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Abstract. We study the dynamics of the map f : AN → AN defined by

f (X) = AXd + b,

for A ∈ SLN , b ∈ AN , and d ≥ 2, a class which specializes to the unicritical polynomials
whenN = 1. In the case k = C we obtain lower bounds on the sum of Lyapunov exponents
of f, and a statement which generalizes the compactness of the Mandelbrot set. Over Q we
obtain estimates on the critical height of f, and over algebraically closed fields we obtain
some rigidity results for post-critically finite morphisms of this form.
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1. Introduction
The unicritical polynomials f (z) = zd + c have been a test-bed in complex holomorphic
dynamics, in part because much in dynamics is determined by the orbits of the critical
points, and these polynomials have the fewest possible critical points. Along similar lines,
in studying regular polynomial endomorphisms of CN (that is, polynomial maps which
extend regularly to PN

C
) it makes sense again to consider those with the simplest possible

critical locus, which in this case would consist of N hyperplanes intersecting properly
(ignoring multiplicity for now). After a suitable change of variables, such a map has the
form

f (X) = AXd + b, (1)

with A ∈ SLN(C) and b ∈ CN . We identify f with its extension to PN
C

, and write f |H
for the restriction of f to the plane at infinity (which is the dth-power map followed by
multiplication by A, a minimally critical endomorphism of PN−1 in the sense of [10]).

Write L(f ) for the sum of Lyapunov exponents of f with respect to its invariant
measure. It follows from general result of Bedford and Jonsson [2] on regular polynomial
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586 P. Ingram

endomorphisms that

L(f )− L(f |H ) ≥ log d ,

and our first result is a similar lower bound which becomes arbitrarily large for certain
parameters.

THEOREM 1. For f as in (1), we have

L(f )− L(f |H ) ≥ d − 1
d

log+ ‖b‖ +OA(1)

and

L(f )− L(f |H ) ≤ N(N + 2) log+ ‖b‖ +OA(1).

Explicit error terms, which are continuous and plurisubharmonic on SLN(C), are given
in the proof.

Note that Favre [7, Theorem C] has characterized the variation of the Lyapunov
exponent in a family of maps over a punctured disk, and from this one might deduce
many examples of lower bounds on Lyapunov exponents in one-parameter families which
become arbitrarily large as one approaches a boundary point.

Before we continue, note that by [2, Theorem 3.2] we have an equality,

L(f )− L(f |H ) = log d +
∫
G dμC , (2)

where G is Green’s function for f, and

μC = 1
(2π)N

ddc log |det Df | ∧ (ddcG)N−1

is the critical measure of f. The aforementioned bound of Bedford and Jonsson follows
from the non-negativity of the integral. The locus of pairs (A, b) where the integral in
(2) vanishes is a natural generalization of the Mandelbrot set, and contains the image of
SLN(C) by A �→ (A, 0). The following corollary, then, gives a sort of generalization of
the compactness of the Mandelbrot set.

COROLLARY 2. Let M ⊆ SLN(C)× CN be the set of pairs (A, b) for which

L(f )− L(f |H )− log d =
∫
G dμC = 0,

for f (X) = AXd + b. Then the projection M → SLN(C) is proper.

In the arithmetic context, the critical height of a morphism f : PN → PN, denoted
ĥcrit(f ), is the appropriate analogue of the sum of Lyapunov exponents. Extrapolating
from a definition of Silverman [19, p. 101], we defined in [12] a critical height ĥcrit(f )

for an endomorphism f : PN → PN defined over Q, with the property that post-critically
finite (PCF) maps all have ĥcrit(f ) = 0. Specifically, we set

ĥcrit(f ) = ĥf (Cf ),
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where Cf is the critical locus of f, and ĥf is the canonical height function associated to f
(constructed for subvarieties by Zhang [21], but note that our canonical height for divisors
here and in [10, 12] is Zhang’s height times the degree of the divisor). Just as Silverman
conjectured [19, p. 101] in dimension 1 that the moduli height is an ample Weil height
away from the Lattès maps, confirmed in [10], it is natural to conjecture [12] that ĥcrit

is an ample Weil height away from some proper, Zariski closed subset of moduli space.
Theorem 3, the arithmetic analogue of Theorem 1, proves this conjecture for fibres of the
family (1) over SLN , with some uniformity as the fibre varies.

THEOREM 3. For f : PN → PN of the form (1) defined over Q (with d ≥ 2), we have
explicit constants C1 and C2, depending just on N and d, such that

ĥcrit(f )− ĥcrit(f |H ) ≥ d − 1
d

h(b)− N(dN + 1)− 1
Nd

h(A)− C1

and

ĥcrit(f )− ĥcrit(f |H ) ≤ N(N + 2)h(b)+N(N + 1)h(A)+ C2.

In particular, the critical height is a moduli height for algebraic families in which A is
fixed.

Note that the error term in the lower bound comes from a slightly better error term
involving both h(A) and h(A−1).

For our next statement, recall that an endomorphism f : PN → PN is post-critically
finite if and only if the post-critical locus

Pf =
⋃
n≥1

f n(Cf )

is algebraic, where Cf is again defined by the vanishing of the determinant of the Jacobian
of f.

COROLLARY 4. Fix B ≥ 0. ForA ∈ SLN(Q) with h(A) ≤ B, the set of b ∈ Q
N

for which
(1) is PCF is a set of bounded height, with bound depending just on d , N , and B.

WhenN = 1, McMullen [16, Theorem 2.2] (building on work of Thurston) showed that
the only non-isotrivial families of PCF rational functions are the flexible Lattès examples.
The next result gives a statement in this direction for families of the form (1).

THEOREM 5. Let k be an algebraically closed field of characteristic 0 or p > d. There is
no algebraic family over k of PCF maps of the form (1) with A constant, but b non-constant.

Compare with [10, Theorem 3], which proves a similar result for a broader class of
maps, but with restrictions on the degree. There are also cases in which we know that the
induced family f |H (X) = AXd , if PCF, must be constant (or at least isotrivial), and in
those cases we get more out of Theorem 5.

COROLLARY 6. On PN
C

with N = 2 or d ≥ N2 −N + 1, any algebraic family of PCF
maps of the form (1) is isotrivial.

In the same cases, Corollary 4 can also be improved.
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COROLLARY 7. For fixed d ≥ N2 −N + 1 (or d ≥ 2 if N = 2), PCF maps f : PN →
PN of the form (1) have conjugacy representatives contained in a set of bounded height.

As alluded to above, this discussion fits into a larger framework. Let MN
d be the moduli

space of endomorphisms of PN , and let PNd ⊆ MN
d be the space of regular polynomial

endomorphisms, that is, elements of MN
d with an invariant hyperplane. Restriction to the

hyperplane gives a surjective morphism π : PNd → MN−1
d . Given that one always deserves

a better understanding of MN−1
d than one has of MN

d , it makes sense to approach PNd ⊆ MN
d

by looking at what happens in fibres of the restriction map, and then thinking about how
that relative behaviour varies as we vary the fibre.

In relation to the discussion of Silverman’s conjecture in [10, 12], note that on the
relative moduli space PNd → MN−1

d of regular polynomial endomorphisms, the function

f �→ ĥrelcrit(f ) := ĥcrit(f )− ĥcrit(f |H ) = ĥcrit(f )− ĥcrit(π(f ))

gives a non-negative function interacting nicely with iteration,

ĥrelcrit(f
n) = nĥrelcrit(f ),

and vanishing precisely on those maps whose critical orbits are in some sense no more
complex than they need be, given the behaviour at infinity. We offer a conjecture on
this relative critical height which, while weaker than Silverman’s, is perhaps also more
approachable. A sufficiently precise version of this conjecture, combined with a version of
Silverman’s conjecture in dimension one lower, ought to allow one to conclude Silverman’s
conjecture for regular polynomial endomorphisms.

Conjecture 8. (The relative critical height is a relative moduli height) For any ample Weil
heights hPNd

and hMN−1
d

on PNd and MN−1
d , we have

ĥrelcrit(f ) 
 hPNd
(f )+O(hMN−1

d
(f |H )).

Theorem 3 gives a result in this direction for morphisms of a certain form. Note also
that a case of Conjecture 8 appears to follow from the results in [9], but unfortunately with
an incompatible definition of the critical height. It remains to be seen if those results can
be translated into the terms of the present paper.

We conclude with a few questions about the relative moduli space π : PNd → MN−1
d ,

generalizing the results above.

Question 9. Let π : PNd → MN−1
d be a relative moduli space of regular polynomial

endomorphisms, and let M ⊆ PNd be the locus where L(f ) = L(f |H )+ log d . Is π :
M → MN−1

d proper?

