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I ntroduction

This article determines the asymptotic behavior of a class of two variable ‘simul-
taneous’ lattice point problemsin R™ for any n > 2. An earlier article [Li-3] has
studied asimilar problem for alarge class of such problemsin R?.

In general, it seems fair to say that the precise asymptotic behavior of such
problemsis much less clearly understood than that of their classical counterpart in
1 variable. Primarily, thisis dueto the greater difficulty in understanding the polar
structure of a 2 variable Dirichlet series, whose Mellin transform in 2 variables
counts the number of lattice points of interest.

In [Li-1] a general class of simultaneous lattice point problems was defined
with the hope that their asymptotic analysis could be carried out in a manner that
generalized nicely the well known and standard 1 variable method (see [La, Li-4,
Ma, Sa]). Roughly speaking, the idea is the following. Suppose Py, P» are two
polynomialson R™ that satisfy the growth condition of * hypoellipticity’ on [1, co)™
(see Section 1). One may then assumethat each is positive outside acompact subset
of [1,00)™. Oneisinterested in describing the precise asymptotic behavior of the
function

N(t1,t2) =#N' N{P1 < t1} N{ P < t2} &Sty ty — oo.
To do so, one introduces the Dirichlet series (setting s = (s1, $2))

1
D S == 9
©= 2 Bmmmrme
Pl-Pz(m);ﬁO

for which N (t1,t2) is a Méllin transform. It is not difficult to see that D(s) is
analyticin aregion of theform {o1,02 > ¢, },¢ > 1, where o; = Re(s;) for each
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i. Moreover, D(s)/s1s, admits an analytic continuation to C? as a meromorphic
function, for whichthereal part of itsdomain of analyticity isbounded by apolygon,
denoted subsequently by I (see [Li-1]). Evidently, I is the natural generalization
of the largest pole of a Dirichlet series determined by one hypoelliptic polynomial.
Let V resp. £ denote the set of vertices resp. complex linesthat contain aface of I'
(bounded or unbounded). It is then natural to ask if I" contributes effectively to the
dominant asymptoticsof N (¢1, t2). Themost important ingredient of an affirmative
answer to this question is anonvanishing property for an iterated residue, stated as
follows:

CONJECTURE. Foreachv € YV andeach L € L, for whichv € L,
Res, Resy, (t1't52D(s)/s152ds1 dsg) # 0. (0.1)

[Li-3] verified this conjecture for the class of nondegenerate and hypoelliptic
polynomialson [1, oo)?.

If one verifiesthis conjecture for avertex v, it follows from the analysisin [Li-
1,3], that there exist unbounded semi-algebraic regions R(v) in which N (¢1,t2)
grows like amonomial A,t7*¢5?, where A, > 0and v = (v1, v2). (Of course, one
may need to include log¢; factorsif the multiplicity of D along L is greater than
one.)

To verify the conjecture for a particular vertex v, oneisled to replace D(s) by
theintegral

1
I(s) = /[1,00)" P1 ()1 Po(z)%2

[Li-2] showsthat (0.1) holds for v iff the iterated residue, obtained by replacing
D(s) by I(s) isnonzero. This observation now permits one to employ methods of
singularity theory to analyze I(s)/s1s2 in aneighborhood of each vertex of I".

On the other hand, there is, as yet, no general result that insures that for any
pair of hypoelliptic Py, P, the nonvanishing property (0.1) holds at any vertex of
the polygon I'. To encourage belief that such a result indeed exists, it is helpful to
have some good supporting evidence. Whereas [Li-3] gave an affirmative solution
to the conjecture for aclass of polynomialsin two variables, it isalso instructive to
show that an affirmative solution exists for pairs of polynomialsin more than two
variables. The class studied in this paper is the following.

Let (b1,...,b,) # (c1,...,cy,) betuples of positive integers. One defines:

dzq---dz,.

The conjecture’s solution for this class of pairs of ‘additive’ polynomials
has a simple and elegant form. To formulate it precisely, suppose that co-
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ordinates are chosen so that  b1/c1 < b2/c2 < -+ < by/cy. Further, define
(bn+1, cnt1) = (1,0). Suppose, for simplicity here, that these . ratios are distinct.
One now defines the following points and regions of [1, c0)?;

vo = (zn: 1/bj,o) , ( > 1/bj,21/cj> , i€[ln-—1],
J=1 Jj=

i+1
n
vy = O,Zl/cj ,
j=1

R(vo) = {t2/" <3}, R(vs) = £+ <y <45/ ix 1.

Let (v1;, v2;) denote the coordinates of v;.

Next, one introduces two types of subsets of these regions. For each point
v = v, . .., Uy, ONEUsesthe notation R -, (v) to denote any unbounded, connected,
semialgebraic subset of R (v) such that

d ((tl,tz),aR(v)) — oo If (t1,t2) = (00,00), (t1,t2) € Roo(v).

In addition, if y is any unbounded analytic arc lying in R(v), one says that v is
asymptotic to OR (v) at infinity iff

d (], 0R(v) N{l[(tr, t2)l| < t}) = 0 ast— oo.

Given this geometric data, the paper establishes a precise description for the
dominant behavior of N (¢1,t7), asfollows.

THEOREM. (1) For each i there exists an effectively determined B; > 0, so that,
given any subregion R, (v;), a positive 6 exists such that

Nty t2) = Bity™ t3% + Ot 15777,
if (t1,t2) = (00,00) and (t1,%2) € Roo(vi).

(2) Let v denote an arc asymptotic to 0R (v;) at infinity. Let ¢ be a parameter
for v sothat for ¢ > 1

t1(t) = ait™* +axt®? +--- whereag >ap > -+,
ta(t) = ait? + astP2 ... where By > o > - -

There exists a positive number e = €(-y) sothat ¢ > 1 implies
N(t1, o], = Bit" (029 4 O (relen=c).

If therearer < n distinct ratios among the b; /c;, then there will only ber + 1
distinct points v; and regions R (v;) that determine the dominant asymptotic terms
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of N (t1,t2), theform for which is similar to that above (see (5.1), (5.4), and (6.2)
for the general statement).

Asthe proof of the Theorem makes clear, the pointsvg, vy, . . . , v, are precisely
the vertices of the polygon I, associated to the Dirichlet series, defined above for
the pair of polynomials. In addition, for i < n — 1, the slopes of the 2 sides that
intersect at v; are —b;/c; and —b;41/¢;+1. For v,, thetwo sides consist of avertical
ray and a segment with slope —b,,/c,,. Moreover, D(s)/s1s2 has a simple pole
aong each line containing a face of I". Similar properties hold if therearer < n
distinct values (see Theorem 6.2). As a result, the Conjecture is verified for this
pair of polynomials.

The principal idea of the proof is sketched in Section 1 (see [Li-3] also).
Essentially, one needs to construct a set of simplicial cones, satisfying (1.4)(i—ii)
and (1.7.1), (1.7.2). Sections 2-5 carry out this construction. Section 6 gives the
proof of the Theorem. Since the details are alittle intricate, Section 7 provides an
exampleto help guide the reader through the arguments. The reader is encouraged
to consult first the definitions given in Part 1 of Section 2, and then the example,
beforetackling the detail sof thegeneral argument. Section 8 givesexplicit estimates
insideany R (v;) of thedifference between N (¢4, ¢2) and the volume of theregion
{PL<ti} N{P <t2} N[1,00)".

1. Preliminaries

This section briefly summarizes the results obtained in [Li-1, 2, 3] that will be
needed in the paper.

Additive polynomials are both hypoelliptic on [1, co)™ [HO, ch. 11] and nonde-
generatewith respect to their polyhedraat infinity [Sa]. Thesearegrowth conditions
that enable the Theorem to be proved using geometric-analytic methods.

