 𝜋𝑇 (𝑎3))
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= 𝜋−1 (𝜋(𝑎1) ·𝐴 (𝑎2 ⇀𝐴 𝜋𝑇 (𝑎3)))
= 𝜋−1𝜋(𝑎1 • 𝑇 (𝑎2))
= 𝜖 (𝑎)1𝐻 ,

and

𝑆(𝑎1) · 𝑎2 = 𝜋−1 (𝑎1 ⇀𝐴 𝜋𝑇 (𝑎2)) · 𝑎3

= 𝜋−1 ((𝑎1 ⇀𝐴 𝜋𝑇 (𝑎2)) ·𝐴 𝜋(𝑎3))
(4.1)

= 𝜋−1 (𝜖 (𝑎)1𝐴)
= 𝜖 (𝑎)1𝐻 .

Let 𝑎 ↼ 𝑏 := 𝑇 (𝑎1 ⇀ 𝑏1) • 𝑎2 • 𝑏2 = 𝑇𝜋−1 (𝑎1 ⇀𝐴 𝜋(𝑏1)) • 𝑎2 • 𝑏2. Notice that

(3.5) is automatically satisfied. We verify that↼ satisfies (3.9):

(𝑎1 ↼ 𝑏1) ⊗ (𝑎2 ↼ 𝑏2) = 𝑇𝜋−1 (𝑎1 ⇀𝐴 𝜋(𝑏1)) • 𝑎2 • 𝑏2

⊗ 𝑇𝜋−1 (𝑎3 ⇀𝐴 𝜋(𝑏3)) • 𝑎4 • 𝑏4

(4.2)

= 𝑇𝜋−1 (𝑎2 ⇀𝐴 𝜋(𝑏2)) • 𝑎3 • 𝑏3

⊗ 𝑇𝜋−1 (𝑎1 ⇀𝐴 𝜋(𝑏1)) • 𝑎4 • 𝑏4

= (𝑎 ↼ 𝑏)1 ⊗ (𝑎 ↼ 𝑏)2.

Moreover, since 𝜖 (𝑎 ⇀ 𝑏) = 𝜖 (𝑎)𝜖 (𝑏), one clearly has 𝜖 (𝑎 ↼ 𝑏) = 𝜖 (𝑎)𝜖 (𝑏), hence

↼ is a morphism of coalgebras: by Remark 3.16, this is equivalent to requiring (mp.5).

Furthermore, (𝑎1 ⇀ 𝑏1) • (𝑎2 ↼ 𝑏2) = 𝑎 • 𝑏 holds by definition. By Lemma 3.5, we

have that (3.12) is satisfied. Moreover, one has

𝜋 ((𝑎1 • 𝑏) · 𝑆(𝑎2) · (𝑎3 • 𝑐))
= 𝜋(𝑎1 • 𝑏) ·𝐴 𝜋(𝑆(𝑎2)) ·𝐴 𝜋(𝑎3 • 𝑐)

(1c)

= 𝜋(𝑎1) ·𝐴 (𝑎2 ⇀ 𝜋(𝑏)) ·𝐴 𝜋(𝑆(𝑎3)) ·𝐴 𝜋(𝑎4) ·𝐴 (𝑎5 ⇀ 𝜋(𝑐))
= 𝜋(𝑎1) ·𝐴 (𝑎2 ⇀ 𝜋(𝑏)) ·𝐴 (𝑎3 ⇀ 𝜋(𝑐))
= 𝜋(𝑎1) ·𝐴 (𝑎2 ⇀ (𝜋(𝑏) ·𝐴 𝜋(𝑐)))
= 𝜋(𝑎1) ·𝐴 (𝑎2 ⇀ 𝜋(𝑏 · 𝑐))

(1c)

= 𝜋(𝑎 • (𝑏 · 𝑐)),

and this implies (hbc) because 𝜋 is bijective.

In order to obtain that (𝐻.
,⇀,Ad𝐿) is in Bimon(𝐻•

𝐻•YD), it remains to prove that

Δ is a morphism of algebras with respect to · in
𝐻•
𝐻•YD, and that 𝑚 · is left colinear

with respect to Ad𝐿 . Both easily follow from the analogous properties of 𝐴.

Finally, by Proposition 3.9, we obtain that 𝑆 is an antipode for 𝐻
.
. Thus,

(𝐻, ·, •, 1,Δ, 𝜖 , 𝑆, 𝑇) is a Yetter–Drinfeld brace.

ii. to i. Suppose given a Yetter–Drinfeld brace (𝐻, ·, •, 1,Δ, 𝜖 , 𝑆, 𝑇). Define 𝐴 :=

(𝐻, ·, 1,Δ, 𝜖). This is in Bimon(𝐻•
𝐻•YD) with action 𝑎 ⇀ 𝑏 = 𝑆(𝑎1) · (𝑎2 • 𝑏), and

the coaction Ad𝐿 . Set 𝜋 := Id𝐻 : 𝐻• → 𝐻
.
, which is clearly a coalgebra isomorphism.
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Moreover, we compute

𝜋(𝑎 • 𝑏) = 𝑎 • 𝑏 = 𝑎1 · 𝑆(𝑎2) · (𝑎3 • 𝑏) = 𝑎1 · (𝑎2 ⇀ 𝑏) = 𝜋(𝑎1) · (𝑎2 ⇀ 𝜋(𝑏)),

while (4.1) and (4.2) are automatically satisfied. Thus 𝜋 : 𝐻• → 𝐻
.
is a Yetter–Drinfeld

1-cocycle.

Functoriality. We verify that the above correspondence is functorial. Let 𝜋 : 𝐻 → 𝐴,

𝜛 : 𝐾 → 𝐵 be Yetter–Drinfeld 1-cocycles, with a morphism 𝜋 → 𝜛 inYD1C(Veck)
given by maps 𝑓 : 𝐻 → 𝐾 , 𝑔 : 𝐴 → 𝐵. Then 𝑓 : 𝐻• → 𝐾•

is a morphism of Hopf

algebras. Moreover,

𝑓 (𝑎 ·𝐻 𝑏) = 𝑓 𝜋−1 (𝜋(𝑎) ·𝐴 𝜋(𝑏))
= 𝜛−1𝑔(𝜋(𝑎) ·𝐴 𝜋(𝑏))
= 𝜛−1 (𝑔𝜋(𝑎) ·𝐵 𝑔𝜋(𝑏))
= 𝜛−1 (𝜛 𝑓 (𝑎) ·𝐵 𝜛 𝑓 (𝑏))
= 𝑓 (𝑎) ·𝐾 𝑓 (𝑏)

and

𝑆𝐾 𝑓 (𝑎) = 𝜛−1 ( 𝑓 (𝑎)1 ⇀𝐵 𝜛𝑇𝐾 ( 𝑓 (𝑎)2))
= 𝜛−1 ( 𝑓 (𝑎1) ⇀𝐵 𝜛𝑇𝐾 ( 𝑓 (𝑎2)))
= 𝜛−1 ( 𝑓 (𝑎1) ⇀𝐵 𝜛 𝑓𝑇𝐻 (𝑎2))
= 𝜛−1 ( 𝑓 (𝑎1) ⇀𝐵 𝑔𝜋𝑇𝐻 (𝑎2))
= 𝜛−1𝑔(𝑎1 ⇀𝐴 𝜋𝑇𝐻 (𝑎2))
= 𝑓 𝜋−1 (𝑎1 ⇀𝐴 𝜋𝑇𝐻 (𝑎2))
= 𝑓 (𝑎1 ⇀𝐻 𝑇𝐻 (𝑎2))
= 𝑓 𝑆𝐻 (𝑎),

thus 𝑓 is a morphism in YDBr(Veck). The above construction clearly sends iden-

tity morphisms into identity morphisms, and respects the composition of maps. We

denote by 𝐹 the functor YD1C(Veck) → YDBr(Veck) thus obtained.