An affirmative answer to Question 9 would immediately answer the complex case of
the following question on PCF maps (which Theorem 5 answers negatively for maps of the
form (1)).

Question 10. (Relative rigidity) Let k be an algebraically closed field of characteristic 0 or
p > d. Can there be an algebraic curve in the PCF locus in PNd over k which is contained
in a fibre of the projection π : PNd → MN−1

d ?
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Of course, if � ⊆ PNd is an algebraic curve in the PCF locus, not contained in a fibre
of π , then π(�) ⊆ MN−1

d is an algebraic curve of PCF maps. In the case N = 2, then, a
negative answer to Question 10 would imply that any non-trivial algebraic one-parameter
family of PCF regular polynomial endomorphisms of P2 restricts to the line at infinity
as a flexible Lattès family. The apparent rarity of PCF maps in several variables (see, for
example, [13]), in fact, makes it likely that a stronger statement is true.

It is somewhat illustrative to consider Question 10 in the case N = 1. Note that P0 is a
single point, and over an algebraically closed field so is M0

d for each d ≥ 2. In particular,
any curve in the PCF locus of P1

d is contained in the unique fibre of the map P1
d → M0

d ,
and so the expected negative answer to Question 10 simply asserts that there are no
non-isotrivial families of PCF polynomials in one variable.

Similarly, the unique (up to conjugacy) endomorphism of P0 of degree d has critical
height 0, and so Conjecture 8 above asserts that the critical height is a moduli height for
polynomials of one variable, which is also true [8].

Before proceeding, we briefly mention the connection between this paper and [10]. In
[10] we show that the critical height is a moduli height for maps of the form f (X) = AXd

in projective coordinates (one d is sufficiently large compared to the dimension), and
in the present paper we consider the subclass of these maps fixing one of the ramified
hyperplanes. The main novelty in this special case is that we are able to conclude local
results (that is, over C and Cp) which eluded us in [10]. At the same time, the results
of Theorems 3 and 5 have the benefit of applying to all degrees, but the drawback of
depending on the behaviour at infinity, while the results in [10] were absolute. These
relative results can of course be combined with the results of [10] applied to the map
restricted to the invariant hyperplane, and we have demonstrated that in various places. In
general, the estimate needed to deduce the results in this note are somewhat more delicate
than those in [10], and have at least the potential to be extended to regular polynomial
endomorphisms in general.

In §2 we work over an algebraically closed field, complete with respect to some absolute
value, and prove most of the technical lemmas. Section 3 introduces a ‘relative rate of
escape’ for a hypersurface under a map of the form (1), which we then use to prove
Theorem 1 and Corollary 2, as well as a statement of good reduction. Section 4 contains the
proofs of Theorem 3 and Corollary 4. Finally, in §5 we delve deeper into the case N = 2,
bootstrapping some results from what is known about critical dynamics in one variable.

2. Estimates on pulling back and pushing forward
Let K be an algebraically closed field, complete with respect to some absolute value | · |.
We write ‖x1, . . . , xn‖ = max{|x1|, . . . , |xn|}, and log+ x = max{log x, 0}. Note that the
triangle and ultrametric inequalities combine to give the following estimate, of which we
make liberal use:

log |x1 + · · · + xn| ≤ log ‖x1, . . . , xn‖ + log+ |n|.
Note that an absolute value is non-archimedean precisely if log+ |n| = 0 for all n ∈ Z.
To avoid unnecessary case distinctions in several places, we adopt the conventions that
log 0 = −∞, and that −∞ < x < ∞ and ∞ + x = ∞ for all real numbers x.
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Before continuing, we comment on various numbered constants ci that appear in
the arguments below. Throughout, these constants have always been chosen to be
non-negative, to simplify the manipulation of inequalities (sometimes at the cost of optimal
bounds). Moreover, the constants ci depend only on d (the degree of the endomorphisms f
under consideration) and N (the dimension of the ambient space). Finally, these constants
will all have value 0, except in the case of archimedean absolute values, or p-adic absolute
values for p ≤ d .

Given a homogeneous form F with coefficients in K, we set ‖F‖ to be the largest
absolute value of a coefficient of F, in other words the Gauss norm when | · | is
non-archimedean. In [12] we used the Mahler measure at the archimedean places, which
is more natural, but turns out to be less convenient for the estimates in this note, which
follows [10] closely.

LEMMA 11. For 1 ≤ i ≤ n, let Fi be a homogeneous form in N + 1 variables. Then

−2N
n∑
i=1

deg(Fi) log+ |2| ≤ log
∥∥∥∥

n∏
i=1

Fi

∥∥∥∥ −
n∑
i=1

log ‖Fi‖ ≤ 2N
n∑
i=1

deg(Fi) log+ |2|.

Let Fi,j be homogeneous forms in N + 1 variables such that, for each 1 ≤ i ≤ n, the
form

∏mi
j=1 Fi,j has degree δ. Then

log
∥∥∥∥

n∑
i=1

mi∏
j

Fi,j

∥∥∥∥ ≤ max
1≤i≤n

mi∑
j=1

log ‖Fi,j‖ + log+ |n| + 2Nδ log+ |2|. (3)

Proof. If | · | is non-archimedean, then these claims follow from the Gauss lemma and the
ultrametric inequality (and note that the error terms containing log+ |m|, for m an integer,
vanish).

In the archimedean case, we recall the logarithmic Mahler measure of F, defined as

m(F) =
∫

log |F | dμ,

where μ is the usual normalized Haar measure on the unit circle in each variable. On
the one hand, it is clear from the definition that m(FG) = m(F)+m(G). On the other,
it turns out that the Mahler measure is not too different from log ‖F‖, as pointed out by
Mahler [15]. Specifically,

m(F)− N

2
log(deg(F )+ 1) ≤ log ‖F‖ ≤ m(F)+N deg(F ) log 2. (4)

Notice

log
∥∥∥∥

n∏
i=1

Fi

∥∥∥∥ ≤ m

( n∏
i=1

Fi

)
+N deg

( n∏
i=1

Fi

)
log 2

=
n∑
i=1

m(Fi)+N

n∑
i=1

deg(Fi) log 2
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≤
n∑
i=1

log ‖Fi‖ +N

n∑
i=1

(
1
2

log(deg(Fi)+ 1)+ deg(Fi) log 2
)

≤
n∑
i=1

log ‖Fi‖ + 2N log 2
( n∑
i=1

deg(Fi)
)

using the estimates log(1 + x) ≤ x, for x ≥ 0, and 1
2 ≤ log 2.

The inequality in the other direction is derived similarly.
For (3), by the triangle inequality,

log
∥∥∥∥

n∑
i=1

mi∏
j

Fi,j

∥∥∥∥ ≤ max
1≤i≤n

log
∥∥∥∥
mi∏
j

Fi,j

∥∥∥∥ + log n

≤ max
1≤i≤n

m

( mi∏
j

Fi,j

)
+Nδ log 2 + log n

= max
1≤i≤n

mi∑
j

m(Fi,j )+Nδ log 2 + log n

≤ max
1≤i≤n

mi∑
j

log ‖Fi,j‖ + max
1≤i≤n

mi∑
j

N

2
log(deg(Fi,j )+ 1)

+ Nδ log 2 + log n,

which gives the desired bound again using log(1 + x) ≤ x and 1
2 ≤ log 2.

Let H denote the hyperplane of PN defined by XN+1 = 0, and for any effective divisor
D on PN intersecting H properly, and defined by F = 0, set

λ(D) = log ‖F(X1, . . . , XN+1)‖ − log ‖F(X1, . . . , XN , 0)‖.