Thefirst point isthat the series D(s) can essentially be replaced by the integral

1
© [Looy Py Py " )

It is standard to see that 1(s) possesses analytic properties similar to those of D(s)
stated in the Introduction. Thus, the boundary of the real part of the domain of
analyticity of (s)/s1s2 isalso apolygon, denoted below asI'(P). One now uses:

THEOREM 1.1. (1) The polygon I, defined in the Introduction, equalsI'(P).
(2) There exists an open neighborhood of T" that is unbounded in the imaginary
directions of C2, such that D — I isanalytic in the neighborhood.

Remark. This is shown in [Li-2]. (1) follows from hypoellipticity of each
Pi|[1700)n. (2) implies that for any vertex v of I" and line L containing a face
of I', one has

Res, Resy, (t7*t521(S)/s152 ds10s2) = Res, Resy, (¢1152D(S)/s1s2 ds1ds?) .
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Thus, usingtheargumentsof [Li-1, Sect. 6] and[Li-3, Sect. 1, appx], theasymptotic
for N(t1,t2) inside each R (v;) follows from Theorem 1.1 and the following:

Res,, Resy, (tlltng( S)/s182 dsldsz) # Ofor (t1,t2) € R(v;). 1.2

It isnot apriori clear that (1.2) should occur. To show nonvanishing, one needs a
precise description of the Laurent seriesof (s)/s1s2 at v;. The following suffices
for this paper. Its easy proof iseft to the reader.

PROPOSITION 1.3. Let v beavertex of I'. Suppose the following conditions hold
ato :

(A) Exactly two components L1, L, of the polar locus of 1(S)/s1s2 contain v.
(B) Let L; be defined by the form ¢;. In a neighborhood of v one has
I(s) _I*(9
s1s2  fal
where I'*(s) isanalytic at v and I*(v) > 0.
Thenfor eachj = 1,2

Res, Resy, (t1't5°1(S) /5152 ds1dsp) # Oforal (t1,12) € R(v). O

+ (‘analytic function ) ,

Let the polyhedron of P; at infinity be denoted T';. Given a direction vector
(e (Ry) andj =1,2, set
M;(&) =max{¢-z:zel;} and K;(§) ={zel;:{ z=M(E)}.
One now partitions (R’} )* asfollows.
PROPOSITION 1.4. There exist closed simplicial cones C; = (a1(7),...,
an(i))r,,%=1,..., R, suchthat

(i) (RY)* = uR LG

(i) dmc; ﬂO <nifi#j;

(iii) al(i),...,an(i) € ', are linearly independent, and (;_; Kj(ax(i)) # 0,
j=12.

To each vector a,(i), in the 1-skeleton of C;, one sets |a, (i) =
sum of coordinates of a,.(i), and defines the line resp. ‘upper’ halfplane as fol-
lows:

Lar(i) = {(s1,52) € C : Ma(ar(i))s1 + Ma(ar (i) s2 = |a, (3)[},
L*a,(i) = {(01,02) € B : Mi(a,(i))o1 + Ma(ar(i))o2 > |ar(i)]} .
Let 7 denote a set of cones satisfying (1.4)(i—ii). Define the polygon

(T (ﬂ N Lta(i ﬂ]Ri2>

i=1r=1

(15
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(A similar polygon was defined in [Li-3, p. 715], but an error appears in the
statement of the region £ whose boundary is the polygon. One should replace the
union over 3, 3 by the intersection.)

Proved in [ibid] is the following invariance property, due solely to the non-
degeneracy of each P;.

PROPOSITION 1.6.

(1) For any collection T~ satisfying (1.4)(i-iii), ['(7) = I'(P).

(2 I(T) =T.

One now states two properties (which may or may not be true) about the
collection of lines { La; () }; ;. To do so, one definesfor each vertex v of I, family
T satisfying (1.4), and i = 1,..., R, the sets £, (i) = {r : v € La,(7)}. The
properties are as follows:

(1.7.1) For each vertex v € T', not lying on a coordinate axis, there exist ; and
r1 # 12 such that:

(@ Lay, (i), Lay,(i) contain the ssgments of I intersecting at v ;
(b) v ¢ La,(i)ifr#ry,ra;
(c) Forany i’ for which L, (i') # (0, any linein this set must contain aface of T

(1.7.2) For each vertex v lying on a coordinate axis, v € La, (i) implies La,(7)
containsafaceof I'.
It isthen easy to see ([Li-3, Sect. 1]):

PROPOSITION 1.8. If conditions (1.7.1), (1.7.2) are true at each vertex, then the
hypotheses (A), (B) of Proposition 1.3 are satisfied at each vertex.

2. Ordering of lineswith given slope

There are two parts to this section. The first contains notations and definitions of
basic objectsthat will be needed in the rest of the article. The second contains some
elementary ordering properties of the lines from which oneformsT".

Part 1: Notations

(2.1) Giventheorderingbi/c1 < --- < by/cp, Setr = #{b1/c1,...,by/cn}, and
write the distinct elements of thissetas{p1 < p2 < --- < p, }.

(2.2) Definek, 1 =n+ 1, andforj =1,...,rsetk; = min{i : b;/c; = p;},
ande = [kj,kj+1—1].

(2.3) Ann-chainof subsetsof {1,2,...,n}isachanC: A(1) C A(2) C--- C
A(n) suchthat |A(i)| = 4,7 = 1,2,...,n. The elements of A(u) will be written
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as A(u) = {i1(u) < i2(u) < --- < iy(u)}. In particular, i1(u) aways denotes
min A(u), foreachu =1,... n.

(2.4) Thecollection of all n-chainsisdenoted 7. Given C € F, the unique number
in A(1) is called the root of C. The subset of chainsrooted at 7 is denoted F;.

(25) Given any chain C, and ¢ € {1,...,n}, set «(¢) = unique j for which
’L]_(f) S Ij.

(2.6) For C € F; definethe collection of subsetsof {1,...,n} :
S(0) = {{ur <wz <--- <wg}:o(ug) =4(1) and

t(ug) > e(uz) > -+ > o(ug)}.

(271 Givenany p = {u1 < --- < ui} € S(C), one defines a sequence
p*={uj <--- <uj} bytherule:
foreach j, wj;=max{{:£>u; and (¢)=(u;)}.

The sequence 1* is called the maximal sequencefor u.

(2.7.2) Giventhechain C, set

k1 =max{.(¢) : £ € [1,n]} ui(C) = max{l: i(f) = K1}
ko =max{¢(¢) : £ > ui(C) + 1} u3(C) = max{l: (f) = K2}

kg =1 uy(C) =n.

The r; are strictly decreasing while the u (C) are strictly increasing. The index d
istherefore the smallest integer ¢ sothat x, = 1. Itsvalueisthen well defined (and
depends upon C'). One writes it as d. Thisinteger is called the depth of the chain

C. The sequence p*(C) o {u;(C)} is called the maximal sequence of C. One
then partitions {1, ...,n} by setting u§(C) = 0, and for eachw = 1,...,d, one
definesif,, (C) = [uf, 1(C) + 1, ul (C)].

w—1

(28) Fork >2and1< j1 < --- < ji < n, definethe direction vector

k
€i15ennit = Z (Hbz) €,

q=1 \i#q

whereey, ..., e, arethe unit basisvectorsfor R*. (If £ = 1, thene;, = e;,.)
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(2.9) To each chain C, whose elements one writes asin (2.3), one associates

the vectors E, o Cir(u)yin(u)y W =1y My

andclosedcone C(C) = (En, ..., Ep)p,.

(210) Foreachk = 1,...,n, set I, = bye, and J, = c€.. The face of 'y
resp. I'> spanned by I;,,...,1; resp. J;,,...,J; isdenoted [I;,,...,1I; ] resp.
[le,...,ij]. Define

19 ?Ijk]J_ = {5 € (R:L—)* : Kjl(&) = [IjM vt ’Ijk]}a
[‘]jﬂ‘ . '7ij]J_ = {5 € (R:L—)* : ICZ(S) = [Jjﬂ e '7ij]}'

(SO, €j1,....dk € [Ijl,...7Ijk]J‘ for all << ]k)

[Z;

(211) Foreachi, C € Fj,and p = {ug < --- < ug} € S(C), one defines the
subcone of (R} )*

k 1
2(/,1,) = U{Ja}aEA(ui)ﬂIL(ui>
=1

(2.12) For anonvertical line L with nonzero slope, h(L) resp. v(L) denotesthe s;
resp. sp axisintercept. For two such lines L, L' which are also parallel, one defines
the ordering

L' <L iff h(L)<hL) iff o) <o(L).