Conversely, a functor 𝐺 : YDBr(Veck) → YD1C(Veck) is defined by the fol-

lowing action on the maps: if 𝑓 : 𝐻 → 𝐾 is a morphism of Yetter–Drinfeld braces, let

𝐺 𝑓 be the pair of maps ( 𝑓 , 𝑓 ), where the former is interpreted as a map 𝑓 : 𝐻• → 𝐾•
,

and the latter as a map 𝑓 : 𝐻
. → 𝐾

.
. We check that this is a morphism inYD1C(Veck)

between Id𝐻 : 𝐻• → 𝐻
.

and Id𝐾 : 𝐾• → 𝐾
.
.

We already know that 𝑓 : 𝐻• → 𝐾•
is a morphism of Hopf algebras and 𝑓 : 𝐻

. →
𝐾 ·

is a morphism of algebras and coalgebras. Moreover, 𝑓 (𝑎 ⇀𝐻 𝑏) = 𝑓 (𝑎) ⇀𝐻

𝑓 (𝑏) holds true because 𝑓 is a morphism in YDBr(Veck). The assignment 𝐺 clearly

respects identities and compositions.

Equivalence. We finally check that this is an equivalence of categories. It is clear that

𝐹𝐺 is the identity functor. Given a Yetter–Drinfeld 1-cocycle 𝜋 : 𝐻• → 𝐴, one has

that 𝐺𝐹 (𝜋) is the Yetter–Drinfeld 1-cocycle Id : 𝐻• → 𝐻
.
, which is isomorphic to
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𝜋 : 𝐻• → 𝐴 via the morphism (Id𝐻 , 𝜋−1). It is easy to verify that this is indeed a

morphism in YD1C(Veck), and its inverse is clearly (Id𝐻 , 𝜋). ■

5 Coquasitriangular Hopf algebras and Yetter–Drinfeld braces

In this section, we shall prove that coquasitriangular bialgebras𝐻 yield matched pairs

of actions (𝐻,⇀,↼) satisfying the hypotheses of Theorem 3.10, and hence enable us

to construct concrete examples of Yetter–Drinfeld braces. The additional structure,

here, coincides with Majid’s transmutation of 𝐻 [28].

5.1 Coquasitriangular bialgebras

The notion of quasitriangular bialgebra was introduced by Drinfeld [11], to relax the

hypothesis of cocommutativity. Here we shall operate with the dual notion, which

appeared in several works in between 1990 and 1993, such as in Schauenburg [36],

Doi [10], Larson and Towber [23], and Majid [27].

Definition 5.1 A coquasitriangular bialgebra, denoted by (𝐻, 𝑚, 𝑢,Δ, 𝜖 ,R) or simply

by (𝐻,R), is the datum of a bialgebra (𝐻, 𝑚, 𝑢,Δ, 𝜖) and of a convolution-invertible

morphism R : 𝐻 ⊗ 𝐻 → k, satisfying:

R(𝑎1 ⊗ 𝑏1)𝑎2𝑏2 = 𝑏1𝑎1R(𝑎2 ⊗ 𝑏2); (coqt.1)

R(𝑎 ⊗ 𝑏𝑐) = R(𝑎1 ⊗ 𝑐)R(𝑎2 ⊗ 𝑏); (coqt.2)

R(𝑎𝑏 ⊗ 𝑐) = R(𝑎 ⊗ 𝑐1)R(𝑏 ⊗ 𝑐2). (coqt.3)

Moreover, (𝐻,R) is called cotriangular if R−1 = Rop
, where R−1

denotes the

convolution inverse of R.

If R provides a coquasitriangular structure, then the convolution inverse R−1

satisfies:

𝑎1𝑏1R−1 (𝑎2 ⊗ 𝑏2) = R−1 (𝑎1 ⊗ 𝑏1)𝑏2𝑎2; (coqt.1
′
)

R−1 (𝑎 ⊗ 𝑏𝑐) = R−1 (𝑎1 ⊗ 𝑏)R−1 (𝑎2 ⊗ 𝑐); (coqt.2
′
)

R−1 (𝑎𝑏 ⊗ 𝑐) = R−1 (𝑏 ⊗ 𝑐1)R−1 (𝑎 ⊗ 𝑐2). (coqt.3
′
)

Let R be a coquasitriangular structure on a bialgebra 𝐻. Then, it is known that

R and its convolution inverse R−1
satisfy the quantum Yang–Baxter equation (see [30,

Lemma 2.2.3]):

R±1 (𝑎1 ⊗ 𝑏1)R±1 (𝑎2 ⊗ 𝑐1)R±1 (𝑏2 ⊗ 𝑐2)
= R±1 (𝑏1 ⊗ 𝑐1)R±1 (𝑎1 ⊗ 𝑐2)R±1 (𝑎2 ⊗ 𝑏2).

(ybe)

Moreover, if 𝐻 is a Hopf algebra with antipode 𝑆, then the following relations hold

true:

R(𝑆(𝑎) ⊗ 𝑏) = R−1 (𝑎 ⊗ 𝑏), R−1 (𝑎 ⊗ 𝑆(𝑏)) = R(𝑎 ⊗ 𝑏),

R±1 (𝑆(𝑎) ⊗ 𝑆(𝑏)) = R(𝑎 ⊗ 𝑏),
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see [30, Lemma 2.2.2]. It is well known that a bialgebra 𝐻 is coquasitriangular if and

only if the category 𝔐𝐻
of right 𝐻-comodules is braided (see [30, Exercise 9.2.9] and

the considerations following [30, Theorem 9.2.4]). Indeed, given a coquasitriangular

structure R, the bialgebra 𝐻 becomes a braided object with the braiding operator

𝜎R
𝐻,𝐻 (𝑎 ⊗ 𝑏) := 𝑏1 ⊗ 𝑎1R(𝑎2 ⊗ 𝑏2),

and a braiding on 𝔐𝐻
is defined for all 𝑋,𝑌 in 𝔐𝐻

by setting

𝜎R
𝑋,𝑌 : 𝑋 ⊗ 𝑌 → 𝑌 ⊗ 𝑋, 𝑥 ⊗ 𝑦 ↦→ 𝑦0 ⊗ 𝑥0R(𝑥1 ⊗ 𝑦1). (5.1)

Moreover, 𝐻 is cotriangular if and only if the category 𝔐𝐻
is symmetric, i.e.

(𝜎R
𝑋,𝑌

)−1 = 𝜎R
𝑌,𝑋

for all 𝑋,𝑌 in 𝔐𝐻
.

In the rest of this section, however, we shall use another braiding operator on 𝐻.

Let (𝐻,R) be a coquasitriangular bialgebra, then the map 𝜎𝐻,𝐻 : 𝐻 ⊗ 𝐻 → 𝐻 ⊗ 𝐻
defined by

𝜎𝐻,𝐻 : 𝐻 ⊗ 𝐻 → 𝐻 ⊗ 𝐻, 𝑎 ⊗ 𝑏 ↦→ R−1 (𝑎1 ⊗ 𝑏1)𝑏2 ⊗ 𝑎2R(𝑎3 ⊗ 𝑏3), (5.2)

is known to be a braiding operator on 𝐻, with inverse given by

𝜎−1

𝐻,𝐻 : 𝐻 ⊗ 𝐻 → 𝐻 ⊗ 𝐻, 𝑎 ⊗ 𝑏 ↦→ R(𝑏1 ⊗ 𝑎1)𝑏2 ⊗ 𝑎2R−1 (𝑏3 ⊗ 𝑎3).

Moreover, 𝑚𝐻𝜎𝐻,𝐻 = 𝑚𝐻 holds.