This definition does not depend on the choice of homogeneous form F representing D, and
λ(D) ≥ 0. For some intuition, observe that on P1 we have

λ([z]) = log+ |z|
for the divisor [z] corresponding to the point z ∈ P1

K \ {∞}. We will also define, for a
divisor D defined by the homogeneous form F(X) = ∑deg(F )

i=0 XkN+1Fk(X1, . . . , XN), the
quantity

μ(D) = min
0≤k<deg(F )

log |Fdeg(D)| − log ‖Fk‖
deg(D)− k

,

provided that D does not contain H or (0, 0, . . . , 1), in which case we have Fdeg(D) =
F(0, 0, . . . , 1) �= 0. Note that it follows immediately from the definitions that

μ(D) ≤ λ(D)

deg(D)
,

but there is no bound in the other direction.
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Remark 12. Although it is most efficient and transparent here to work in terms of
homogeneous forms, it is worth noting that what we are doing fits into the framework
of the geometry of arithmetic varieties as studied in arithmetic intersection theory. More
concretely, if the absolute value on K is non-archimedean, then K has a ring of integers
O ⊆ K , and the morphism f : PNK → PNK extends to a rational map of schemes f :
PNO ��� PNO. The homogeneous form F(X) ∈ O[X1, . . . , XN+1] now defines an effective
divisor PNO, specifically D − logv ‖F‖PNk , where D is the Zariski closure of the divisor
defined by F on the generic fibre, PNk is the special fibre, and logv is normalized so that
logv |π | = −1 for any uniformizer π of the maximal ideal of O. Our estimates on how
log ‖F‖ changes under pulling back by (some model of) f now correspond to estimates on
the difference between f ∗D and f ∗D, for divisors D on the generic fibre (but there appears
to be no simpler way of making these estimates than to reduce things to computations
involving homogeneous forms). Our estimates on pushing forward are somewhat more
fraught in this context, since f : PNO ��� PNO is generally not a morphism, but proceeding
as in [12] we may work with integral models, and recover something similar. All of these
subtleties are eliminated by taking this more elementary approach.

LEMMA 13. For effective divisors Di , 1 ≤ i ≤ n, not containing H we have

−4N
n∑
i=1

deg(Di) log+ |2| ≤ λ

( n∑
i=1

Di

)
−

n∑
i=1

λ(Di)

≤ 4N
n∑
i=1

deg(Di) log+ |2|, (5)

and if the Di do not contain the origin, we also have

μ

( n∑
i=1

Di

)
≥ min

1≤i≤n μ(Di)− 2N log+ |2| − (n− 1) log+
∣∣∣∣

n∑
i=1

deg(Di)
∣∣∣∣. (6)

Finally, if μ(D) ≥ 0, then

λ(D) = log |Fdeg(D)| − log ‖F0‖

for any form F(X) = ∑deg(F )
i=0 XiN+1Fi(X1, . . . , XN) defining D.

Proof. Claim (5) follows immediately from Lemma 11.
For (6) in the non-archimedean case, the proof is similar to that of the Gauss lemma.
Specifically, let Di be defined by Fi = 0, with

Fi(X) =
deg(Fi )∑
j=0

X
j

N+1Fi,j (X1, . . . , XN),

and choose ki minimally so that

μ(Di) = log |Fi,deg(Fi )| − log ‖Fi,ki‖
deg(Fi)− ki

.
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Now, for δ = ∑n
i=1 deg(Di) we have

∑n
i=1 Di defined by the vanishing of

δ∑
�=0

X�N+1G�

where

G� =
∑

j1+···+jn=�

n∏
i=1

Fi,ji .

Note that the number of summands is the number of solutions to j1 + · · · + jn = �

satisfying 0 ≤ ji ≤ deg(Fi) for all 0 ≤ i ≤ n, which we crudely estimate as at most
(�+ 1)n−1. Then we have, by Lemma 11,

log ‖G�‖ ≤ max
j1+···+jn=�

n∑
i=1

(log ‖Fi,ji‖ + 2N(deg(Di)− ji) log+ |2|)

+ (n− 1) log+ |�+ 1|.
Choosing j1 + · · · + jn = � maximizing the right-hand side, we have

log |Gδ| − log ‖G�‖ ≥
n∑
i=1

(log |Fi,deg(Fi )| − log ‖Fi,ji‖)

− 2N
n∑
i=1

(deg(Di)− ji) log+ |2| − (n− 1) log+ |�+ 1|

≥
n∑
i=1

(μ(Di)− 2N log+ |2|)(deg(Di)− ji)

− (n− 1) log+ |�+ 1|

≥ (
min

1≤i≤n μ(Di)− 2N log+ |2|)
n∑
i=1

(deg(Di)− ji)

− (n− 1) log+ |�+ 1|
= (

min
1≤i≤n μ(Di)− 2N log+ |2|)(δ − �)

− (n− 1) log+ |�+ 1|.
Dividing both sides by δ − � and taking the minimum over 0 ≤ � < δ gives

μ

( n∑
i=1

Di

)
≥ min

1≤i≤n μ(Di)− 2N log+ |2| − (n− 1) max
0≤�<δ

(
log+ |�+ 1|
δ − �

)
.

Note that the maximum in the last term is attained at � = δ − 1.
The last claim is simply due to the fact that μ(D) ≥ 0 implies

log |Fdeg(D)| ≥ log ‖Fk‖
for all 0 ≤ k < deg(D), whence log ‖F‖ = log |Fdeg(D)|.
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We will fix a block matrix

L =
(
A b
0 1

)
, (7)

where A is N ×N , b is N × 1, and 0 is the 1 ×N zero vector, and use the same symbol
to denote the resulting linear map L : PN → PN. Note that the inverse map/matrix is
given by

L−1 =
(
A−1 −A−1b

0 1

)
.

We will also write φ for the power map of degree d on PN, so that

φ(X1, . . . , XN+1) = [Xd1 : · · · : XdN+1].

Note that endomorphisms of PN of the form under consideration, described in (1), are
precisely those of the form f = L ◦ φ.

We will be interested in the behaviour of the quantities λ and μ under pushing-forward
and pulling-back divisors by f, and so consequently by L and by φ. First, the power map.

LEMMA 14. For φ as above, and any effective divisor D,

λ(φ∗D) = λ(D) and μ(φ∗D) = 1
d
μ(D),

|λ(φ∗D)− dNλ(D)| ≤ 4NdN deg(D) log+ |2|,

and

μ(φ∗D) ≥ dμ(D)− 2dN log+ |2| − d(dN − 1) log+ |dN deg(D)|.

Proof. Let F be some homogeneous form whose vanishing defines D. For the pullback,
notice that φ∗D is defined by F(Xd1 , . . . , XdN+1). The coefficients of this homogeneous
form are exactly those of F (associated to different monomials), and so we certainly have
‖F‖ = ‖F(Xd1 , . . . , XdN+1)‖. The claim about λ(φ∗D) follows immediately, while the
claim about μ(φ∗D) follows once we note that φ∗D has degree d deg(D).

Now consider the pushforward. For any tuple ζ = (ζ1, . . . , ζN) of dth roots
of unity, let Dζ be the divisor defined by the vanishing of Fζ (X1, . . . , XN+1) =
F(ζ1X1, . . . , ζNXN , XN+1), noting that

φ∗φ∗D =
∑

ζ d1 =···=ζ dN=1

Dζ .

Also, note that λ(Dζ ) = λ(D) and μ(Dζ ) = μ(D), since the coefficients of Fζ are the
coefficients of F multiplied by various roots of unity. By (5) of Lemma 13 and the estimates
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for the pullback above, we have

λ(φ∗D) = λ(φ∗φ∗D)

= λ

( ∑
ζ d1 =···=ζ dN=1

Dζ

)

≤
∑

ζ d1 =···=ζ dN=1

λ(Dζ )+ 4N
∑

ζ d1 =···=ζ dN=1

deg(Dζ ) log+ |2|

= dNλ(D)+ 4NdN deg(D) log+ |2|
and, by the essentially the same calculation,

λ(φ∗D) ≥ dNλ(D)− 4NdN deg(D) log+ |2|.
Meanwhile,

μ(φ∗D) = dμ(φ∗φ∗D)

= dμ

( ∑
ζ d1 =···=ζ dN=1

Dζ

)

≥ d min{μ(Dζ )} − 2dN log+ |2| − d(dN − 1) log+
∣∣∣∣

∑
ζ d1 =···=ζ dN=1

deg(Dζ )
∣∣∣∣

= dμ(D)− 2dN log+ |2| − d(dN − 1) log+ |dN deg(D)|.

Next we will estimate λ(L∗D) and λ(L∗D), and μ(L∗D) and μ(L∗D). But since our
error terms will depend on the matrices representing these linear maps, it makes sense to
introduce some Néron functions on matrices. The following lemma is easy to check, and
left to the reader.

LEMMA 15. For a matrix A with (i, j )th entry Ai,j , let ‖A‖ = maxi,j |Ai,j |. Let λ :
SLN(K) → R be defined by

λ(A) = N log ‖A‖ + log+ |N! |,
and ξ : SLN(K) → R by

ξ(A) = log ‖A‖ + log ‖A−1‖ + log+ |N |.
Then the functions λ and ξ are non-negative, and satisfy

ξ(A) ≤ λ(A)+ log+ |N | (8)

and

λ(A−1) ≤ (N − 1)λ(A). (9)

Lemma 14 describes the behaviour certain quantities associated to divisors under
pushing forward or pulling back by the power map, and now we present a corresponding
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596 P. Ingram

result relative to linear maps. These estimates are very similar to those in the proof of [10,
Lemma 10], but the precise bounds depend on the special form of the matrix L.