Onewrites L' < L if thereis strict inequality in the axis intercepts.

Part 2: Elementary aspects of the ordering of lines

The argument proceeds by constructing a set of simplicial cones that satisfies
(2.4)(i—ii), and then showing that (1.7.1), (1.7.2) are aso satisfied. Such cones
will be constructed in Section 6, using an operation of subdivision that is based
upon defining recurrently, new direction vectors, starting from the E,,, (see (2.14),
(2.16)). In order to describeI", one must then understand how the lines, determined
by the vectors asin (1.5), are ordered. This will be the subject of Section 2, part
2, and Section 3. The proofs of the lemmas in this section are all elementary (see
Addendum for details).
One first observes:

LEMMA 2.13.

(1) Thecollection of cones{C(C) : C € F} satisfies properties (i—ii) of (1.4).
(2) Letiz(1) denotetheroot of chain C. Then (;_1 K1(Ej) = {;;(1)}-
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(3) The foIIovvmg propertl&s are satisfied for any C' : A(1) C --- A(n) € F,
andu =1,.

@ Foranyg,andb,celj, Ey-Jy=E,-J. ifbceAlu)nIj
(b) Mi(Ey) = Ilgeaqu) by = Eu- 1 forall £ € A(u);
(c) Ifig(u) EIj,then

Ms(Ey) = ciyuy - [] bivw) forall ¢ € A(u) NZ;;
0£1
(d) ¢(u) > ¢(v) implies ii(u) > d1(v), and By - (Ji, ) — Jiyw)) > 0.
However, 1(u) = t(v) implies E, - J; ) = Ey - Jy, (- Further, £, -
Jie(v) =0ifi.(v) € IL(U).
() Foru<n—1,
|Eu| |Eu+1|
Mi(E,) = Mi(Eyuq1)’
(f) S LE, = —b; )/ Ciy(u)

(9 fu<wvandi(u) =c(v), then LE, < LE,.

Note. From (2.13)(3c), it follows that no refinement of C(C') is needed whenever
Cisrooted at 7 € Z;. However, if the root belongsto Z;, j > 1, then arefinement
is needed to insure (1.4)(iii) holds with respect to I',. In the following, one will
therefore assume C € F; for somei > ko. O

Given chain C,u < v, and the vectors E,, E, (see (2.9)) one constructs a third
vector f(E,, E,), asfollows. Define

f(Eu, Ey)
_ [ 1B Uiy = T Bt [Bu - Tl B 1 ofw) > ) )
0 if ¢(u) =1(v).
Note. When no confusion can result, one writes this vector as f (u, v). O

One then verifies:;
LEMMA 2.15. If u < v and ¢(u) > ¢(v), then:

(i) f(u,v) € E(u,v);
(i) S Lf(u,v) = o LE,;
(iii) LE, < Lf(u,v).

The operation of forming f(u,v) can be iterated and thereby extended to any
element 4 = {u1 < --- < ui} € S(C). One defines the sequence of direction
vectors fy(u1, . .., u) recurrently asfollows:
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for uy <wuz fi(ur) = Ey,,  fo(ur,u2) = f(Euy, Ey,),
for k>3, fuli) 2 filugy...,wp) = f(Buy, fra(ua, ..., ug).
Theline, determined by fi (1), isdenoted L fi. (1) (see (1.5)).

(2.16)

Note. By the expression in (2.16), one means the following. By (2.15), when
k = 3 the vector fa(uz,u3) € X(uz,uz). So, for any a € A(uz) N Zy,, b €
A(u3) N IL(ug)a

fa(uz,u3) - Jo = fa(uz,u3) - Jp > fo(uz,us) - Je,
forany c ¢ (A(UZ) N IL(uz)) U (A(’LL3) ﬂIL(u3))‘

In particular, i(u1) ¢ (A(uz)ﬂIL(uz)) U (A(U3)mzb(u3)). The vector
f3(u1, u2, uz) isthen defined to equal

[f2(uz,u3) - (Jig(uz) = Jis(un)) 1 Bus + [Buy - Jiyup)] - f2(uz, us)

whenever {ul < uz < U3} € S(O). One verifies easily, that f3(U1,U2,U3) €
Y ({u1, u2,usz}). S0, it can be used to defineany f4 in the sameway, and so forth. O

One then observes:

LEMMA 217. IfC e Fand pp = {u1 < --- < uy} € §(C), then:

(i) fe(n) € B(p);
(i) sl Lfx(p) = o Lfa(ua);
(iii) Lf1(u1) < L fr(p).

Thelines L (1), Lfr—1(n — {ug}) arenow known to be parallel. But one does
not yet know their order with respect to <. Thisisgiven in the next lemma.

LEMMA 2.18. Letk > 2and p € S(C). Then Lf_1(s — {ur}) < Lfr(1).

To complete the study of the ordering of lines produced by the recurrence (2.16)
within a given chain C, one also needs to understand the relation among the lines
determined by vectorsof theform f (uy, ..., uy), fi(ua, ..., ux) if uj <wy,and

v(uf) = t(uy) for al j. Tothisend, the following property suffices.

LEMMA 2.19. For any k£ and e < k for which u,, < ue and ¢(u)) = ¢(ue), One
has

Lfg(ug, ... te1,up,Uer1, ... ug) < Lfp(ua, ... te 1, e, Uerd, . .. UE).

A corollary of (2.19) servesto simplify the work below (see (2.7)).
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LEMMA 2.20. Let * be the maximal sequencefor p. Then:

(1) up =mn;
(2) Lf(p) < Lf (")

3. Themaximal linein F;

To determine explicitly the polygon T, the analysis in Section 2 does not seem
sufficient. It appears necessary to find more precise expressionsfor avector whose
corresponding line is maximal with slope —b;/¢;. This section identifies, for each
i, achain C; for which Lf(p*(C;)) = max{Lf(u) : p € S(C),C € F;} (see
(3.6)).

Thus, let C' : A(1) C --- C A(n) belongto F; and pp = {u1 < -+ < ug} €
S(C). One needs to determine explicitly positive integers A1, . .., A, depending
upon the choice of 11, so that 35 1 A;E,; € X(u). Thus, they must satisfy the

equations:
A Ey,, - Jil(uk) = Ak-1Bu;_, Jil(ukfl) + AeBy, - Jil(u’ffl)
k
j=1

Solutions of (3.1) can be found by hand. To write them concisely, introduce the

NOTATION.

(1) Foreachj € [1, k — 1], set (5j,j+1 = Cil(uj+1)bi1(Uj) — Cil(uj)bil(uj+1)'
(2) Set B, = 1, andforeach j < k — 1, set (see (2.3)):

Bj = I o

qeA (ug)—A(uy)

Note. Although these quantities depend upon the chain C' and element ., of S(C),
the dependence will not be emphasized in the notation for the sake of simplicity.
Thiswill hopefully not lead to any confusion on the reader’s part. O
One notesthat ¢; ;.1 > O, for any ;» € S(C).
LEMMA 3.2. Let p = {u1 < --- < ug}. Then:
(1) Positiveintegral solutionsto (3.1) are given by

k-1 k-2

Me = [ Cisuy)» Me-1 =[] Cisguy) - Br-1- 0k 15
j=1 j=1

andforr > 2
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k
Ne—r = I cuw) | Bror 0k rkria

i=1
jFk—r,k—r+1

(2) Letéy, ..., &, bethe positive integers, determined by (2.16), such that
k
fr(p) =D& By
j=1

Thenthereexistsc > Osuchthat (A1,...,Ax) =c- (&1,...,&k).