Remark 5.1 The braiding operator (5.2) extends to a braiding

𝑥 ⊗ 𝑦 ↦→ R−1 (𝑥−1 ⊗ 𝑦−1)𝑦0 ⊗ 𝑥0R(𝑥1 ⊗ 𝑦1)

on the category of bicomodules 𝐻𝔐𝐻
. However, the braidings on (𝐻𝔐𝐻 , ⊗, k) are

not yet classified, and the problem is seemingly hard. When the category of bimodules
𝐻𝔐𝐻 is endowed with the tensor product ⊗𝐻 instead of ⊗k, however, a classifica-

tion was found by Agore, Caenepeel and Militaru [2], which could be dualised for the

category
𝐻𝔐𝐻

.

Remark 5.2 Let 𝜎𝐻,𝐻 be the braiding operator defined in (5.2). Notice that

𝜎2

𝐻,𝐻 = R−1 ∗ (R−1)op ∗ Id𝐻⊗𝐻 ∗ Rop ∗ R = (Rop ∗ R)−1 ∗ Id𝐻⊗𝐻 ∗ (Rop ∗ R),

hence we have that 𝜎2

𝐻,𝐻
= Id𝐻⊗𝐻 if and only if Id𝐻⊗𝐻 ∗ (Rop ∗ R) = (Rop ∗ R) ∗

Id𝐻⊗𝐻 . The element Rop ∗ R is also known as the quantum Killing form. In particular,

if Rop = R−1
, one clearly has 𝜎−1

𝐻,𝐻
= 𝜎𝐻,𝐻 .

5.2 Coquasitriangular Hopf algebras and matched pairs of actions

Suppose given a coquasitriangular Hopf algebra (𝐻, •, 1,Δ, 𝜖 , 𝑇,R). We shall see that

the braiding operator (5.2) yields a matched pair satisfying (★), and hence a Yetter–

Drinfeld brace. The product and the antipode of the corresponding Hopf algebra

structure in
𝐻
𝐻
YD coincide with those obtained by transmutation of 𝐻, introduced

by Majid [28]; thus providing a Yetter–Drinfeld brace-theoretic interpretation of the
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theory of transmutation. At the end of this section, we shall also observe that the same

construction cannot be carried out with the braiding (5.1).

Let 𝜎𝐻,𝐻 be defined as in (5.2), and define

𝑎 ⇀ 𝑏 = (Id ⊗ 𝜖)𝜎𝐻,𝐻 (𝑎 ⊗ 𝑏) = R−1 (𝑎1 ⊗ 𝑏1)𝑏2R(𝑎2 ⊗ 𝑏3); (5.3)

𝑎 ↼ 𝑏 = (𝜖 ⊗ Id)𝜎𝐻,𝐻 (𝑎 ⊗ 𝑏) = R−1 (𝑎1 ⊗ 𝑏1)𝑎2R(𝑎3 ⊗ 𝑏2). (5.4)

These are a left and a right action respectively, by Lemma 2.6, and 𝐻 becomes a left

and right module coalgebra with the respective actions. Moreover, these actions pro-

vide a matched pair (𝐻, 𝐻), see [30, Example 7.2.7]. Observe that the braiding (5.2) is

retrieved as

𝜎𝐻,𝐻 (𝑎 ⊗ 𝑏) = (𝑎1 ⇀ 𝑏1) ⊗ (𝑎2 ↼ 𝑏2).

Hence the fact that (𝐻,⇀,↼) satisfies (mp.1)–(mp.4) can also be obtained using

Lemma 2.2 and Lemma 2.3, while (★) is immediate.

Remark 5.3 The bialgebra 𝐻 ⊲⊳ 𝐻 described in §2, when the matched pair is derived

as in (5.3) and (5.4), is denoted in Majid [30] by 𝐻 ⊲⊳R 𝐻. This has product given by

(𝑎 ⊗ ℎ) (𝑏 ⊗ 𝑔) = R−1 (ℎ1 ⊗ 𝑏1)𝑎 • 𝑏2 ⊗ ℎ2 • 𝑔R(ℎ3 ⊗ 𝑏3).

Moreover, we have

𝑎 ↼ 𝑏 = R−1 (𝑎1 ⊗ 𝑏1)𝑎2R(𝑎3 ⊗ 𝑏2) = R(𝑇 (𝑎1) ⊗ 𝑏1)𝑎2R(𝑎3 ⊗ 𝑏2)
= 𝑎2R(𝑇 (𝑎1) • 𝑎3 ⊗ 𝑏),

so this situation falls under the hypotheses of [30, Lemma 7.4.8] where, in our case,

the coaction is given by Ad𝑅 : 𝑎 ↦→ 𝑎2 ⊗ 𝑇 (𝑎1) • 𝑎3. Thus [30, Lemma 7.4.8] ensures

us that 𝐻 is also a right 𝐻-module with respect to ↼. Hence, using ↼ and Ad𝑅 one

can construct the bialgebra 𝐻 ·⊲< 𝐻 (we borrow the notation from [30]), where 𝐻 is

the (right) transmutation of 𝐻 [30, Theorem 7.4.1] (see also [30, Example 9.4.10]), and

the symbol ·⊲< denotes the bialgebra with smash product algebra structure, and smash

coproduct coalgebra structure. So𝐻 ·⊲< 𝐻 is exactly the bosonisation𝐻#𝐻, built using

the right action and the right coaction. By [30, Theorem 7.4.10], one also obtains an

isomorphism 𝐻 ⊲⊳R 𝐻 � 𝐻 ·⊲< 𝐻. In Remark 5.6, we shall relate 𝐻
.

with a left version

𝐻 of Majid’s transmutation.

Notice that

𝑎 ⇀ 𝑏 = R−1 (𝑎1 ⊗ 𝑏1)𝑏2R(𝑎2 ⊗ 𝑏3) = R−1 (𝑎1 ⊗ 𝑏1)𝑏2R−1 (𝑎2 ⊗ 𝑇 (𝑏3))
= 𝑏2R−1 (𝑎 ⊗ 𝑏1 • 𝑇 (𝑏3)).

In this case, (3.1) takes the following form:

𝑎 · 𝑏 = 𝑎1 • 𝑏2R−1 (𝑇 (𝑎2) ⊗ (𝑏1 • 𝑇 (𝑏3))), (5.5)
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and also

𝑎 · 𝑏 = R−1 (𝑇 (𝑎3) ⊗ 𝑏1)𝑎1 • 𝑏2R−1 (𝑇 (𝑎2) ⊗ 𝑇 (𝑏3))
= R−1 (𝑇 (𝑎3) ⊗ 𝑏1)𝑎1 • 𝑏2R−1 (𝑎2 ⊗ 𝑏3)

(coqt.1
′
)

= R−1 (𝑇 (𝑎3) ⊗ 𝑏1)R−1 (𝑎1 ⊗ 𝑏2)𝑏3 • 𝑎2

= R−1 ((𝑎1 • 𝑇 (𝑎3)) ⊗ 𝑏1)𝑏2 • 𝑎2,

(5.6)

while (3.2) has the following form:

𝑆(𝑎) = 𝑎1 ⇀ 𝑇 (𝑎2) = 𝑇 (𝑎3)R−1 (𝑎1 ⊗ 𝑇 (𝑇 (𝑎2) • 𝑎4))
= 𝑇 (𝑎3)R(𝑎1 ⊗ 𝑇 (𝑎2) • 𝑎4)
= 𝑇 (𝑎4)R(𝑎1 ⊗ 𝑎5)R(𝑎2 ⊗ 𝑇 (𝑎3)).

(5.7)

Remark 5.4 When 𝐻 is cocommutative, ⇀ is trivial, and hence · coincides with •.

Thus the corresponding Yetter–Drinfeld brace is just the trivial Hopf brace (𝐻, •, •)
(the terminology is again adapted from [18]).