LEMMA 16. For

c1 = (2N − 1) log+ |2| and c2 = log+ |4N(N + 1)|,
L as in (7), and any effective divisor D, we have

− deg(D)(log ‖L‖ − log ‖A‖ + λ(L)+ c2)− c1 ≤ λ(L∗D)− λ(D)

≤ deg(D)(log ‖L‖ − log ‖A‖ + λ(A)+ c2)+ c1

and

− deg(D)(log ‖L‖ − log ‖A‖ + λ(A)+ c2)− c1 ≤ λ(L∗D)− λ(D)

≤ deg(D)(log ‖L‖ − log ‖A‖ + λ(L)+ c2)+ c1.

Proof. Choose a defining homogeneous form F for D. Any homogeneous form F(X) =∑
cmm(X) is a linear combination of at most

(deg(F )+N
N

)
monomials of degree deg(F ),

and so we have, for any B ∈ SLN+1(K),

log ‖F(BX)‖ = log
∥∥∥∥

∑
cmm(BX)

∥∥∥∥
≤ log max ‖cmm(BX)‖ + log+

∣∣∣∣
(

deg(F )+N

N

)∣∣∣∣
≤ log ‖F‖ + deg(F ) log ‖B‖ + deg(F ) log+ |N + 1|

+ deg(F ) log+ |2| +N log+ |2| (10)

by the triangle inequality. On the other hand, by (8) we have

log ‖F‖ = log ‖F(BB−1X)‖
≤ log ‖F(BX)‖ + deg(F ) log ‖B−1‖ + deg(F ) log+ |N + 1|

+ deg(F ) log+ |2| +N log+ |2|
≤ log ‖F(BX)‖ + deg(F )λ(B)− deg(F ) log ‖B‖

+ deg(F ) log+ |N + 1| + deg(F ) log+ |2| +N log+ |2|.
Now for L of the form (7), note that if F |H (X1, . . . , XN) = F(X1, . . . , XN , 0), then

(F ◦ L)|H = (F |H ) ◦ A, so for D defined by F = 0 we have

λ(L∗D) = log ‖F ◦ L‖ − log ‖F0 ◦ A‖
≤ log ‖F‖ + deg(F ) log ‖L‖ + deg(F ) log+ |N + 1|

+ deg(F ) log+ |2| +N log+ |2|
− log ‖F0‖ + deg(F )λ(A)− deg(F ) log ‖A‖
+ deg(F ) log+ |N | + deg(F ) log+ |2| + (N − 1) log+ |2|

= λ(D)+ deg(F )(log ‖L‖ − log ‖A‖ + log+ |4N(N + 1)| + λ(A))

+ (2N − 1) log+ |2|.

https://doi.org/10.1017/etds.2021.114 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.114


Minimally critical regular endomorphisms of AN 597

Similarly,

λ(L∗D) = log ‖F ◦ L‖ − log ‖F0 ◦ A‖
≥ log ‖F‖ − deg(F )λ(L)+ deg(F ) log ‖L‖

− deg(F ) log+ |N + 1| − deg(F ) log+ |2| −N log+ |2|
− log ‖F0‖ − deg(F ) log ‖A‖ − deg(F ) log+ |N |
− deg(F ) log+ |2| − (N − 1) log+ |2|

= λ(D)− deg(D)(λ(L)+ log ‖L‖ − log ‖A‖ + log+ |4N(N + 1)|)
− (2N − 1) log+ |2|.

The bounds for λ(L∗D) follow immediately from writing D = L∗L∗D.

Lemma 16 gives estimates on λ(L∗D)− λ(D)which depend on L, as one might expect.
However, by analogy with z �→ z+ c, one might also expect much more uniform estimates
once D is sufficiently ‘large’ with respect to the coefficients of L, estimates which depend
only on the behaviour at infinity. The rest of the section is more technical, and gives such
estimates.

LEMMA 17. For c = (c1, . . . , cN) ∈ KN , let

Tc(X1, . . . , XN+1) = (X1 + c1XN+1, . . . , XN + cNXN+1, XN+1)

be the translation-by-c map, let D be a divisor not containing H or the origin, and let

c3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(N + 2) log 2 + log N if | · | is archimedean,
log p
p − 1

if | · | is p-adic,

0 otherwise.

If

μ(D) > log+ ‖c‖ + c3 + 2 log+ | deg(D)|,
then T ∗

c D also does not contain H or the origin, and we have

μ(T ∗
c D) ≥ μ(D)− log+ | deg(D)| − log+ |2|.

Proof. If D is defined by the vanishing of

F(X1, . . . ,XN+1)=F0(X1, . . . ,XN)+XN+1F1(X1, . . . ,XN)+ · · · +Xdeg(D)
N+1 Fdeg(D),

then T ∗
c D is defined by the vanishing of

E(X1, . . . , XN+1) = F(X1 + c1XN+1, . . . , XN + cNXN+1, XN+1),

which we would like to write as

E(X1, . . . ,XN+1)=E0(X1, . . . ,XN)+XN+1E1(X1, . . . ,XN)+ · · · +Xdeg(D)
N+1 Edeg(D).

With a view to computing μ(T ∗
c D), note that

Edeg(D) = E(0, 0, . . . , 1) = F(c1, . . . , cN , 1),
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and so

log |Edeg(D) − Fdeg(D)| = log |F(c1, . . . , cN , 1)− Fdeg(D)|

= log
∣∣∣∣

deg(D)∑
k=1

Fdeg(D)−k(c)
∣∣∣∣

≤ max
1≤k≤deg(D)

(
k log ‖c‖ + log ‖Fdeg(D)−k‖

+ log+
∣∣∣∣
(

deg(Fdeg(F )−k)+N

N

)∣∣∣∣
)

+ log+ | deg(D)|
≤ max

1≤k≤deg(D)
(kμ(D)− kc3 − k2 log+ | deg(D)|

+ log ‖Fdeg(D)−k‖ + k(N + 1) log+ |2|)
+ log+ | deg(D)|

< log |Fdeg(D)| + log+ | deg(D)|
− min

1≤k≤deg(D)
k(c3 + 2 log+| deg(D)|−(N + 1) log+ |2|)

≤ log |Fdeg(D)| − log+ |2|, (11)

since the minimum in (11) is attained with k = 1 (the term in parentheses being
non-negative). So we get

log |Edeg(D)| ≥ log |Fdeg(D)| − log+ |2|,
and also Edeg(D) �= 0, which is equivalent to T ∗

c D not containing the origin.
In order to obtain a lower bound on μ(T ∗

c ), we now need an upper bound on ‖Es‖
for s < deg(D). We can expand each F� ◦ Tc as a polynomial in XN+1 in a fairly simple
manner, namely by

F� ◦ Tc(X) =
deg(F�)∑
j=0

X
j

N+1

j !

(
∂j (F� ◦ Tc)

∂X
j

N+1

∣∣∣∣
XN+1=0

)
.

By the chain rule, if we write

Fi,k1,...,kj = ∂jFi

∂Xk1 · · · ∂Xkj
,

then

∂j (F� ◦ Tc)

∂X
j

N+1

(X1, . . . , XN , 0) =
N∑

k1,...,kj=1

ck1 · · · ckj F�,k1,...,kj (X1, . . . , XN). (12)

For any homogeneous form H,

log
∥∥∥∥ ∂jH

∂Xk1 · · · ∂Xkj

∥∥∥∥ ≤ log ‖H‖ + j log+ | deg(H)|,
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and so each summand on the right-hand side of (12) satisfies

log ‖ck1 · · · ckj F�,k1,...,kj ‖ ≤ j log ‖c‖ + log ‖F�‖ + j log+ | deg(D)− �|.
Summing over all terms on the right in (12) then gives

log
∥∥∥∥ 1
j !
∂j (F� ◦ Tc)

∂X
j

N+1

(X1, . . . , XN , 0)
∥∥∥∥

≤ log ‖F�‖ + j (log ‖c‖ + log+ | deg(D)− �| + log+ |N |)+ log+
∣∣∣∣ 1
j !

∣∣∣∣.
At this point, we note that if | · | is not a p-adic absolute value, for any prime integer p,

then log+ |1/j !| = 0. If | · | is the p-adic absolute value,

log+
∣∣∣∣ 1
j !

∣∣∣∣ =
∞∑
t=1

⌊
j

pt

⌋
log p ≤ j

(
log p
p − 1

)

by Legendre’s formula, and so either way

log+
∣∣∣∣ 1
j !