Proof. Part (2) followsfrom asimpleanalysisof (i) therecurrence (2.16), which
showsthat fi () liesin theinterior of the cone (Ey,, ..., Ey, )=, and (ii) linear
algebra, using the fact that the & x k matrix whose (¢, j)th entry equals Ey, - Ji, ()
islower diagonal and has rank k. It sufficesto prove part (1).

Starting with the first equation in (1), one notes that A, 1, A, must satisfy the
eguation

Ak Br—1+ 0p—1% = Me—1C4; (uy_y)-

Solutionsare Ay = ¢, (y;, ), Ak—1 = Bg—1- k1, and therefore also,

k-1 k—2
e =1 iy ad 1= ] ciyuy) - Br-1 - Ok 1
j=1 j=1

Arguing by induction, one assumesthat for givenr — 1 > 1, the above expressions
for A\y_(r—1), Ak—(r—2), - - -, Ax give solutionsto thefirst » — 1 equations of (3.1).
Thus, one assumes that the integers

k
Ak—(r—1) = 11 Cir(uy) | * Br—(r—1) - Ok—(r—1) k—(r—1)+15
j;ﬁk'fr]#»:l:}k'fr#»Z
satisfy the r — 1 equations

k

MeBu, - Ty == Y NBu Ty, )
j=h—(r=1)

One now proceeds to show that this property extends upon replacing r» — 1 by r.
To do so, one solvesfor \,_, so that

k
j=k—r
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Equality holdsif )\, satisfiesthe following equation:

Ak_TEuk'fr : Jil(ukfr)

k—1
= AkE’LLk ' (le(uk) - Jil(uk,r)) - Z AJE’“] ’ Jil(ukfr)'
j=k—(r-1)
Thus,
>\k‘—7“ CZ.]_(’U,]C,T) ) H bq
qu,(uk—r)

=M | Ciy(up) - H by = Cir(up—y) - H by

ge A’ (ug) a€A(ug)
q#i1(ug_p)

r—1
SCACTERED DPVET R |
Jj=1 g€A(ug )
q#iy(up_p)

Replacing each A;,_; inthe sum (over j) by the expression one assumesto hold by
hypothesis, one observes, after some simplification left to the reader, that

k—r
H Cia(uj) © H by
j=1 €A/ (uy,)
q#i1(ug_p)
is a factor common to each term appearing in the right side of this eguation.
Factoring it out, the other factor isthen seen to equal:

k-1
(cil(uk)bil(uk—r) - Cil(uk—r)bil(ukr)) H Cir(uj)
j=k—r+1
r—1 k
= Cilupy) D Oh—jk—j+1 L] Ciu)- (3.3

j:l v=k—r+1
v#Ek—j k—j+1

One now rewrites the term (3.3) in the form E;;(l,(Lj — Rj), where

k—1
Lo = ¢y (uy)biy(uy—,) - H Ci(uj)>
j—k—r+1
k-1
bis (uy.) * H Cia(uy)>

j=k—r+1

RO = Cil(

Uk—r)
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andforeachj > 1

k
Lj = cCiy(ux_,) " Cig(ug—j) bil(uk—(j—l)) ’ H Cir(u)>
v=k—r+1
v#Ek—j,k—(j—1)
k
R; = Cig(up—r) "~ Cir(up_—1)) .bil(ukfj) ’ H Cig ()
v=k—r+1

v#Ek—j,k—(j—1)

One then observesthat for j = 0,1,...,r — 2, L;;1 = R;. It follows that (3.3)
telescopesto Lo — R,_1, whichis easily checked to equal

k
Okrkri1- | Cisuy):-
j=k—r+2
This shows that
k
MeorCistunyy 11 be= I ba- II it Ok rkria:
eA (ug_, €A (up) _g=1
1 (uk—r) qiil(ukfr) jEk—T+1
Thus, one concludes
k
Me—r = Br—p * Op—rp—ry1- H Ciy(uj)- O
j=1

j#Ek—rk—r+1

NOTATION. Givenpu = {u1 < --- < ux} and thesequence A1, . . . , A, produced
from (3.2), one defines

d

e

k
Fi(p) = Fy(ug, .. .,up) = D> NjBy,. (34)
j=1

Since Fy (1) and fx(p) point in the same direction, it follows that

F(ua, ..., ur) € B({u,...,ux}) and
LFy(ug, ... uk) = Lfe(ug, ..., uk). O

L eft to the reader isthe elementary proof, using Lemmas 2.13, 3.2, of thefollowing
formulae.

LEMMA 3.5. For each i € S(C), C € F,

M]_(Fk(ul,... ,uk)) = Fk(ul,...,uk) Ill(uk)
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k
= biyuy) - I 0o+ I ciauy)s

qeA’ (ug) j=2
Mz(Fk(ul, e ,uk)) = Fk(ul, e ,U,k) . Jll(uk)
k
= H by - H Cia(uj)- -
qeA (uy,) J=1

The following chains are the most important ones for this paper:

DEFINITION 3.6. Foreachi = 1,2,...,n, definethe chain C; asfollows:

3.6.1
An—i+j) ={i—j+1i—j5+2,....,n}, j=1,...,1. ( )

Set d(i) to denote the depth of C; (see (2.7.2)). The maximal sequence of C; is
denoted .* (i) and its elementswritten u(z),j = 1,...,d(i). One sets

F; € Fyy (1 (0))- (36.2)

LEMMA 3.7. For eachiand C € F;, LF; =max{Lf(u):pecS(C)}.

Proof. Let C' : A(1) C --- C A(n) be any chain other than C; in F;. Let
p={uy < - <ug} € S(C)and p* its maximal sequence (see (2.7.1)). The
Lemmafollows from (2.20) by showing LF;(pu*) < LF;.

By the definition of C;, thereexist j1 < j2 < -+ < j4, such that (see (2.3))

min A(j¢) = minA(uy) foradl £=1,...,d. (3.8

Sety; = {]1 <0< Jd} Evidently, v; € S(Cl)
The proof then has two parts. One shows

(A) LFy(p*) 2 LFy(vi);

Proof of (A). By (2.20) one knows u); = n. Thus, it follows that j; = n.
As a result, it is not difficult to see from the above definitions and (3.5) that
My (Fy(u™)) = My (Fa(vi)) - Now set

A(u*) = h (LEy(u")) = h (LFa(w3) -

One wants to show that A (x*) < 0.
By (3.2) and (3.4), there are numbers A\, A,k =1, ..., d such that

d
Fd(,u*) = Z AkEu;: and Fd(Vi) = Z A;cEjk'
k=1
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Thus,
1 d

A) = Tty P lB

- ;€|E]k|]

By (3.8), the formulae of (3.2), and a simple calculation, one sees easily that
the kth term in the sum on the right equals

(e - (Be(p") - |Eu;

where By(p*) = B = 1, (+); denotes a positive constant depending upon &
(whose expression is not needed in the following) and for k£ < d

Br(w )= I b ad Bi= [ b,
g€A' (n)—A(uy) g€A’ (n)—A(jx)
By definition,
uy Jk
| B => I b ad |E;|=> [ b
v=1 g€A(u}) v=1 q€A(j})
aiv (u}) a#iv (j),)

Thus,

uy, Jk
=> II b ad Bi-|E,|=> T[] b

v=1 qgeA’(n) v=1 ge A’ (n)
417“1}(”2) q#iv (i)

Bi(1") - | Eu;

One now observes that the definition of C; and (3.8) imply A(u;) C
A(je) fordl £=1,..., d. Onethen concludesthat the termin (3.9) is nonpositive
for each k& and is strictly negative if A(uj) < A(ji). Thus, A(x*) < 0. This
completesthe proof of part A. Part B follows from (2.20). O

Remark 3.10. This argument also shows (see (3.6.2)) that
LFy(p") = LE(u* () it p* = p(0). O

One next observes:

LEMMA 3.11. If i1 # i, satisfy the property that «(i1) = ¢(i2), then F}, = Fj,.
Proof. It sufficesto observethat d(i1) = d(i2) and A(uj(i1)) = A(u;(i2)) for
al¢=1,2,....Thatis, theelementsof thechainC;, resp. C;,, whoseindicesbelong
to the maximal sequence p.*(i1) resp. p*(i2), are the same. Using the procedure
described by Lemma 3.2, it follows that the vectors F; , F;, must therefore be
equal. O
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ThechainsCy,,¢ = 1,...,r will be neededin Section 6. Set (see (2.2), (3.6))

FO)2F,, (=1..r (3.12)

In particular, sinceky = 1, F(1) = e12,. p.
The next Lemmasummarizes useful propertiesof C,, and F'(¢) that follow from
Sections 2 and 3.