Theorem 5.5 Let (𝐻, •, 1,Δ, 𝜖 , 𝑇,R) be a coquasitriangular Hopf algebra. Define ⇀ and
↼ as above, and define · and 𝑆 accordingly. Then, (𝐻, ·, •, 1,Δ, 𝜖 , 𝑆, 𝑇) is a Yetter–Drinfeld
brace. Furthermore, if R is cotriangular, then · is braided-commutative with respect to the
braiding of 𝐻

𝐻
YD , whence also 𝑆2 = Id𝐻 .

Proof We already know that (𝐻,⇀,↼) satisfies (mp.1)–(mp.4) [30, Example 7.2.7].

Moreover, it follows from (coqt.1) that𝐻 is braided-commutative, i.e.𝑚•𝜎𝐻,𝐻 = 𝑚•,

which translates into condition (★). Corollary 3.15 yields that (𝐻, ·, •, 1,Δ, 𝜖 , 𝑆, 𝑇) is

a Yetter–Drinfeld brace.

Suppose now that R is cotriangular. The braided commutativity of · with respect

to the braiding of
𝐻
𝐻
YD is expressed by the condition 𝑎 · 𝑏 = (𝑎1 • 𝑇 (𝑎3) ⇀ 𝑏) · 𝑎2,

which in view of (5.6) is rewritten as

𝑏3•𝑎2R−1 (𝑇 (𝑎3)⊗𝑏1)R−1 (𝑎1⊗𝑏2) = 𝑏2·𝑎3R−1 ((𝑎1•𝑇 (𝑎5))⊗𝑏1)R((𝑎2•𝑇 (𝑎4))⊗𝑏3).

Suppose R−1 = Rop
. Then

𝑏2 · 𝑎3R−1 ((𝑎1 • 𝑇 (𝑎5)) ⊗ 𝑏1)R((𝑎2 • 𝑇 (𝑎4)) ⊗ 𝑏3)
= 𝑏3 • 𝑎4R−1 (𝑇 (𝑎7) ⊗ 𝑏1)R−1 (𝑎1 ⊗ 𝑏2)R−1 (𝑇 (𝑏5) ⊗ 𝑎3)

R−1 (𝑏4 ⊗ 𝑎5)R(𝑎2 ⊗ 𝑏6)R(𝑇 (𝑎6) ⊗ 𝑏7)
= 𝑏3 • 𝑎4R−1 (𝑇 (𝑎7) ⊗ 𝑏1)R−1 (𝑎1 ⊗ 𝑏2)R(𝑎3 ⊗ 𝑇 (𝑏5))

R(𝑎5 ⊗ 𝑏4)R(𝑎2 ⊗ 𝑏6)R(𝑇 (𝑎6) ⊗ 𝑏7)
= 𝑏3 • 𝑎2R−1 (𝑇 (𝑎5) ⊗ 𝑏1)R−1 (𝑎1 ⊗ 𝑏2)R(𝑎3 ⊗ 𝑏4)R(𝑇 (𝑎4) ⊗ 𝑏5)
= 𝑏3 • 𝑎2R−1 (𝑇 (𝑎3) ⊗ 𝑏1)R−1 (𝑎1 ⊗ 𝑏2),

as desired. Given a Hopf algebra (𝐻, ·, 1,Δ, 𝜖 , 𝑆) in a braided monoidal category M,

it is known that, if · is braided-commutative in M, then 𝑆 is involutive. ■
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The Hopf algebra SLq(2) with 𝑞 = −1 will be an example of a coquasitriangular

Hopf algebra with involutive antipode 𝑆, which is not cotriangular.

Remark 5.6 Let us show how the Hopf algebra (𝐻, ·, 1,Δ, 𝜖 , 𝑆) is related to the trans-

mutation of the Hopf algebra (𝐻, •, 1,Δ, 𝜖 , 𝑇). For more details about transmutation

theory we redirect the reader to Majid [28, 30]. Let (𝐻, •, 1,Δ, 𝜖 , 𝑇,R) be a coqua-

sitriangular Hopf algebra, so that R−1
induces a braiding on the category

𝐻𝔐. It is

possible to define a second product operation • on 𝐻, and a second antipode 𝑇 , such

that they provide, on 𝐻, a Hopf algebra structure 𝐻 in
𝐻𝔐 (with same comultiplica-

tion Δ and counit 𝜖 ), where the comodule structure is given by Ad𝐿 . This is called the

transmutation of 𝐻; see [30, dual of Example 9.4.10]. The transmuted product and the

transmuted antipode are, respectively,

𝑎 • 𝑏 := R−1 (𝑇 (𝑎2) ⊗ (𝑏1 • 𝑇 (𝑏3)))𝑎1 • 𝑏2,

𝑇 (𝑎) := R−1 (𝑎1 ⊗ 𝑇 (𝑇 (𝑎2) • 𝑎4))𝑇 (𝑎3).

By (5.5) we have 𝑎 • 𝑏 = 𝑎 · 𝑏 and by (5.7) we have 𝑇 (𝑎) = 𝑆(𝑎), so (𝐻, ·, 1,Δ, 𝜖 , 𝑆)
coincides with the transmutation of (𝐻, •, 1,Δ, 𝜖 , 𝑇). Hence the transmutation

of coquasitriangular Hopf algebras gives us examples of Yetter–Drinfeld braces.

Theorem 3.10 implies, in particular, that 𝐻 lies in Hopf(𝐻•
𝐻•YD), with action given

by⇀. Observe from [41, duals of Theorem 4.8 and Corollary 4.9] (with 𝑓 = Id𝐻• ) that

there is a braided monoidal equivalence between 𝐻. (𝐻•
𝔐) and

𝐻•
𝐻•YD, hence one can

also recover an object in Hopf(𝐻. (𝐻•
𝔐)).

Remark 5.7 We know from Counterexample 2.7 that the following two actions do

not form a matched pair:

𝑎 ⇀ 𝑏 = R(𝑎 ⊗ 𝑏2)𝑏1, 𝑎 ↼ 𝑏 = 𝑎1R(𝑎2 ⊗ 𝑏).

We may define · as in (3.1):

𝑎 · 𝑏 := 𝑎1 • (𝑇 (𝑎2) ⇀ 𝑏) = 𝑎1 • R(𝑇 (𝑎2) ⊗ 𝑏2)𝑏1 = 𝑎1 • 𝑏1R−1 (𝑎2 ⊗ 𝑏2).

With this product, (𝐻, ·, 1) is an algebra. But now observe that, since 𝜖 (𝑎 · 𝑏) =

R−1 (𝑎 ⊗ 𝑏), 𝜖 is not a morphism of algebras with respect to ·, unless R−1 = 𝜖 ⊗ 𝜖
and hence R = 𝜖 ⊗ 𝜖 : in this case, by (coqt.1), 𝐻 is commutative.

In the case of cocommutative Hopf braces, it is known (see [5, Corollary 2.5])

that the additional operation (3.1) is commutative if and only if the braiding oper-

ator 𝜎(𝑎 ⊗ 𝑏) := (𝑎1 ⇀ 𝑏1) ⊗ (𝑎2 ↼ 𝑏2) is involutive. An analogous result

for Yetter–Drinfed braces may possibly hold, substituting commutativity with braided
commutativity in

𝐻
𝐻
YD. However, we attempted mimicking the proof of [5, Theorem

2.3] in several straightforward ways, and all of them failed; thus leaving the following

problem open:

Problem5.8 Let (𝐻,⇀,↼) be a matched pair of actions on a Hopf algebra, and let · be

defined as in (3.1). Is it true that𝜎 is involutive if and only if · is braided-commutative?
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Remark 5.9 The well-known FRT construction [14] allows one to construct a coqu-

asitriangular bialgebra 𝐴(𝑐) from a solution 𝑐 ∈ Endk (𝑉 ⊗ 𝑉) of the braid equation
(𝑐⊗Id) (Id⊗𝑐) (𝑐⊗Id) = (Id⊗𝑐) (𝑐⊗Id) (Id⊗𝑐). The bialgebra 𝐴(𝑐) is spanned by inde-

terminates 𝑡𝑖
𝑗

(see the construction as presented by Kassel [21]). If we adjoin to 𝐴(𝑐)
inverses 𝑡 to the variables, one can canonically extend the relations, the comultiplica-

tion and the counit to 𝑡, and define 𝑆𝑡 := 𝑡, obtaining a Hopf algebra𝐺𝐿 (𝑐). Suppose

now thatR extends so that𝐺𝐿 (𝑐) is coquasitriangular (this happens in many concrete

examples, see [30, §4.2]). Using the coquasitriangular Hopf algebra (𝐺𝐿 (𝑐),R) we can

obtain a Yetter–Drinfeld brace, where · is defined as in (5.6), and 𝑆 as in and (5.7).