∣∣∣∣ ≤ jc4,

where

c4 =
⎧⎨
⎩

log p
p − 1

if | · | is p-adic,

0 otherwise.

Now, comparing coefficients of XsN+1, we have

Es(X1, . . . , XN) =
s∑
j=0

1
j !
∂jFs−j ◦ Tc

∂X
j

N+1

(X1, . . . , XN , 0),

whence

log ‖Es‖ ≤ max
0≤j≤s

{log ‖Fs−j‖ + j (log ‖c‖ + log+ | deg(D)| + log+ |N | + c4)}
+ log+ |s + 1|

≤ max
0≤j≤s

{log |Fdeg(D)| − (deg(D)− s + j)μ(D)

+ j (μ(D)− c3 − 2 log+ | deg(D)| + log+ | deg(D)| + log+ |N | + c4)}
+ log+ | deg(D)|

≤ log |Edeg(D)| + log+ |2| − (deg(D)− s)μ(D)+ log+ | deg(D)|, (13)

since

c3 ≥ log+ |2| + log+ |N | + c4.

But (13) for all 0 ≤ s < deg(D) givesμ(T ∗
c D) ≥ μ(D)− log+ | deg(D)| − log+ |2|.
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Lemma 17 effectively gives estimates on pushing forward or pulling back by L, in the
special case where A is the identity matrix. It turns out that, with a little more work, this
special case gives us the general case.

LEMMA 18. Let

c5 = log+ |N | +N log+ |2| + 1
N

log+ |N! | ≥ 0,

let D be an effective divisor of degree at least 1, not containing the origin, and suppose
that

μ(D) > log+ ‖b‖ + c3 + c5 + log ‖A−1‖ + 2 log+ | deg(D)|. (14)

Then

μ(L∗D) ≥ μ(D)− log+ | deg(D)| − log+ |2| − c5 − log ‖A−1‖ (15)

and

λ(D)− deg(D)(log ‖A−1‖ + log+ |2N |)−N log+ |2|
≤ λ(L∗D)
≤ λ(D)+ deg(D)(log ‖A‖ + log+ |2N |)+N log+ |2|. (16)

Proof. Note that L∗ = (L−1)∗, and that

L−1 =
(
A−1 −A−1b

0 1

)
=

(
A−1 0

0 1

) (
I −b
0 1

)
=: L−1

0 T−b.

So L∗ = (L−1)∗ = T ∗
−b(L

−1
0 )∗.

First, note thatμ((L−1
0 )∗D) can be estimated as follows. If D is defined by the vanishing

of F = ∑deg(F )
i=0 FiX

i
N+1, then (L−1

0 )∗D is defined by the vanishing of
∑deg(F )
i=0 XiN+1Fi ◦

A−1. From (10), we have, for any 0 ≤ k < deg(D),

log |Fdeg(D)| − log ‖Fk ◦ A−1‖ ≥ log |Fdeg(D)| − log ‖Fk‖ − deg(Fk)(log ‖A−1‖
+ log+ |N | + log+ |2|)− (N − 1) log+ |2|

≥ (deg(D)− k)μ(D)− deg(Fk)(log ‖A−1‖
+ log+ |N | +N log+ |2|)

≥ (deg(D)− k)(μ(D)− c5 − log ‖A−1‖)
(noting that this is trivially true if Fk = 0), whence

μ((L−1
0 )∗D) ≥ μ(D)− c5 − log ‖A−1‖.

Combined with (14), this gives

μ((L−1
0 )∗D) ≥ μ(D)− c5 − log ‖A−1‖ ≥ log+ ‖b‖ + c3 + 2 log+ | deg(D)|,
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and so by Lemma 17 we have

μ(L∗D) = μ(T ∗
−b(L

−1
0 )∗D) ≥ μ((L−1

0 )∗D)− log+ | deg(D)| − log+ |2|
≥ μ(D)− log+ | deg(D)| − log+ |2| − c5 − log ‖A−1‖ ≥ 0, (17)

proving (15).
Since A−1 ∈ SLN(K) we have

c5 + log ‖A−1‖ ≥ c5 − 1
N

log+ |N! | ≥ 0,

and so by (14) we have μ(D) ≥ 0, hence λ(D) = log |Fdeg(D)| − log ‖F0‖. Similarly, by
the computations giving (17) we have

λ(L∗D) = log |Fdeg(D)| − log ‖F0 ◦ A−1‖
≥ log |Fdeg(D)| − log ‖F0‖ − deg(D) log ‖A−1‖ − deg(D) log+ |2N |

−N log+ |2|
= λ(D)− deg(D)(log ‖A−1‖ + log+ |2N |)−N log+ |2|.

Also,

λ(L∗D) = log |Fdeg(D)| − log ‖F0 ◦ A−1‖
≤ log |Fdeg(D)| − log ‖F0‖ + deg(D) log ‖A‖ + deg(D) log+ |2N |

+ N log+ |2|
= λ(D)+ deg(D)(log ‖A‖ + log+ |2N |)+N log+ |2|.

3. The relative rate of escape
We continue in the context of the previous section. That is, K is an algebraically closed
field, complete with respect to some absolute value | · |.

Let f be as in (1), and let D be an effective divisor not containing H. We set

�f (D) = lim
k→∞

λ(f k∗D)
dkN

, (18)

whenever this limit exists, but we will prove that it always does (subject to the constraints
above).

LEMMA 19. The limit in (18) exists, is non-negative for effective divisors D, and we have

�f (f∗D) = dN�f (D),

�f (f
∗D) = �f (D),

and

�f (D + E) = �f (D)+�f (E),
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as well as

− deg(D)
d − 1

(log ‖L‖ − log ‖A‖ + log+ |4N(N + 1)|

+ λ(A)+ 4Nd log+ |2|)−
(

2N − 1
dN − 1

)
log+ |2|

≤ �f (D)− λ(D)

≤ deg(D)
d − 1

(log ‖L‖ − log ‖A‖ + log+ |4N(N + 1)|

+ λ(L)+ 4Nd log+ |2|)+
(

2N − 1
dN − 1

)
log+ |2|. (19)

Furthermore, if D is preperiodic for f, then �f (D) = 0.

Proof. We will first show that the limit exists, for which we apply Lemmas 14 and 16.
Specifically,∣∣∣∣λ(f∗D)

dN
− λ(D)

∣∣∣∣ ≤
∣∣∣∣λ(L∗φ∗D)

dN
− λ(φ∗D)

dN

∣∣∣∣ +
∣∣∣∣λ(φ∗D)
dN

− λ(D)

∣∣∣∣
≤ d−N deg(φ∗D)(log ‖L‖ − log ‖A‖ + λ(L)+ λ(A)+ c2)

+ d−Nc1 + 4N deg(D) log+ |2|
= deg(D)(d−1(log ‖L‖ − log ‖A‖ + λ(L)+ λ(A)+ c2)

+ 4N log+ |2|)+ d−Nc1.

Since deg(f∗D) = dN−1 deg(D), a standard telescoping sum argument gives

∣∣∣∣λ(f
k∗D)

dNk
− λ(D)

∣∣∣∣ ≤
k−1∑
j=0

∣∣∣∣λ(f
j+1∗ D)

dN(j+1) − λ(f
j∗D)

dNj

∣∣∣∣

≤
k−1∑
j=0

d−Nj deg(f j∗D)(d−1(log ‖L‖ − log ‖A‖

+ λ(L)+ λ(A)+ c2)+ 4N log+ |2|)

+ c1

k−1∑
j=0

d−N(j+1)

=
(

1 − d−k

1 − d−1

)
deg(D)(d−1(log ‖L‖ − log ‖A‖ + λ(L)

+ λ(A))+ c2)

+
(

1 − d−Nk

dN − 1

)
c1.

The difference d−Nkλ(f k∗D)− λ(D) is thus the partial sum of an absolutely convergent
series, and hence the limit in (18) exists. The above calculation, with slightly more care to
distinguish the terms in the upper and lower bounds, and with k → ∞, now gives (19).
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For linearity, note that in the non-archimedean case λ(D + E) = λ(D)+ λ(E) by the
Gauss lemma, and so �f is linear as well. In the archimedean case, note that Lemma 13
gives

�f (D + E) = lim
k→∞

λ(f k∗D + f k∗E)
dNk

= lim
k→∞

λ(f k∗D)+ λ(f k∗E)+O(deg(f k∗D + f k∗E))
dNk

=
(

lim
k→∞

λ(f k∗D)
dNk

+ lim
k→∞

λ(f k∗E)
dNk

+ lim
k→∞

d(N−1)kO(deg(D + E))

dNk

)

= �f (D)+�f (E).