LEMMA 3.13. Foreach/ = 1,...,r:

(1) The maximal sequence p*(kg) contains ¢ elements, given by the integers
u;(kg) =n—kej1+1 5=1...,¢L

2 zl(u;‘ (ke)) = k¢—j+1and L(u;(kg)) =/¢—j+1lforeachj=1,... ¢

(3) The depth d(k,) of Cy, equals .

(4) Theslopeof LF(¢) equals —py and F(£) € [{Ja la € ngqu}]L.

4. Two useful propertiesof F(¢)

Applying Lemma 3.5 to each F'(¢), one obtains concise expressionsfor My F'(¢),
M, F (¢). However, one also needs convenient expressions for |F'(¢)| to construct
the polygon, determined by the lines LF(¢), and, in particular, to derive formulae
for its vertices.

Set B =IIt2by j=2...,n
a#j

LEMMA 4.1. Foreach¢ =1,...,r,

n l l -1 V4
1EO] = 16> ITer + IT cbw b - D2 B
j=2  w=lazl o=l \ w1 FE€Tv—{ko}

-1
+Ler b D0 Bo
j=1

v>ko+1

Remark 4.2. (1) If Z, = {k, }, then the factor consisting of the sum of 3 values
is understood to be zero.

(2) Since ¢ isfixed in the argument below, a simpler notation can be used. The
elements of the maximal indexing sequence .* (k,) will bewritten, in thefollowing
proof only, as u; (vs. u(ke)). It is useful to observe that (see (2.3))

A (ug) ={ke+Lk+2,...,n} and

Al(ujp1) — Aluy) = _ : i — (4.3)
1) = Alug) =Zo—j —{ke—5}, 1<j<t-1
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Proof of (4.1). By (3.13), d(k;) = ¢. By (3.2), (3.4), the positive integers
Aj = Aj(£), for which F(¢) = Z?:l Aj(£) By, are given asfollows

-1 -2
0 = 1T ciruy), Me-1(€) = I Cisguy) - Be-1- 0e-105
l et
andforr > 2
¢
Ae—r(€) = H Ciy(uy) * By 0g—rp—rs1-

jHEL— r Z r+1

It follows that the contribution to | £'(£)| from \,(¢)|E,, | equals

-1
Hcll u] ZHb Hcilu] Hb +bllu€ Z 6Z
1=1q#i j=1 j=2 €A’ (ug)
Using the expressions for B;, Bj1, given in Section 3 (with the chain (3.6.1)
andi = k), onenotesthat j < ¢implies1 ¢ A(u;) and

Uuj
BiE = I b, I b= ¥ &
qge A (ug)—A(uj) t=1 weA(uj) ieA(uy)
wi (uj)

One then observes by a simple calculation that the term

H Cia(uy) Zl(ul) ’ Z Bu

k#] weA(up—_1)

appearstwicein the expressionfor A\y_1(¢)|E,, |+ Ae(£)|Ey, |, but with opposite
signs. Thus, a certain amount of cancellation occurs. The expression obtained for
the contribution to | F(¢)| from the sum of the (¢ — 1) and /th terms equal's (after
some rearranging for consistency with the general pattern to be described below)
the sum of three terms a, (1) + ¢ (2) + c(3) where

n l l
ap(l) = Hbq Hcil(u;‘) + H Cir(uj) | >
q=2 =1 a7t
AL J#EL-1

H Ciy( (uj) zl ug) * E : Btu

teA" (ug)—Alug-1)

J#

H Ci(uj) Diy(ug_s) - Z Bt
!

o te A (ug_1)
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One now repeats this reasoning with consecutive pairs Ay_2.—1(¢)|Ey,_,._,|
Ai—2¢(0)|Ey,_,. |, € € [1,£/2]NN, with the convention that aterm with nonpositive

index equals 0. Assuming for themoment that / —2e — 1 > 1, one setst = £ — 2e,
and proceeds as above. One observesthat the term

H Ciy( (uj) zl(ut) : Z /311

= q€A(ug—1)
appearstwicein the expressionfor \;_1(¢)|Ey, .|+ A\¢(£)|Ey, |, but with opposite
signs. So again, some cancellation of terms occurs. One concludes, after some
straightforward calculation, |eft to the reader, that ¢ > 2 implies:

A 10| Bu,_y| + MO Eu,| = 04(D) + 04(2) + a(3),

where

(1) = H bq H Ciy(u;) T H Cir(uj) | »

J# 1 J#

o (2) = H Ciy(uy) " Dis(ur) ° Z B,

;2 weA (ut)—A(ug_1)
l
@) = I caw) bawe-n: D B
jg;il weA (ug—1)
- H Ciy(uj) 21 ugp1) Z Pu-
J#;l-l weA(ut)

The term to the right of the minus sign in «;(3) is due to the presence of factors
d.,» in both of the coefficients \;_2._1(£), Ap—2.(¢) sincee > 1.

If ¢ < 1, then the only contribution to consider occurs for ¢ = 1. Here,
>\1(€)|Eul| = 041(1) + a1(2) + 041(3) where

n 14
1) = H bq : H Cir(uj)s H Cir(uj) zl(ul) : Z B,

q=2 j#1 j#1 we A (uq)
14
- H Cil(u]-) : 7,1 u2 : Z /611}
J#2 weA(u1)
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SetT ={l{—2e:ec[0,¢/2]NN, and ¢ —2e > 1}. So,1 € T iff £isodd, but
2 isthe smallest element of T' if £ iseven. Itlssmpletoseethat

n [
> () = 16> Il ew-

teT’ j=2 v=1 g;i
Thistakes care of the first term in the asserted formulafor | F'(¢)].
To write succinctly the expressions for the other sums, one sets ug = u_1 =
bo = 0, and A(up) = A(u—1) = 0. One determines the sums of the a;(2), a;(3),
using the above expressions and a straightforward cal culation. One finds:

Z (2 Z H Ci1(uj) 11 ug) Z Buw;

teT teT j#t weA (ut)—A(ug—1)
PG H Cinlug) *i(ue-) > Bu-
ter tel j£t-1 wEA (ug—1)—Alug—z)

Using (3.13)(2), (4.3), and the formula (needed when ¢ = 2)

H cil(uj) = Cky_1Cky_5 """ Cky,
j#1

one deduces the formula in the statement of the Lemma. O

A relation of importance, needed in the proof of the Theorem, exists between
the vectors F'(¢) and F'(¢ + 1) and indeed, more generally, between the vectors
Fy(ua,...,ux) and Fy_1(ug,...,ug) for {us < --- <u} € §(C),C € F;, and
i > ko. Onefirst observesthat (3.13)(1) implies:

wi(ke) = by (keyr) foro=1,....6 £=1,....r—1 (4.4)

An elementary argument, using (3.2) and (4.4), now shows

LEMMA 4.5.
(1) ForeachZ e [1,r — 1],

F(ﬁ + 1) = Ciy(u (k1)) F(ﬁ) + )\1(€ + 1)Eu’1‘(ke+1)'

(2 Foranyi > ko, any C € Fj, and {ug < --- < ui} € S(C), one has (see
(3.4)

Fi(ug, ... ug) = ciyu Fe-1(u2, - -, ug) + A By,
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One now defines the polygon

I* =0 (ﬂ LYF)N Ri) . (4.6)

£=1

5. Determination of the polygon I'*

Thework donein earlier sectionsis rewarded here. It becomes a simple matter to
determineI"*. There are two steps. Each is done rather easily. First, one showsthat
the lines LF(¢) and LF (¢ + 1) intersect in the first quadrant. Then, one shows
that the polygon determined by threelines LF (¢), LF (¢ +1), LF (£ + 2) hasthree
bounded faces. This |eads to a complete description of I'*, givenin (5.4).