6 Examples

In this section, we apply our results to known examples of coquasitriangular Hopf

algebras; namely the Sweedler’s Hopf algebra, the algebras 𝐸 (𝑛), the Hopf algebra

SL𝑞 (2), and an example in the class of Suzuki algebras. For each example, we describe

the corresponding Yetter–Drinfeld brace. Throughout this section, our notation

changes from “brace-theoretic” (𝐻, ·, •, 1,Δ, 𝜖 , 𝑆, 𝑇) to “transmutation-theoretic”

(𝐻, ·, ·, 1,Δ, 𝜖 , 𝑆, 𝑆), in order to match the way in which the objects in the examples

are usually presented.

6.1 The Sweedler’s Hopf algebra

Let us suppose char(k) ≠ 2. The Sweedler’s Hopf algebra 𝐻4 = 𝐸 (1) is the free k-

algebra generated by two elements 𝑔 and 𝑥 modulo the relations

𝑔2 = 1, 𝑥2 = 0, and 𝑥𝑔 = −𝑔𝑥,

where 1 denotes the unit of 𝐻4. It becomes a Hopf algebra with comultiplication,

counit and antipode given by Δ(𝑔) = 𝑔 ⊗ 𝑔, Δ(𝑥) = 𝑥 ⊗ 1 + 𝑔 ⊗ 𝑥, 𝜖 (𝑔) = 1,

𝜖 (𝑥) = 0, 𝑆(𝑔) = 𝑔 and 𝑆(𝑥) = 𝑥𝑔, respectively. In particular,𝐻4 is neither commuta-

tive nor cocommutative. We recall that𝐻4 has a one-parameter family of cotriangular

structures given by

R
©«

1 ⊗ 1 1 ⊗ 𝑔 1 ⊗ 𝑥 1 ⊗ 𝑥𝑔
𝑔 ⊗ 1 𝑔 ⊗ 𝑔 𝑔 ⊗ 𝑥 𝑔 ⊗ 𝑥𝑔
𝑥 ⊗ 1 𝑥 ⊗ 𝑔 𝑥 ⊗ 𝑥 𝑥 ⊗ 𝑥𝑔
𝑥𝑔 ⊗ 1 𝑥𝑔 ⊗ 𝑔 𝑥𝑔 ⊗ 𝑥 𝑥𝑔 ⊗ 𝑥𝑔

ª®®®¬ =
©«

1 1 0 0

1 −1 0 0

0 0 𝑘 −𝑘
0 0 𝑘 𝑘

ª®®®¬ ,
where 𝑘 is a parameter in k (see [30, Example 2.2.6]). The convolution inverse of R is

R−1 = Rop
given by the transpose matrix

R−1

©«
1 ⊗ 1 1 ⊗ 𝑔 1 ⊗ 𝑥 1 ⊗ 𝑥𝑔
𝑔 ⊗ 1 𝑔 ⊗ 𝑔 𝑔 ⊗ 𝑥 𝑔 ⊗ 𝑥𝑔
𝑥 ⊗ 1 𝑥 ⊗ 𝑔 𝑥 ⊗ 𝑥 𝑥 ⊗ 𝑥𝑔
𝑥𝑔 ⊗ 1 𝑥𝑔 ⊗ 𝑔 𝑥𝑔 ⊗ 𝑥 𝑥𝑔 ⊗ 𝑥𝑔

ª®®®¬ =
©«

1 1 0 0

1 −1 0 0

0 0 𝑘 𝑘

0 0 −𝑘 𝑘

ª®®®¬ .
Given 𝛼 := 𝑎11 + 𝑎2𝑔 + 𝑎3𝑥 + 𝑎4𝑥𝑔 in 𝐻4, one has

(Δ ⊗ Id)Δ(𝛼) = 𝑎11 ⊗ 1 ⊗ 1 + 𝑎2𝑔 ⊗ 𝑔 ⊗ 𝑔 + 𝑎3𝑥 ⊗ 1 ⊗ 1 + 𝑎3𝑔 ⊗ 𝑥 ⊗ 1
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+ 𝑎3𝑔 ⊗ 𝑔 ⊗ 𝑥 + 𝑎4𝑥𝑔 ⊗ 𝑔 ⊗ 𝑔 + 𝑎41 ⊗ 𝑥𝑔 ⊗ 𝑔 + 𝑎41 ⊗ 1 ⊗ 𝑥𝑔.

Hence, given 𝛽 := 𝑏11 + 𝑏2𝑔 + 𝑏3𝑥 + 𝑏4𝑥𝑔 in 𝐻4, one has

𝛼 ⇀ 𝛽 = (𝑎1𝑏1 + 𝑎2𝑏1 + 𝑘 (𝑎3𝑏3 − 𝑎3𝑏4 − 𝑎4𝑏3 + 𝑎4𝑏4))1
+ (𝑎1𝑏2 + 𝑎2𝑏2 + 𝑘 (𝑎3𝑏4 − 𝑎3𝑏3 − 𝑎4𝑏4 + 𝑎4𝑏3))𝑔
+ (𝑎1𝑏3 − 𝑎2𝑏3)𝑥 + (𝑎1𝑏4 − 𝑎2𝑏4)𝑥𝑔.

Analogously, for↼ one has:

𝛼 ↼ 𝛽 = (𝑎1𝑏1 + 𝑎1𝑏2 + 𝑎3𝑏3𝑘 + 𝑎3𝑏4𝑘 + 𝑎4𝑏3𝑘 + 𝑎4𝑏4𝑘)1
+ (𝑎2𝑏1 + 𝑎2𝑏2 − 𝑎3𝑏3𝑘 − 𝑎3𝑏4𝑘 − 𝑎4𝑏3𝑘 − 𝑎4𝑏4𝑘)𝑔
+ (𝑎3𝑏1 − 𝑎3𝑏2)𝑥 + (𝑎4𝑏1 − 𝑎4𝑏2)𝑥𝑔.