We have λ(D) ≥ 0, for D effective, and so �f (D) ≥ 0.
The formula �f (f∗D) = dN�f (D) follows immediately from the definition and, now

that we have linearity, we can compute

�f (D) = d−N�f (dND) = d−N�f (f∗f ∗D) = �f (f
∗D).

For the final claim, suppose that D is preperiodic and, without loss of generality,
irreducible. Then for some n ≥ 0 and k ≥ 1, the divisors f n+k∗ D and f n∗D are supported
on the same irreducible hypersurface. Comparing degrees, we have

f n+k∗ D = d(N−1)kf n∗D.

That in turn gives

d(k+n)N�f (D) = �f (f
n+k∗ D) = �f (d

(N−1)kf n∗D) = d(N−1)k+Nn�f (D),

by linearity, and so �f (D) = 0.

Remark 20. In [10] we defined a homogeneous escape rateGF (�) for homogeneous forms
� and affine maps F(X) = AXd . If we choose a lift F for f, if Fh is the homogeneous part
of F (that is, with b replaced by 0), and �h = �(X0, . . . , XN−1, 0), then we can check
from the properties in Lemma 19 and [10, Lemma 10] that for D defined by � = 0, we
have

�f (D) = GF (�)−GFh(�h).

One virtue of the function �f is that it does not depend on choosing models of f and D.

Remark 21. In some sense it is more natural, in the case K = C, to work in terms of

λm(D) =
∫

log
∣∣∣∣F(X1, . . . , XN+1)

F (X1, . . . , XN , 0)

∣∣∣∣ dμ(X),
where μ is normalized Haar measure on the appropriate power of the unit circle, instead
of λ as defined above, naively in terms of the coefficients of a defining form. As noted in
Lemma 11, using inequality (4) (due to Mahler [15]), we have

λ(D) = λm(D)+O(deg(D)),
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with the implied constant depending only on N and d. It then follows that, for fixed D,

λ(f k∗D) = λm(f
k∗D)+Od,N ,D(d

k(N−1)).

So the limit (18) using either λm or λ defines the same function �f .
Along similar lines, still over C, we can easily check, post hoc, that

�f (D) =
∫

log
∣∣∣∣F(X1, . . . , XN+1)

F (X1, . . . , XN , 0)

∣∣∣∣ dμf (X)
for any homogeneous form F defining D, where μf is the invariant measure associated to
f (see, for example, [10, Lemma 11]). From this and [2, Theorem 3.2] we have

�f (Cf ) = L(f )− L(f |H )− log d , (20)

from which we derive our main results over C.

Lemma 19 gives an estimate of the form

�f (D) = λ(D)+O(deg(D)),

where the implied constant is explicit, but depends on L. The next lemma shows that, once
μ(D) is large enough, we can estimate �f (D) from below in terms of λ(D), with an
error term that is much more uniform, depending only on the submatrix A. This submatrix
represents the restriction of L to the hyperplane at infinity, and so this can be seen as an
assertion that all such maps with the same restriction to infinity are, near infinity, very
similar (a philosophy which applies in general to regular polynomial endomorphisms).

LEMMA 22. Let

c8 =

⎧⎪⎨
⎪⎩

2(N − 1)(dN+1 − d + 1)
(d − d1/2)

if | · | is archimedean,

0 otherwise,

suppose that

(d − 1) log+ ‖b‖ > c8(d
1/2 − 1)+ c3 + c5 + log ‖A−1‖ + dξ(A)

+ (2dN + 1) log+ |2| + (2N − 2 + dN(dN − 1)) log+ |d|, (21)

and suppose further that D is a non-zero effective divisor with

μ(D) ≥ log+ ‖b‖ + c8(−1 + deg(D)1/2(N−1))− ξ(A). (22)

Then

�f (D) ≥ λ(D)− 1
d − 1

deg(D)(log ‖A−1‖ + log+ |2N |)− N

dN − 1
log+ |2|.

Proof. Let S be the set of effective divisors of degree at least 1 meeting condition (22),
and let (for x ∈ R+)

ψ(x) = dc8(−1 + x1/2(N−1))− (d(dN − 1)+ 2) log x
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if | · | is archimedean, ψ = 0 otherwise. Note that ψ(1) = 0, and we have chosen c8 so
that ψ ′(x) ≥ 0 for x ≥ 1, whence ψ(x) ≥ 0 for all x ≥ 1. Similarly, let

ω(x) = dc8(−1 + x1/2(N−1))− c8(−1 + d1/2x1/2(N−1))

− (dN+1 − d + 1) log x + c8(d
1/2 − 1)

if | · | is archimedean, and ω = 0 otherwise, and note that ω(x) ≥ 0 for x ≥ 1.
Now, for D ∈ S not containing the origin, we have from Lemma 14 that

μ(φ∗D) ≥ dμ(D)− d(dN − 1) log+ | deg(D)| − 2dN log+ |2| − dN(dN − 1) log+ |d|
≥ d log+ ‖b‖ + dc8(−1 + deg(D)1/2(N−1))− dξ(A)

− d(dN − 1) log+ | deg(D)| − 2dN log+ |2| − dN(dN − 1) log+ |d|
= d log+ ‖b‖ + ψ(deg(D))+ 2 log+ | deg(D)| − dξ(A)

− 2dN log+ |2| − dN(dN − 1) log+ |d|
≥ d log+ ‖b‖ + 2 log+ |dN−1 deg(D)| − 2 log+ |dN−1| − dξ(A)

− 2dN log+ |2| − dN(dN − 1) log+ |d|
= log+ ‖b‖ + c3 + c5 + log ‖A−1‖ + 2 log+ | deg(φ∗D)|

+ (d − 1) log+ ‖b‖ − c3 − c5 − log ‖A−1‖ − dξ(A)

− (2N − 2 + dN(dN − 1)) log+ |d| − 2dN log+ |2|
> log+ ‖b‖ + c3 + c5 + log ‖A−1‖ + 2 log+ | deg(φ∗D)|,

given (21). It follows from this and Lemma 18 that

μ(f∗D) = μ(L∗φ∗D)
≥ μ(φ∗D)− log+ | deg(φ∗D)| − log+ |2| − c5 − log ‖A−1‖
= dμ(D)− (dN+1 − d + 1) log+ | deg(D)| − (N − 1) log+ |d|

− (2dN + 1) log+ |2| − dN(dN − 1) log+ |d| − c5 − log ‖A−1‖
≥ d log+ ‖b‖ + dc8(−1 + deg(D)1/2(N−1))− dξ(A)

− (dN+1 − d + 1) log+ | deg(D)| − (2dN + 1) log+ |2|
− (dN(dN − 1)+ (N − 1)) log+ |d| − c5 − log ‖A−1‖

= log+ ‖b‖ + c8(−1 + deg(φ∗D)1/2(N−1))− ξ(A)+ ω(deg(D))

− c8(d
1/2 − 1)+ (d − 1) log+ ‖b‖ − (d − 1)ξ(A)− (2dN + 1) log+ |2|

− (dN(dN − 1)+ (N − 1)) log+ |d| − c5 − log ‖A−1‖
> log+ ‖b‖ + c8(−1 + deg(φ∗D)1/2(N−1))− ξ(A)

since ω(deg(D)) ≥ 0 and

(d − 1) log+ ‖b‖ ≥ c8(d
1/2 − 1)+ (d − 1)ξ(A)+ (2dN + 1) log+ |2|

+ (dN(dN − 1)+ (N − 1)) log+ |d| + c5 + log ‖A−1‖.

In other words, S is closed under the action of f∗.
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On the other hand, since φ∗D satisfies the hypotheses of Lemma 18, we also have

λ(f∗D) = λ(L∗φ∗D)
≥ λ(φ∗D)− deg(φ∗D)(log ‖A−1‖ + log+ |2N |)−N log+ |2|
= dNλ(D)− dN−1 deg(D)(log ‖A−1‖ + log+ |2N |)−N log+ |2|.

As S is closed under f∗, we can iterate this, giving

λ(f k∗D)
dkN

≥ λ(D)− 1 − d−k

d − 1
deg(D)(log ‖A−1‖ + log+ |2N |)− N

dN − 1
log+ |2|

for D ∈ S and k ≥ 1, from which the lower bound on �f (D) follows.

The next lemma, a lower bound on the relative escape rate of the critical divisor of f, is
the main ingredient in the results of this paper.