Set Xy =LF({)NLF(¢(+1),¢=212,...,r—1

LEMMA 5.1 Foreachf=1,...,r — 1, X, = (20, 1/b;, 55 1/c)).

Proof. Oneusesthe expressionsgivenby Lemma4.5. By (2.13)(3d), E: k. ) -
Ji, = 0. By (3.13)(4), Mo (F(£)) = F(€) - Ji,_,, ¢ > 2. Thus, |tfoIIowsthat
Mi(F(t+1) = F(¢+1)- Iy,,,
= Cis(ug (ko)) M1(E () + A0+ D) Bz (key) * L
Ma(F(€+1)) = F(€+1) - Tk, = Cig(ug (kepr)) M2(F'(£)).-
Further, (4.5) evidently implies:
[E(€ 4 D) = Cir(uy (kesn)) [F (O] + A0l + 1) By

#\jt ng the fact that Eu;(kz 1) = Chpyr ksl ns and the above eguations, one sees

1 (keg1)) T (keg1) |

[F(0)]  Ma(F(4)) ‘
[F(U+1)] Ma(F(t+1) | [Bugenl Zn: 1
M (F(¢)) Ma(F(¢)) ‘ By kpen)  Thesa bj

Mi(F(£+1)) Ma(F(¢+1))

Similarly, onefinds s2(Xy) = v(LF(¢)) — pes1(Xr). Oneevaluatesv(LF'(£)),
using (3.5), (4.1), (4.3). Thus, elementary calculation shows

¢
bkv 1 b, 1
: ) =
Z vzzl ko (jezvz_{kv} bj > Che (quil bq>

Subtracting pgs1( g), yields
‘

raert( T )

=1 e \jers ko)

Sl(Xg) =
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L)

\ LF(£t4)

LF(a)

Figure 1.

Todeducetheexpression, asserted intheLemma, onewrites1/b; = ¢;/b;-1/c; and
usesthe equations, nonvacuousfor eachv with |Z,,| > 1, by, /ck, = bg,+1/Ck,+1 =
oo = b,y 1/Ck, 1 INthisway, one seesthat by, /ck, - 1/b; = 1/c; for each
j € I, — {ky}. Adding together all the reciprocals of the c,. yields the formulafor
Sz(Xi). O

Remark 5.2. Usingtheformulae of (5.1) oneseesimmediately that 2(LF(1))
2j=11/bj, and w(LF(r)) = 37 11/c;.

ol

From Lemma5.1, one now concludes
COROLLARY 53. Foreach?¢=1,...,r—2, s1(X)) — s1(Xpy1) > 0.

By (5.1) and (5.3), one sees that the polygon determined by the lines LF (¢),
LF(¢+1), LF(£+2), must havethree segmentsof slopes—p; > —ppi1 > —peg2.
If thiswere not the case, then it would necessarily follow that s1(Xy) — s1(Xpy1) <
0, asindicated by the diagram above.

A simple induction now shows

COROLLARY 5.4. ThepolygonI'*, determined by ther linesLF(1),...,LF(r),
has r bounded segments of slopes —p1 > —p2 > --- > —p,. It hasr — 1 vertices
in (0,00)? at the pointsvy = A4, ..., v._1 = X,_1, and intercepts the axes at the
pointsvg = (h(LF(1)),0), v, = (0,v(LF(r))).

Remark 5.5. Evidently, the formulae givenin (5.1), (5.2) for the vertices of I**
reduce to those given in the Introduction when » = n. O
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6. Proof of the Theorem

Following the outline indicated in Section 1, there are two parts to deriving the
asymptotics for N (1, t2). One first constructs a collection of cones 7~ satisfying
(1.4)(i-iii). The construction will then imply that I'(7) = I'*, described by (5.4).
One then shows that (1.7.1), (1.7.2) are also satisfied.

One now fixes an arbitrary chain C' € F;,i > k», and then shows how to refine
the associated coneC(C') (see(2.9)) sothat (1.4)(i—ii) hold for each cone produced
by the refinement. To describe the procedure the following is useful.

NOTATIONS. (1) For eachi = 1,...,rset j('l) = {Jki, Jki+l7 ceey JkiJrl_l}.
(2) Let d denote the depth of the chain C'. Let k4, . .., k4 denote the parameters

of C defined in (2.7.2). If £ = (g1,...,9n) iSany closed simplicia subcone of

C(O), st VoK ={1,...,n} andforeachw = 1,...,d — 1 set (see (1.4), (2.10))

VK = {5 1 Ka(g;) C [T (Ka), -, T (Kwt1)]-

LEMMA 6.1. Given i > kp,C € F;, and k € [2,d], there exists a simplicial
decompositionC(C) = >~ C;(k), so that for each j thefollowing propertiesare
satisfied for the cone C; (k) = (g1(5), - - » gn(j))x., :

(6.1.1) For eache € V; ;Cj(k), thereexistsd’ < dand {u1 < up < --- <
Udl} S S(O), such that ge(j) = fd/(ul,uz, e ,ud/).

(6.1.2) For each e ¢ Vy_xC;(k), there exists a unique u € Uiy Uy(C) (see
(2.7.2)) suchthat g.(j) = E,.

(6.1.3)  Neevy_ic; k) Kalge(s)) # 0.

Proof. Onefirst refinesC(C') into asum of cones C1(2), C2(2), asfollows. By
(2.19), f(ug_1(C),uz(C)) liesin the interior of the face (Ey- (c), Eus(c)) Of
C(C). Onethen forms the two subcones

C1(2) = (B1,-- - Bys_ () Buz(0)-1, [ (ug 1(C), ug(0))),

C12(2) = (Ela sy By (O)-1s f(u;;fl(c)a U;(O)), Eu2_1(0)+la s aEu:t(C)>

d—

Remark. Therefinement C(C) = C1(2) + C2(2) isreferred to in the following
asthesplitting of C(C) alongtheray (f(u}j_;(C),u};(C)))r... Thiscan be defined
for any two dimensional cone with respect to a vector contained in itsinterior. O

For simplicity, rewrite the 1-skeletal vectors of these two cones, exhibited above,
so that C;(2) = (g1(4),---,9n(4)),7 = 1,2. One now repeats the above proce-
dure with any pair of vectors g/ (j), g.(j) satisfying the properties (see (2.10))
Ko(ger (7)) C [T (ka—1)] and Ka(ge(j)) C [T (kq)], if these exist. Thet is, one
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then refines C;(2) by splitting it along theray (f (ge(4), ge (7)) )=~ Thisisalways
permissible by (2.15). If no such vectors exist, then one has arrived at the prop-
ety Neev,_,c;(2) K2(9e () # (). That is, one has completely separated the 1-
skeleton direction vectors ¢ for which (&) C [J (k4—1)] from those for which
Ka(&) C [T (ra)l-

If however two such vectors do exist then the above refinement has reduced by
1 the number of 1-skeleton vectors v in the cone C;(2) that liesin {v : KC2(v) C
[T (ka-1)]} U{v : Ka(v) C [T (k4)]}-

One now repeats, if needed, this procedure. After finitely many steps one will
arrive at a decomposition C(C') = E;.”:Zl C;(2) into smplicial subconesC;(2) =
(91(7),---,9n(y)), such that the following properties will be satisfied for each j,
ande € Vd,2Cj(2) :

(1) Thereexistuy € Uy—1(C),u2 € Uy(C) suchthat either g.(j) = f2(u1, u2), or
9e(7) = f1(ua), or ge(j) = fi(u2)-
) ﬂeevd,zcj(z) K2(ge(4)) # 0.