The two actions are summarised in Table 1. We denote by · the transmuted multi-

plicative structure on 𝐻4, defined according to (5.6). This is explicitly given by

𝛼 · 𝛽 = 𝛼1 (𝑆(𝛼2) ⇀ 𝛽)
= 𝑎1 (𝑆(1) ⇀ 𝛽) + 𝑎2𝑔(𝑆(𝑔) ⇀ 𝛽) + 𝑎3𝑥(𝑆(1) ⇀ 𝛽)

+ 𝑎3𝑔(𝑆(𝑥) ⇀ 𝛽) + 𝑎4𝑥𝑔(𝑆(𝑔) ⇀ 𝛽) + 𝑎4 (𝑆(𝑥𝑔) ⇀ 𝛽)
= 𝑎1𝛽 + 𝑎2𝑔(𝑏11 + 𝑏2𝑔 − 𝑏3𝑥 − 𝑏4𝑥𝑔) + 𝑎3𝑥𝛽 + 𝑎3𝑔((𝑘𝑏4 − 𝑘𝑏3)1

+ (𝑘𝑏3 − 𝑘𝑏4)𝑔) + 𝑎4𝑥𝑔(𝑏11 + 𝑏2𝑔 − 𝑏3𝑥 − 𝑏4𝑥𝑔)
+ 𝑎4 ((𝑘𝑏4 − 𝑘𝑏3)1 + (𝑘𝑏3 − 𝑘𝑏4)𝑔)

= (𝑎1𝑏1 + 𝑎2𝑏2 + 𝑘𝑎3𝑏3 − 𝑘𝑎3𝑏4 + 𝑘𝑎4𝑏4 − 𝑘𝑎4𝑏3)1
+ (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑘𝑎3𝑏4 − 𝑘𝑎3𝑏3 + 𝑘𝑎4𝑏3 − 𝑘𝑎4𝑏4)𝑔
+ (𝑎1𝑏3 + 𝑎2𝑏4 + 𝑎3𝑏1 + 𝑎4𝑏2)𝑥
+ (𝑎1𝑏4 + 𝑎2𝑏3 + 𝑎3𝑏2 + 𝑎4𝑏1)𝑥𝑔.

The multiplication · is described in Table 2. The algebra (𝐻4, · , 1) is generated by

𝑔, 𝑥 modulo the relations 𝑔 · 𝑔 = 1, 𝑥 · 𝑥 = 𝑘1 − 𝑘𝑔, 𝑥 · 𝑔 = 𝑔 · 𝑥. The new antipode

𝑆 is defined by 𝑆(𝛼) := 𝛼1 ⇀ 𝑆(𝛼2) as in (5.7), whence 𝑆(1) = 1, 𝑆(𝑔) = 𝑔, 𝑆(𝑥) =

Table 1: Left and right actions for 𝐻4.

Left action Right action

⇀ 1 𝑔 𝑥 𝑥𝑔 ↼ 1 𝑔 𝑥 𝑥𝑔

1 1 𝑔 𝑥 𝑥𝑔 1 1 1 0 0

𝑔 1 𝑔 −𝑥 −𝑥𝑔 𝑔 𝑔 𝑔 0 0

𝑥 0 0 𝑘1 − 𝑘𝑔 𝑘𝑔 − 𝑘1 𝑥 𝑥 −𝑥 𝑘1 − 𝑘𝑔 𝑘1 − 𝑘𝑔
𝑥𝑔 0 0 𝑘𝑔 − 𝑘1 𝑘1 − 𝑘𝑔 𝑥𝑔 𝑥𝑔 −𝑥𝑔 𝑘1 − 𝑘𝑔 𝑘1 − 𝑘𝑔
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−𝑥𝑔 = −𝑥·𝑔, and 𝑆(𝑥𝑔) = 𝑆(𝑥 · 𝑔) = 𝑆(𝑔) · 𝑆(𝑥) = −𝑥. Notice that · is braided-

commutative and 𝑆 is involutive, as we know from Theorem 5.5. Remark 5.2 implies

that the braiding 𝜎𝐻4 ,𝐻4
: 𝛼 ⊗ 𝛽 ↦→ (𝛼1 ⇀ 𝛽1) ⊗ (𝛼2 ↼ 𝛽2) is involutive.

Observe that · is also commutative, even if 𝜎YD
𝐻4 ,𝐻4

does not coincide with the flip

map 𝜏 (for instance, it is easy to see that𝜎YD
𝐻4 ,𝐻4

and 𝜏 differ on 𝑥⊗𝑥). Notice moreover

that · is compatible with Δ in the braided sense, but not in the classical sense: indeed

(𝑥 · 𝑥)1 ⊗ (𝑥 · 𝑥)2 = (𝑘1− 𝑘𝑔) ⊗ (𝑘1− 𝑘𝑔) ≠ (𝑘1− 𝑘𝑔) ⊗1+2𝑥𝑔⊗ 𝑔+1⊗ (𝑘1− 𝑘𝑔) =
(𝑥1 · 𝑥1) ⊗ (𝑥2 · 𝑥2). In particular, this Yetter–Drinfeld brace is not a Hopf brace.

Remark 6.1 Matched pairs of bialgebras (𝐻4, 𝐻4) on the Sweedler’s Hopf algebra

are classified by Bontea [6, Theorem 2.1]. Other than the matched pairs arising from

cotriangular structures, already considered above, there is only one more pair of

actions on 𝐻4 satisfying (mp.1)–(mp.5): this is the pair provided by the trivial actions

𝑎⊗ 𝑏 ↦→ 𝜖 (𝑎)𝑏, 𝑎⊗ 𝑏 ↦→ 𝑎 𝜖 (𝑏). Since𝐻4 is not commutative, the pair with the trivial

actions does not satisfy (★), and hence is not a matched pair of actions.

We have, as a byproduct of Remark 6.1, the following result:

Proposition 6.2 The only matched pair of actions (𝐻4,⇀,↼) on the Sweedler’s Hopf
algebra 𝐻4 is the matched pair defined in Table 1.

6.2 The Hopf algebras E(n)

Let us suppose char(k) ≠ 2. A generalisation of the Sweedler’s Hopf algebra is pro-

vided by the Hopf algebras 𝐸 (𝑛) generated as algebras by 𝑔, 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛, with

relations

𝑔2 = 1, 𝑥2

𝑖 = 0, 𝑥𝑖𝑔 = −𝑔𝑥𝑖 , 𝑥𝑖𝑥 𝑗 = −𝑥 𝑗𝑥𝑖 , for all 𝑖 = 1, . . . , 𝑛,

endowed with the comultiplication Δ(1) = 1 ⊗ 1, Δ(𝑔) = 𝑔 ⊗ 𝑔, Δ(𝑥𝑖) = 𝑥𝑖 ⊗ 1 +
𝑔 ⊗ 𝑥𝑖 , the counit 𝜖 (𝑔) = 1, 𝜖 (𝑥𝑖) = 0, and the antipode 𝑆(𝑔) = 𝑔, 𝑆(𝑥𝑖) = 𝑥𝑖𝑔. The

quasitriangular structures on 𝐸 (𝑛) are classified by Panaite and Van Oystaeyen [34],

and the coquasitriangular structures are obtained by duality (see e.g. Carnovale and

Table 2: Multiplication table for · in 𝐻4.

· 1 𝑔 𝑥 𝑥𝑔

1 1 𝑔 𝑥 𝑥𝑔

𝑔 𝑔 1 𝑥𝑔 𝑥

𝑥 𝑥 𝑥𝑔 𝑘1 − 𝑘𝑔 𝑘𝑔 − 𝑘1

𝑥𝑔 𝑥𝑔 𝑥 𝑘𝑔 − 𝑘1 𝑘1 − 𝑘𝑔
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Cuadra [9, p. 256]):

R𝐴
©«

1 ⊗ 1 1 ⊗ 𝑔 1 ⊗ 𝑥 𝑗 1 ⊗ 𝑥 𝑗𝑔
𝑔 ⊗ 1 𝑔 ⊗ 𝑔 𝑔 ⊗ 𝑥 𝑗 𝑔 ⊗ 𝑥 𝑗𝑔
𝑥𝑖 ⊗ 1 𝑥𝑖 ⊗ 𝑔 𝑥𝑖 ⊗ 𝑥 𝑗 𝑥𝑖 ⊗ 𝑥 𝑗𝑔
𝑥𝑖𝑔 ⊗ 1 𝑥𝑖𝑔 ⊗ 𝑔 𝑥𝑖𝑔 ⊗ 𝑥 𝑗 𝑥𝑖𝑔 ⊗ 𝑥 𝑗𝑔

ª®®®¬ =
©«

1 1 0 0

1 −1 0 0

0 0 𝐴𝑖 𝑗 −𝐴𝑖 𝑗
0 0 𝐴𝑖 𝑗 𝐴𝑖 𝑗

ª®®®¬ ,
where 𝐴 = (𝐴𝑖 𝑗 )𝑖 𝑗 is an 𝑛×𝑛matrix with entries in k. It is easy to see that R𝐴 is cotri-

angular if and only if 𝐴 is symmetric. Panaite and Van Oystaeyen [34] conjectured that

𝑅𝐴 is triangular if and only if 𝐴 is symmetric; which was later proven by Carnovale

and Cuadra [9, Proposition 2.1].