LEMMA 23. Let f be as in (1), let Cf = ∑N
i=1(d − 1)Hi be the finite part of the critical

divisor, and let

c9 = max
{

0,
1

d − 1
log+ |2N | + N

dN − 1
log+ |2| − 1

N(d − 1)
log+ |N! |,

c8(d
1/2 − 1)+ c3 + c5 + (2dN + 1) log+ |2| + (2N − 2 + dN(dN − 1)) log+ |d|

d − 1

}
.

Then

�f (Cf ) ≥ d − 1
d

log+ ‖b‖ − 1
Nd

λ(A−1)− ξ(A)− d − 1
d

c9.

Proof. First, note that �f (Cf ), λ(A), ξ(A), and c9 are all non-negative, and so our
conclusion holds trivially if log+ ‖b‖ = 0. We will, therefore, assume throughout that
log+ ‖b‖ = log ‖b‖ > 0.

Let Bi = L∗Hi = (L−1)∗Hi , noting that the finite part of the branch locus of f is
supported exactly on the Bi . The hyperplanes Bi , for 1 ≤ i ≤ N , are defined by the linear
forms gi whose coefficients make up the first N rows of L−1, which we recall is given by

L−1 =
(
A−1 −A−1b

0 1

)
.

Now, note that

log ‖b‖ = log ‖AA−1b‖ ≤ log ‖A−1b‖ + log ‖A‖ + log+ |N |,
and so there is some i such that the ith entry b′

i of b′ = −A−1b satisfies

log ‖gi‖ ≥ log |b′
i |

≥ log ‖b‖ − log ‖A‖ − log+ |N |.
On the other hand, log ‖gi |H‖ ≤ log ‖A−1‖, and so we have

λ(Bi) ≥ log ‖b‖ − log ‖A‖ − log ‖A−1‖ − log+ |N | = log ‖b‖ − ξ(A).
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Note also b′
i = gi,deg(gi ) in the notation of the definition of μ, and so we also have

μ(Bi) ≥ log ‖b‖ − ξ(A)

= log ‖b‖ − ξ(A)+ c8(−1 + deg(Bi)1/2(N−1)),

given that deg(Bi) = 1. Evidently, condition (22) in Lemma 22 is met, and so if (21) is
satisfied as well, then we have

�f (Bi) ≥ log ‖b‖ − 1
N(d − 1)

λ(A−1)+ 1
N(d − 1)

log+ |N! | − ξ(A)

− 1
d − 1

log+ |2N | − N

dN − 1
log+ |2|,

which is stronger than

�f (Bi) ≥ log ‖b‖ − 1
N(d − 1)

λ(A−1)− d

d − 1
ξ(A)− c9. (23)

If, on the other hand, we fail to meet (21), then

(d − 1) log ‖b‖ − 1
N
λ(A−1)− dξ(A) ≤ (d − 1) log ‖b‖ − log ‖A−1‖ − dξ(A)

≤ c8(d
1/2 − 1)+ c3 + c5 + (2dN + 1) log+ |2|

+ (2N − 2 + dN(dN − 1)) log+ |d|
≤ (d − 1)c9,

in which case (23) is true simply because �f (Bi) ≥ 0.
Inequality (23), combined with the non-negativity of �f , gives

�f (Cf ) =
N∑
j=1

(d − 1)�f (Hj )

≥ (d − 1)�f (Hi)

= d − 1
dN

�f (f∗Hi)

= d − 1
dN

�f (d
N−1Bi)

≥ d − 1
d

log+ ‖b‖ − 1
Nd

λ(A−1)− ξ(A)− d − 1
d

c9.

Although Lemma 23 is the key ingredient in our main results, one might wish to record
the corresponding bound in the other direction, an immediate consequence of results
already shown.

LEMMA 24. There is a bound of the form

�f (Cf ) ≤ N(N + 2) log+ ‖b‖ + (N + 1)λ(A)+N log+ |(N + 1)! | + log+ |N! |
+N log+ |4N(N + 1)| +

(
4N2d + 2N − 1

dN − 1

)
log+ |2|.
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Proof. Note that Cf is defined by the monomial equation

Xd−1
1 · · · Xd−1

N = 0,

and so λ(Cf ) = 0. By Lemma 19, or more precisely (19) therein, we have

�f (Cf ) ≤ deg(Cf )
d − 1

(log ‖L‖ − log ‖A‖ + log+ |4N(N + 1)|

+ λ(L)+ 4Nd log+ |2|)+
(

2N − 1
dN − 1

)
log+ |2|.

Now, since A ∈ SLN(K), we have −(1/N) log+ |N! | ≤ log ‖A‖, and so

log ‖L‖ − log ‖A‖ ≤ log+ ‖A‖ + log+ ‖b‖ − log ‖A‖ ≤ log+ ‖b‖ + 1
N

log+ |N! |.
Also, we have

λ(L) = (N + 1) log ‖L‖ + log+ |(N + 1)! |

≤ (N + 1) log+ ‖b‖ + N + 1
N

log+ |N! | + (N + 1) log ‖A‖ + log+ |(N + 1)! |

= (N + 1) log+ ‖b‖ + N + 1
N

λ(A)+ log+ |(N + 1)! |.
The claim follows, since deg(Cf ) = N(d − 1).

Thus, with a view to fixing A, we have

d − 1
d

log+ ‖b‖ −OA(1) ≤ �(Cf ) ≤ N(N + 2) log+ ‖b‖ +OA(1),

which proves Theorem 1. Indeed, the error terms can be made explicit in terms of λ(A),
λ(A−1), and ξ(A), all non-negative functions on SLN(K), which are plurisubharmonic
and continuous whenK = C. The following proposition also proves Corollary 2, recalling
(20).

PROPOSITION 25. In the case K = C, the map

SLN+1(C)× CN → SLN+1(C)× R

by

(A, b) �→ (A, �f (Cf ))

is continuous, plurisubharmonic, and proper. In particular, if

M = {(A, b) ∈ SLN+1(C)× CN : L(f ) = L(f |H )+ log d},
then the projection π : M → SLN+1(C) is proper.

Proof. Note that, by (20), the set M is equivalently defined as the set of pairs for which
�f (Cf ) = 0.
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For any k ≥ 0, the function

(A, b) �→ λ(f k∗Cf )
dkN

is continuous and plurisubharmonic, since there is a homogeneous form defining f k∗Cf
whose coefficients are polynomials in the entries of A and b. But from Lemma 19, these
functions converge uniformly on compact subsets to �f (Cf ), and so f �→ �f (Cf ) is
continuous and plurisubharmonic. This part of the result can also be accessed by work of
Basanelli and Berteloot [1, §1.4] (see also [5]).

Now, on any compact E ⊆ SLN+1(C)× R the functions λ(A) and ξ(A) are bounded,
and so Lemma 23 gives, for (A, b) ∈ M,

log+ ‖b‖ ≤ d

d − 1
�f (Cf )+OE(1) = OE(1),

for �f (Cf ) in the projection of the second coordinate of E. Since SLN+1(C)× CN →
SLN+1(C)× R is continuous, it is also proper.

We end with a generalization of the observation that, if zd + c is PCF, then c is an
algebraic integer. We recall that a morphism f : PNK → PNK , with K complete with respect
to a non-archimedean absolute value, has good reduction if and only if f extends to a
scheme morphism f : PNR → PNR over the ring of integers R. Equivalently, if we choose
homogeneous forms representing f, whose coefficients are integral and not all contained
in the maximal ideal, then f has good reduction if and only if the resultant of these
homogeneous forms is a unit.

PROPOSITION 26. Let K be an algebraically closed field, complete with respect to a
non-archimedean absolute value which is not p-adic for any p ≤ max{d , N! }, with ring
of integers R. Then any PCF map of the form (1) with A ∈ SLN(R) has good reduction.

Good reduction has various dynamical consequences. For example, if f : PN → PN

has good reduction, and f (P ) = P , then any eigenvalue λ of the action of f on the tangent
space at P satisfies |λ| ≤ 1 (so, in a strong sense, periodic points are non-repelling).

Proof of Proposition 26. For A ∈ SLN(R), we claim that f has good reduction if and
only if the entries of b are integral. To see this, note that if the entries of b are integral,
then the entries of the matrix L = ( A b

0 1 ) are integral, and are the coefficients of some
homogeneous forms Fi(X) = ∑N+1

j=1 Li,jX
d
j−1 defining f. If all entries are in the maximal

ideal, then we could not have det(A) = 1, and so f has good reduction if and only if the
resultant of these forms is a unit. But by [14, Theorem 3.13, p. 399] these homogeneous
forms have resultant

det(L)d
N = det(A)d

N = 1.