Now, assuming the existence of arefinement C(C) = Zﬁ’“{l Cj(k —1), satis-
fying (6.1.1)—(6.1.3) for agiven k suchthat k — 1 > 2, one proceedsto refine each

Ci(k —1).
By hypothesis, given e’ ¢ Vy_j41Cj(k — 1) and e € Vy_11Cj(k — 1) there
exist:

(i) anindex u € Y% u,,(C), for which g, (j) = Ey;
(i) anelement {ug < --- < ug } € S(C) suchthat g.(j) = far (u1,...,ug).

One observes that « < wuy and its value depends upon the vector g.(j). By
definition, it follows that {u < u1 < --- < ug} € S(C). So, one can form the
vector fgri1(u,u1,...,uqg). One then separates g () from the vector g.(j) =
fa(ug, ..., uqz), by splitingC;(k — 1) dongtheray (fo41(u, u1,u2, ..., uq))r .,
This is possible since fy1(u,u1,u2,...,uqg) € Interior (g (4), ge( )R by
(2.16). Arguing as in the case k = 2, after finitely many steps of this procedure,
one arrives at a decomposition C(C) = Eé”’“ C;(k) such that each C; (k) satisfies
the properties (6.1.1)—6.1.3) with k£ — 1 repl aced everywhereby k.

Once k = d, one has achieved a decomposition of C(C) such that each sim-
plicial cone in the refinement satisfies (1.4)(i—ii). Moreover, each vector appear-
ing in the 1-skeleton of any cone must be of the form f.(uq,...,u.) for some
{ur < -+ <wue} € §(C). This completes the proof of Lemma6.1. O

Thediscussion in Sections 1-5 is now essentially summarized by

THEOREM 6.2. Let 7 denote the set of all cones produced by (6.1) for all chains
C € F;,i > ko. Thefollowing properties are satisfied.
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(1) T satisfies (1.4)(i—ii).

(2) Let Sk denote the set of 1-skeletal vectors of the cones belonging to 7. For
each ¢ € Sk, there exists an integer © > k», a chain C € F;, and element
p € S(C) containing, say, k elementssuchthat & = fi.(1).

(3) ThepolygonT'(T') equalsthe polygon I'* (see (4.6)). Its vertices are therefore
the points vy, defined in (5.4).

(4 T(T) = T(P) = I (see (1.1)), and I(s)/s15- has a simple pole along each
line containing a face of I'. In particular, for each ¢ = 1,...,r — 1, exactly
two lines, LF'(¢ — 1), LF(¢), contain the vertex v,.

(5) LF(1) resp. LF(r) isthe only polar component of I(s) containing the vertex
vo resp. vy.

Proof. (6.1) proves (1), (2). Using the chainsCy,,¢ = 1,...,r, definedin Sec-
tion 3 (see (3.6)), one forms the cones C(Cy, ). The cones belonging to 7~ include
those that refine each C(Cy,). It follows that F'(¢) will be a 1-skeletal vector of
some cone that refines C(Cy, ), for each £. Thus, the polygon ['(T) must equal T'*.
This proves (3). (4) follows from (1.6) and the fact that if £ is avector other than
some F'(¢) such that ¢ and F'(¢) belong to the 1-skeleton of the same element of
T, then either L¢ is not parallel to LF'(¢) or it is but, in that case, L{ < LF ()
follows from the ordering properties established in Sections 2 and 3. Thisimplies
that the order of the pole along each LF'(¢) equals 1. (5) followsfrom (3), (4). O

PROOF OF MAIN THEOREM. To finish the Theorem'’s proof, it sufficesto show
that 7 satisfies(1.7.1), (1.7.2). Todo this, oneidentifies, for each / > 2, an element
of 7 which containsboth F'(¢ — 1) and F'(¢).

Using (2.9), onewritesC(Cy,) = (F1, . . ., £,), where the subscripts of the £
are determined by setting 7 = &, in (3.6.1). Onenotesthat £,, = F'(1). Further, by
(3.13), d(¢) = ¢. Thus, (4.4) implies

* def & * *
ug_1(Cr,) = wp_a(ke) = ug_p(ke-1) = -+ = ui(k2).
Thus, by setting ¢ = 1 in the statement of (4.5)(1), one sees that F'(2) isin the
interior of (F'(1), Ey:  (x,))r,- One now refines C(Cy,) by splitting along the ray

-1

F(2). Thus, C(Cy,) = C1 + C2, where one chooses the indexing so that
Co=(E1,..., By (k)-1,F(2): Buz_ (kp)+15- - F(D)ry-

(4.4) alsoimpliesuj (k3) = uj_,(k¢). Thus, (4.5) with £ = 2impliesthat the vector

F(3) liesintheinterior of thesubcone (E,: k), #'(2))r.. Thus, onecan split C;

along theray F'(3) to give C, = C3 + Cj4, with indexing chosen so that

Cs= (Ela s aEuz_z(k[)fla F(3)7 Euz_z(k;g)+la s 7F(2)a s 7F(1)>R+'
Proceeding inductively, it is now clear that one can assume the existence of

acone Cy ) that contains F/(¢ — 1), F(£ — 2),..., F(1) and Bz, inits 1-
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skeleton. Using (4.4), (4.5) as above, one can then split thisconealong F'(¢ — 1) to
form anew cone Cy,_1) that contains F'(¢), F'(¢ — 1),..., F(1) inits 1-skeleton.
Evidently, C5(,_1y also belongsto 7. Thus, 7" also satisfies (1.7.1), (1.7.2). O

7. An example

Here are some details of an example that should help in following the general
discussion. Part A will specify a distribution of intervals Z, that will be assumed
in the other parts.

(A) Setn = 7andr = 3. Thismeansthat three distinct values p1 < p2 < p3 exist
among theratios b; /c;. Supposethat k1 = 1, ky = 3, k3 = 6. Thisdeterminesthe
intervals (see (2.2)) 71 = [1,2], Z, = [3,5], Z3 = [6, 7].

(B) Let C bethefollowing chain rooted at 5:

A(1) = {5} A(2) = {57} A(3) = {3,577}
A(4) ={3,5,6,7} A(5) =1{2,3,5,6,7}
A(6) ={2,3,4,5,6,7} A(7)={1,2,3,4,56,7}.
This means that i1(1) = i1(2) = 5 € Iy, 1(3) = i1(4) = 3 € Iy, i1(5) =
i1(6) = 2 € Iy, and i1(7) = 1 € Z;. Thus, «(j) = 2for j = 1,2, 3,4, and

t(j) = 1for j = 5,6,7. Further, the parameters «;, u}(C) (see (2.7.2)) are as
follows.

k1=2 ui(C) =4 k2=1 wu(C)=T.

So, the depth equals 2, and the partition of [1, 7] associated to the maximal sequence
of C'isgivenby U1(C) = [1,4],Uz(C) = [5,7].

The set S(C') consists of all sets {ug < up} suchthat uy € [1,4],u2 € [5,7].
Givenp = {(u1 = 2) < (u2 = 6)} € S(C), oneseesthat p* = {(u] = 4) <
(u3 = 7)}. A straightforward calculation shows that Lf(2,6) < Lf(2,7) <
Lf(4,7) (see (2.20)). Moreover, one sees that X (i) = [Js, Jo] - and X(u*) =
[Js, J3, J2, J1] .

(C) ThechainCgs (see(3.6.1)) equals:

A(1) = {6} A(2) = {6,7} A3) = {5,6,7}
A(4) ={4,56,7  A(5) =1{3,4,5,6,7}
A(6) = {2,3,4,5,6,7} A(7) ={1,2,3,4,5,6,7}.

The parameters (2.7.2) are as follows:

k1 =3 wuj(6) =2 k2 =2 wuy(6) =05 k3=1 w3(6)=7.
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Thus, the depth of Ce is d(6) = 3. The sequence {u} (6)}, definedin (3.6), isgiven
by {u3(6) = 2, u5(6) =5, u3(6) = 7}. Thus, (3.6.2) meansthat s = F3(2,5,7).
One also shows (left to reader) that Fg = F7.