Assume 𝐴𝑖 𝑗 = 𝐴 𝑗𝑖 , thus R−1 = Rop
. We define a second multiplicative structure

· as in (5.6). This is described in Table 3 (in particular, it is commutative). In terms of

generators and relation, (𝐸 (𝑛), · , 1) is the algebra generated by 𝑔, 𝑥𝑖 with relations

𝑔 · 𝑔 = 1, 𝑥𝑖 · 𝑥 𝑗 + 𝑥 𝑗 · 𝑥𝑖 = 2𝐴𝑖 𝑗 (1 − 𝑔), 𝑥𝑖 · 𝑔 = 𝑔 · 𝑥𝑖 . The action ⇀ is described

in Table 4. The antipode 𝑆, defined as in (5.7), acts as follows: 𝑆(1) = 1, 𝑆(𝑔) = 𝑔,

𝑆(𝑥𝑖) = −𝑥𝑖𝑔 = −𝑥𝑖 · 𝑔.

6.3 The Hopf algebra SLq(2)

Let 𝑞 ∈ C×
, and consider, following Kassel [21, §IV.6], theC-algebra SL𝑞 (2) generated

by 𝑎, 𝑏, 𝑐, 𝑑 modulo the following relations:

𝑏𝑎 = 𝑞𝑎𝑏, 𝑐𝑎 = 𝑞𝑎𝑐, 𝑑𝑏 = 𝑞𝑏𝑑,

𝑑𝑐 = 𝑞𝑐𝑑, 𝑏𝑐 = 𝑐𝑏, 𝑎𝑑 − 𝑑𝑎 = (𝑞−1 − 𝑞)𝑏𝑐,

Table 3: Multiplication table for · in 𝐸 (𝑛).

· 1 𝑔 𝑥 𝑗 𝑥 𝑗𝑔

1 1 𝑔 𝑥 𝑗 𝑥 𝑗𝑔

𝑔 𝑔 1 𝑥 𝑗𝑔 𝑥 𝑗
𝑥𝑖 𝑥𝑖 𝑥𝑖𝑔 𝐴𝑖 𝑗1 − 𝐴𝑖 𝑗𝑔 + 𝑥𝑖𝑥 𝑗 𝐴𝑖 𝑗𝑔 − 𝐴𝑖 𝑗1 + 𝑥𝑖𝑥 𝑗𝑔
𝑥𝑖𝑔 𝑥𝑖𝑔 𝑥𝑖 𝐴𝑖 𝑗𝑔 − 𝐴𝑖 𝑗1 + 𝑥𝑖𝑥 𝑗𝑔 𝐴𝑖 𝑗1 − 𝐴𝑖 𝑗𝑔 + 𝑥𝑖𝑥 𝑗

Table 4: Table for the action⇀ in 𝐸 (𝑛).

⇀ 1 𝑔 𝑥 𝑗 𝑥 𝑗𝑔

1 1 𝑔 𝑥 𝑗 𝑥 𝑗𝑔

𝑔 1 𝑔 −𝑥 𝑗 −𝑥 𝑗𝑔
𝑥𝑖 0 0 𝐴𝑖 𝑗1 − 𝐴𝑖 𝑗𝑔 𝐴𝑖 𝑗𝑔 − 𝐴𝑖 𝑗1
𝑥𝑖𝑔 0 0 𝐴𝑖 𝑗𝑔 − 𝐴𝑖 𝑗1 𝐴𝑖 𝑗1 − 𝐴𝑖 𝑗𝑔
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𝑑𝑎 − 𝑞𝑏𝑐 = 1.

This is known to be a Hopf algebra with

Δ

(
𝑎 𝑏

𝑐 𝑑

)
=

(
𝑎 𝑏

𝑐 𝑑

)
⊗
(
𝑎 𝑏

𝑐 𝑑

)
, 𝜖

(
𝑎 𝑏

𝑐 𝑑

)
=

(
1 0

0 1

)
, 𝑆

(
𝑎 𝑏

𝑐 𝑑

)
=

(
𝑑 −𝑞𝑏

−𝑞−1𝑐 𝑎

)
,

and, when 𝑞 ≠ 1, it is neither commutative nor cocommutative. The Hopf algebra

SL𝑞 (2) is coquasitriangular [21, Corollary VIII.7.2], with

R
©«
𝑎 ⊗ 𝑎 𝑏 ⊗ 𝑏 𝑎 ⊗ 𝑏 𝑏 ⊗ 𝑎
𝑐 ⊗ 𝑐 𝑑 ⊗ 𝑑 𝑐 ⊗ 𝑑 𝑑 ⊗ 𝑐
𝑎 ⊗ 𝑐 𝑏 ⊗ 𝑑 𝑎 ⊗ 𝑑 𝑏 ⊗ 𝑐
𝑐 ⊗ 𝑎 𝑑 ⊗ 𝑏 𝑐 ⊗ 𝑏 𝑑 ⊗ 𝑎

ª®®®¬ = 𝑞
−1/2

©«
𝑞 0 0 0

0 𝑞 0 0

0 0 1 𝑞 − 𝑞−1

0 0 0 1

ª®®®¬ ,
R−1

©«
𝑎 ⊗ 𝑎 𝑏 ⊗ 𝑏 𝑎 ⊗ 𝑏 𝑏 ⊗ 𝑎
𝑐 ⊗ 𝑐 𝑑 ⊗ 𝑑 𝑐 ⊗ 𝑑 𝑑 ⊗ 𝑐
𝑎 ⊗ 𝑐 𝑏 ⊗ 𝑑 𝑎 ⊗ 𝑑 𝑏 ⊗ 𝑐
𝑐 ⊗ 𝑎 𝑑 ⊗ 𝑏 𝑐 ⊗ 𝑏 𝑑 ⊗ 𝑎

ª®®®¬ = 𝑞
1/2

©«
𝑞−1

0 0 0

0 𝑞−1
0 0

0 0 1 𝑞−1 − 𝑞
0 0 0 1

ª®®®¬ .
Notice that R−1 = Rop

if and only if 𝑞1/2 = 𝑞−1/2
, if and only if 𝑞 = 1. In this case

R = R−1 = Rop
, and the previous matrices are the identities. The explicit form of the

iterated Δ is here reported:

(Δ ⊗ Id)Δ (𝑎) = 𝑎 ⊗ 𝑎 ⊗ 𝑎 + 𝑎 ⊗ 𝑏 ⊗ 𝑐 + 𝑏 ⊗ 𝑐 ⊗ 𝑎 + 𝑏 ⊗ 𝑑 ⊗ 𝑐;

(Δ ⊗ Id)Δ (𝑏) = 𝑎 ⊗ 𝑎 ⊗ 𝑏 + 𝑎 ⊗ 𝑏 ⊗ 𝑑 + 𝑏 ⊗ 𝑐 ⊗ 𝑏 + 𝑏 ⊗ 𝑑 ⊗ 𝑑;

(Δ ⊗ Id)Δ (𝑐) = 𝑐 ⊗ 𝑎 ⊗ 𝑎 + 𝑐 ⊗ 𝑏 ⊗ 𝑐 + 𝑑 ⊗ 𝑐 ⊗ 𝑎 + 𝑑 ⊗ 𝑑 ⊗ 𝑐;

(Δ ⊗ Id)Δ (𝑑) = 𝑐 ⊗ 𝑎 ⊗ 𝑏 + 𝑐 ⊗ 𝑏 ⊗ 𝑑 + 𝑑 ⊗ 𝑐 ⊗ 𝑏 + 𝑑 ⊗ 𝑑 ⊗ 𝑑.