If, on the other hand, the entries of b are non-integral, then for π a uniformizer of the
absolute value, there is some ε > 0 so that the entries of πεL are integral, and at least one
is a unit. We have det(πεL) = π(N+1)ε not a unit, and so by the same argument as above,
f has bad reduction.
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Now, given our assumptions on the absolute value, we have ξ(A) = 0 and log ‖A−1‖ =
0, and Lemma 23 gives

�f (Cf ) ≥ d − 1
d

log+ ‖b‖.

If f is PCF, and hence �f (Cf ) = 0, it follows that log+ ‖b‖ = 0, and so the entries of b
are integral.

4. Global results
We now change context so that K is a field with a collection of inequivalent absolute values
MK with weights nv such that the product formula holds for α ∈ K∗, that is,

∑
v∈MK

nv log |α|v = 0. (24)

Our main example is when K is a number field, MK is the standard set of absolute values,
and nv = [Kv : Qv]/[K : Q]. For any absolute value | · |v on K we may apply results from
the previous section to an algebraically closed completion of K, with respect to v, and all
quantities thereby obtained now acquire a subscript v.

For a divisor D on PNK defined by the vanishing of the homogeneous form F(X) ∈
K[X1, . . . , XN+1], let

h(D) =
∑
v∈MK

nv log ‖F‖v ,

that is, let the height of D be the height of the tuple of coefficients as a point in the
appropriate dual projective space. Note that, by (24), this definition is independent of the
choice of form defining D, while (4) can be used to relate this height to the height used by
Philippon [17], which we used in [12], and then to that of Faltings [6] (see [20]).

Then we see immediately that for D not containing H,
∑
v∈MK

nvλv(D) = h(D)− h(D|H ).

Writing ĥf (D) for the canonical height of D relative to f, so

ĥf (D) = lim
k→∞

h(f k∗D)
dkN

,

we then have
∑
v∈MK

nv�f ,v(D) = ĥf (D)− ĥf |H (D|H )

(see also [13, 14]). Note that in [12], a different naive height was used on divisors, but since
the heights differ by at mostO(deg(D)), the canonical height is the same (see Remark 21).
Also note the one subtlety here, that (f∗D)|H = d(f |H )∗D|H, so that ĥf |H ((f∗D)|H ) =
dN ĥf |H (D|H ), despite dim(H) = N − 1.
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Note that since f ∗H = dH , it follows readily that for Cf as above, Cf + (d − 1)H is
the ramification divisor of f, and ĥcrit(f ) = ĥf (Cf ). In particular, we have

∑
v∈MK

nv�f ,v(Cf ) = ĥcrit(f )− ĥcrit(f |H ).

We may now proceed with the proofs of the global results.

Proof. Let K be a number field, and let f be as in (1), with coefficients in K. At each place
v ofK , with subscripts denoting dependence on the corresponding absolute value, we have
from Lemma 23 that

�f ,v(Cf ) ≥ d − 1
d

log+ ‖b‖v − 1
Nd

λv(A
−1)− ξv(A)− d − 1

d
c9,v .

Summing over all places, we obtain the desired bound once we note that∑
v∈MK

nv log+ ‖b‖v = hPN (b),

∑
v∈MK

nvλv(A) = NhPGLN+1(A)+ log N! ,

∑
v∈MK

nvξ(A) = hPGLN+1(A)+ hPGLN+1(A
−1)+ log N ,

and

hPGLN+1(A
−1) ≤ (N − 1)hPGLN+1(A),

while
∑
v∈MK

nvc9,v is some explicit constant depending just on N and d. Note that this
last upper bound contains the sum

∑
p≤d(log p/(p − 1)), a sum over primes, which can

be explicitly bounded above in terms of d using estimates of Rosser and Schoenfeld [18].
Similarly, the upper bound on ĥcrit(f )− ĥcrit(f |H ) comes from summing the estimates

in Lemma 24 over all places.

Note that the terms ĥcrit(f ) and ĥcrit(f |H ) in Theorem 3 are independent of choice of
coordinates, while the terms h(b) and h(A) are not. Indeed, it is possible to take h(b) →
∞ within a conjugacy class, which might seem troubling at first for a lower bound on an
invariant of the class, but note that this would result in the error term increasing as well.

Proof of Theorem 5. Suppose our putative algebraic family is defined over the variety
V/k, and let K = k(V ) be the function field, so that we may think of f as a single map
with coefficients in K. There exists a set MK of inequivalent absolute values such that
the elements of height zero are precisely the constants (namely, we can take MK to be
the collection of absolute values corresponding to vanishing of functions on irreducible
divisors on any normal, projective variety V ′ birational to V [4, Lemma 1.4.10, p. 12]).

All of these absolute values are non-archimedean, and none are p-adic, and since A is
constant we have by Proposition 26 that the entries of b are integral. In other words, given
any irreducible divisor on V ′, the functions bi do not have a pole along V ′, and since the
divisor was arbitrary, the bi are all constant.
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Finally, we note that the results in the previous sections allow for explicit estimates on
the difference between the canonical height and the naive height of a divisor. Such results
appear in [10], but here (and with regular polynomial endomorphisms in general) it seems
to make more sense to think in terms of relative quantities.

PROPOSITION 27. Let D be an effective divisor on PN, and f as in (1). Also, write

hrel(D) = h(D)− h(D|H)
and

ĥrel,f (D) = ĥf (D)− ĥf |H h(D|H).
Then

ĥrel,f (D) = hrel(D)+ deg(D)Od,N(hPGLN+1(L)+ 1).

Proof. Similar to the other results in this section, this is just a matter of summing (19) over
all places.

5. The cases d > N2 −N + 1 and N = 2
Here we make a few remarks on cases in which the relative results in the introduction
become absolute, largely by leveraging the results in [10].

PROPOSITION 28. Let d > N2 −N + 1 or N = 2. Then the PCF maps of the form (1)
are a set of bounded height, up to conjugation.

Proof. If f of the form (1) is PCF, then so is f |H , which is a minimally critical
endomorphism in the sense of [10]. If d > N2 −N + 1 = (N − 1)2 + (N − 1)+ 1, then
the main result of [10] shows that f |H is conjugate to a map of the form BXd with
hPGLN (B) bounded in terms of d and N. We can extend this change of coordinates to
PN and choose a lift of B to SLN, and thereby replace f by a map f (X) = AXd + b with
h(A) bounded. But now Theorem 3 gives us that h(b) is bounded as well (in terms of d
and N).

In the caseN = 2 we may extend this to d = 2, 3 by the main result of [3]. Here, f |H is
a minimally critical (bicritical) endomorphism of P1 which is PCF, and hence has bounded
moduli height. It is not a priori obvious that this map will be conjugate to something of
the form BXd with B ∈ PGL2 of bounded height, but this follows from [10, Lemma 15]
and [19, Lemma 6.32, p. 102]. The rest of the argument is now the same.

Remark 29. There are, of course, a bevy of examples of PCF endomorphisms of the form
(1) with b = 0, but we expect examples with b �= 0 to be quite rare. As such, it would be
interesting to compute exhaustive lists of examples defined over Q, say, in the case N = 2,
which brings us to the question of how explicit the bounds in Proposition 28 can be made.

The bounds for h(b) can be made completely explicit, in terms of h(A), by a careful
tracing through the proof of Theorem 3. In the case d = 2, bounds for h(A) are made
concrete in [3], and so the exhaustive list implied by Proposition 28 could actually be
computed (but not easily). In the case d ≥ 3, the results in [3] do not imply anything quite
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so explicit, but we note that a more direct argument gives effective constants when d ≥ 4
(see [10]).

PROPOSITION 30. Let d > N2 −N + 1 or N = 2. Then there are no algebraic families
of PCF maps of the form (1) over C.

Proof. If d > N2 −N + 1, then again the results of [10] apply to the restriction f |H . So if
f is a PCF family, then f |H is also a PCF family, and by [10, Theorem 3] must be isotrivial.
Extending this change of coordinates to PN , we may replace f by a conjugate family
(perhaps after a finite extension of the function field) so that f |H is constant. Theorem 5
now applies to show that all coefficients of f are constant. If N = 2 the argument is the
same, except now in the case d = 2, 3 we must use Thurston’s result to conclude that the
family f |H of PCF endomorphisms of P1 is isotrivial.

In positive characteristic, we may still apply the results of [10] and prove a version of
Proposition 5 when d > N2 −N + 1. In the caseN = 2, d = 3 we are out of luck, but the
remaining caseN = d = 2 can be treated in odd characteristic by the exact same proof, and
an appeal to the rigidity of PCF quadratic endomorphisms of P1 in odd characteristic [3].

PROPOSITION 31. In characteristic p �= 2, there are no algebraic families of quadratic
PCF maps f : P2 → P2 of the form (1).
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