We define an additional operation · on SL𝑞 (2) as in (5.6). Using the iterated Δ, we

compute Table 5 for the multiplication · , and Table 6 for the left action ⇀. Hence

we have that · is commutative if and only if 𝑞 = 𝑞−1
, i.e., if and only if 𝑞 = ±1. In

particular, if 𝑞 = −1, · is commutative butR is not cotriangular. The algebra (𝐻, · , 1)
is generated by 𝑎, 𝑏, 𝑐, 𝑑 modulo the relations

𝑐 · 𝑎 = 𝑞2𝑎 · 𝑐, 𝑏 · 𝑑 − 𝑑 · 𝑏 = (𝑞2 − 1)𝑎 · 𝑏,
𝑎 · 𝑏 = 𝑞2𝑏 · 𝑎, 𝑏 · 𝑐 − 𝑐 · 𝑏 = (𝑞2 − 1)𝑎 · 𝑎 − (𝑞2 − 1)𝑎 · 𝑑,
𝑎 · 𝑑 = 𝑑 · 𝑎, 𝑑 · 𝑐 − 𝑐 · 𝑑 = (𝑞2 − 1)𝑐 · 𝑎,

Table 5: Multiplication table for · in SL𝑞 (2).

· 𝑎 𝑏 𝑐 𝑑

𝑎 𝑎2 𝑞𝑎𝑏 𝑞−1𝑎𝑐 𝑎𝑑

𝑏 𝑞−1𝑎𝑏 𝑞−1𝑏2 (𝑞2 − 1)𝑎2 + (1 − 𝑞2)𝑎𝑑 + 𝑞𝑏𝑐 (𝑞3 − 𝑞)𝑎𝑏 + 𝑏𝑑
𝑐 𝑞𝑎𝑐 𝑞𝑏𝑐 𝑞−1𝑐2 𝑐𝑑

𝑑 𝑎𝑑 𝑏𝑑 (𝑞3 − 𝑞)𝑎𝑐 + 𝑐𝑑 𝑑2
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𝑎 ·̄ 𝑑 − 𝑞−2𝑐 ·̄ 𝑏 = 1.

We now define the transmuted antipode 𝑆(𝑥) := 𝑥1 ⇀ 𝑆(𝑥2), as in (5.7). One has

𝑆(𝑎) = 𝑞−2𝑑 + (1 − 𝑞−2)𝑎, 𝑆(𝑏) = −𝑞−2𝑏,

𝑆(𝑐) = −𝑞−2𝑐, 𝑆(𝑑) = 𝑎.

Notice that 𝑆 is involutive if and only if 𝑞 = ±1. Hence, if 𝑞 = −1, 𝑆 is involutive but

R is not cotriangular.

6.4 An example in the class of Suzuki Hopf algebras

Let k be an algebraically closed field of characteristic char(k) ≠ 2, as in Suzuki [38].

The Suzuki Hopf algebra 𝐴𝜈,𝜆
1,2

, with parameters 𝜈, 𝜆 ∈ k, is generated by 𝑎, 𝑏, 𝑐, 𝑑

subject to the relations

𝑎2 = 𝑑2, 𝑏2 = 𝑐2, 𝑎2 + 𝜈𝑏2 = 1, 𝑐𝑏 = 𝜆𝑏𝑐, 𝑎𝑑 = 𝑑𝑎,

𝑎𝑏 = 𝑏𝑎 = 𝑎𝑐 = 𝑐𝑎 = 𝑏𝑑 = 𝑑𝑏 = 𝑐𝑑 = 𝑑𝑐 = 0.

Let

t =
(
𝑎 𝑏

𝑐 𝑑

)
,

with t𝑖 𝑗 denoting the entry on the 𝑖-th row and 𝑗-th column. The comultiplication,

counit and antipode are respectively given by:

Δt = t ⊗ t, 𝜖 (t𝑖 𝑗 ) = 𝛿𝑖 𝑗 , 𝑆(t𝑖 𝑗 ) = (t 𝑗𝑖)3.

The map

R𝛼,𝛽
©«
𝑎 ⊗ 𝑎 𝑎 ⊗ 𝑏 𝑎 ⊗ 𝑐 𝑎 ⊗ 𝑑
𝑏 ⊗ 𝑎 𝑏 ⊗ 𝑏 𝑏 ⊗ 𝑐 𝑏 ⊗ 𝑑
𝑐 ⊗ 𝑎 𝑐 ⊗ 𝑏 𝑐 ⊗ 𝑐 𝑐 ⊗ 𝑑
𝑑 ⊗ 𝑎 𝑑 ⊗ 𝑏 𝑑 ⊗ 𝑐 𝑑 ⊗ 𝑑

ª®®®¬ =
©«

0 0 0 0

0 𝛼 𝛽 0

0 𝛽 𝛼 0

0 0 0 0

ª®®®¬
defines a coquasitriangular structure whose convolution inverse is R−1

(𝛼,𝛽) =

R (𝛼−1 ,𝛽−1 ) (see [38, proof of Proposition 2.1]), which is cotriangular if (𝛼, 𝛽) =

(−1,−1) or (𝛼, 𝛽) = (1, 1), and (𝜈, 𝜆) = (1, 1) (see [38, Proposition 3.10]).

We define an algebra operation · as in (5.6), whose multiplication table is reported

in Table 7. In particular, · is commutative. The algebra (𝐻, · , 1) is generated by

Table 6: Table for the action⇀ in SL𝑞 (2).

⇀ 𝑎 𝑏 𝑐 𝑑

𝑎 𝑎 𝑞−1𝑏 𝑞𝑐 𝑑

𝑏 (1 − 𝑞−2)𝑏 0 (𝑞 − 𝑞−1)𝑑 + (𝑞−1 − 𝑞)𝑎 (1 − 𝑞2)𝑏
𝑐 0 0 0 0

𝑑 𝑎 𝑞𝑏 𝑞−1𝑐 𝑑
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𝑎, 𝑏, 𝑐, 𝑑 modulo the relations

𝑎 · 𝑎 = 𝑑 · 𝑑, 𝑐 · 𝑐 = 𝛼𝛽−1𝜆𝑏 · 𝑏, 𝑐 · 𝑏 = 𝑏 · 𝑐, 𝑎 · 𝑑 = 𝑑 · 𝑎,
𝑎 · 𝑏 = 𝑏 · 𝑎 = 𝑎 · 𝑐 = 𝑐 · 𝑎 = 𝑏 · 𝑑 = 𝑑 · 𝑏 = 𝑐 · 𝑑 = 𝑑 · 𝑐 = 0.

The action⇀ is reported in Table 8. The corresponding antipode 𝑆, defined as in (5.7),

is identified by 𝑆(𝑎) = 𝛼2𝛽2𝑑3
, 𝑆(𝑏) = 𝛼3𝛽𝑏3

, 𝑆(𝑐) = 𝛼3𝛽𝑐3
, 𝑆(𝑑) = 𝛼2𝛽2𝑎3

.

We know by Theorem 5.5 that the additional operation (3.1) is braided commuta-

tive if R is cotriangular. In all the previous examples, when R is cotriangular (3.1) is

also commutative. We could neither prove nor disprove that this is true in general,

and thus the following problem is open:

Problem 6.3 Let (𝐻,R) be a cotriangular Hopf algebra. Is it true that the additional

operation (5.6) is commutative?

Notice that the converse is false (see the example 𝑆𝐿𝑞 (2) with 𝑞 = −1).
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