(D) Here, one has incorporated the notation of Section 3 to help the reader in
following the proof in general. To give an explicit expression for F'(3) = Fg (see
(3.12)), one notes that Fy is alinear combination of E», Es, E, constructed from
Ce. Thus (see (2.8), (2.9)),

Fg = A\1eg7 + A2e3a567 + A3€1234567-

The expressionsfor the coefficients, determined by (3.2), are asfollows. Using the
element {2 < 5 < 7} € S(Cs), one seesthat

M=y Bi-diz=ci- [ b (cumbiue — cu@bis)
i€{2,3,....7
JGJ'{GE{GJ} !

5
= c1- ] b - (cabs — csbs),
j=2

N =i Bardaz=co [ b (cumbus) — cusbum)
ey

= ¢g- by (c1b3 — c3b1),

A3 = Ciy(2) - Ciy(5) = €3 Co.

The idea of the main calculation in the proof of Lemma 3.2 can be seen in the
derivation of the expression for A1, given these expressionsfor A2, A3. One looks
for \1 so that

Mi(es,7 - J6) = A3 (€123456,7 (J1— J6)) — A2(e34567 J6)-
Using the definitions of the vectors e,., and the above expressions for Ao, Az, this
equation holdsiiff

A1 cg- by = c3c6 [Cl(bzbgb4b5bsb7) — Ce(blbzbgb4b5b7)]
— [ceba(c1bs — cabi)] - [c6 - (b3babsbr)]
= c6(babababsbr) [(c1becs — cebicz) + (cecabr — cec1bs)]

= c1¢6(b2b3babsby) (cabe — cebs),
so, dividi ng out by cgby gives Al=c1- (bzbgb4b5) . 5172, as claimed.

Using the general notation from Section 3, oneseesthat u1 = 2, u» = 5,u3z = 7,
andiq(u1) = 6,41(u2) = 3,i1(uz) = 1. Onethen canrewritetheabove expressions
as follows (using the particular ordering of terms from Section 3):

Meciuy s [T bg=ciwy 1T b+ (Lo = Ro) + (L1 = Ra)],

geA’ (u1) q€A (ug)
q#iq(ug)
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where

Lo = Cil(U3)bi1(ul) Ci1(uz)7 RO = Cil(ul) bil(U3)Ci1(uz)7

L1 = ¢y (ug) Cis(ua) Vis(us)s B = Ciy(uy) Cin(us) Pin (ur) -
One observes that the cancellation of the term c3cgby has occurred because Ry =
L.
(E) An example of the refinement procedure in Section 6 is now given for the
cone C(Cs), corresponding to the chain C3 and value k; = 3. Its elements are
given by (3.6.1) setting ¢ = 3,n = 7. The maximal sequence of the chain is easily
seen to equal {u3(3) = 5,u5(3) = 7}. Thus, F(3) = f(5,7). One starts with
C(Cg) = (E]_, C. ,E7), where, by (210), E1 = ezand

E> =e34, Ez=e345 Fa=-e3456, Fs5=e34567,

Ee =e234567, FE7=e€1234567
The refinements need to separate Eg, E7 from the other 5 vectors since E7 €
[J1, J2]*, Es € [Jo]*, but the other 5 vectors lie in [J3, Ja, Js|*. Thus, one first
splitsalong the ray in the direction of f(5,7) € [J1, J2]* (the precise definition of
which is given in Section 6). This produces the subcones

01(2) = (Ela s 3E67 f(57 7)> and

C2(2) = <E17 T 7E47 f(57 7)7 E67 E7>7
so that C(C3) = C1(2) + C2(2). One next splits C1(2) aong the ray f(5,6) €
[J2, J3, Ja, Js]L to give C1(2) = C3(2) + C4(2), where

03(2) = (Ela s 3E57 f(57 6)3 f(53 7)) and

C4(2) = <E17 s 7E47 f(57 6)7 E67 f(57 7)>
No further refinement of C3(2) is needed since J> is common to the K,(£),¢ a
1-skeletal vector of C3(2). However, Es still appearsin C4(2), so one must further
refine, by splitting C4(2) dlongtheray inthedirectionof f(4,6) € [J2, J3, Ja, Jo|*.
Thisgives Cy4(2) = C5(2) + Cs(2), where

C5(2) = <E17 E27 E37 E47 f(57 6)7 f(47 6)7 f(57 7)>7

06(2) = (Ela E», E3, f(47 6)7 f(57 6)a Eg, f(57 7)>

The pattern continues. Each cone C;.1(2) needs no further refinement, but the

cone Cy;(2) doesfor k = 3,4,5, since E continues to appear in its 1-skeleton.
The last coneto berefined is C10(2) = C11(2) + C12(2), where

C111(2) = (El,f(Z, 6)7f(37 6)7f(47 6)7f(57 6)7f(17 6)7f(57 7)>7
012(2) = (f(lv 6)vf(2v 6)7f(37 6)vf(4v 6)7f(57 6)3E67f(57 7)>
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Therefinement C1(2) = Y%_; Co_1(2) + C12(2) satisfies all the requirements
of Lemma 6.1. One proceeds analogously for the cone C(2). One then observes
that the maximal line LF'(2) = Lf(5,7) appears exactly once in each of these
Seven Cones.

8. An estimatefor an error term

Define Q(tl,tz) = {Pl < tl} N {Pz < tz} N [1, oo)” Let V(tl,tz) denote its
volume. If (t1,t2) € R(v;) is aregular value of (P1, P2)jg ), it follows, in
particular, that V' (¢1,t2) is a Méllin transform of 1(s)/s1s2. The nonvanishing
condition (1.2), established in the course of proving the Theorem, implies that
V (1, t2) shares the same dominant asymptotic with N (¢1, t2).

Having thereby found the dominant asymptotic for V' (1, t2) for any n, one can
use ageneral description in [Dav] for the difference | N (t1,t2) — V (t1,t2)] to give
an explicit bound for this error term inside each R o (v;). Thisis possibleif (¢1, t2)
is aregular value for (P1, P2)|o o, Which will be assumed below. The estimate
for this difference |sexpressed in terms of the maximum of volumes of projections
of Q(t1,t2) onto al lower dimensional coordinate planes. Since these are aso
determined by additive polynomials, the Theorem applies to the projections and
enables the bound for the error to be given precisely.

Let V3 (21, t2) denote the volume of the projection of {2(#1, ¢2) onto the hyper-
planez; = 0, foreachj =1,...,n. Foreachi =0,1,...,n, set

Vit(ta, t2) = max{Vijy(ta,t2) 15 = L,...,n}lg(y,)-
Itisnot difficult to seethat V;*(¢1, t2) givesthelargest contribution to the error term
estimate of [Dav] inside any region R, (v;) (or even along any curve asymptotic
to OR(v;)) for each i. Thus, an asymptotic for each V;* givesthe true order of the
estimate for the error term found by Davenport. To illustrate the point, this will
now be donewhenn = 3. Similar analysisis possible for general n, but the actual

writing down of the expressions becomes a little intricate. Restricting attention to
the sets R (v;) astheregionsfor (¢1,t2), one has precisely:

THEOREM 8.2.

[N (t1,t2) — V(t1,t2)]
_ O(max{tl/bl+1/b2 tl/b1+1/b3 tl/b2+1/b3}) (tl tZ) e Roo('UO)
O(max{ty 5/, /"% /70 (t1,12) € Roo(v),
= O(max{ty/"2/ 2 1/P2el/ e 11/P2/ 20y (1) 45) € Roo(v2),
O(

max{t1/01+1/02 tl/01+1/03 t1/02+1/03}) (tl,tz) E ROO(’U3)_
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CONCULDING REMARKS. (1) In the analytic number theory literature, one can
find afew articlesthat have studied the representation of integers by sums of mixed
powers (see [F], [H], [Va] for particular examples). These papers are in general
devoted to the behavior of the counts

N(t)=#meN': P(m) =t} ast— oo,

when P isan additive polynomial of the type studied here. Oneis either interested
in a precise asymptotic or a lower bound that grows with ¢. Such problems are
evidently a natural generalization of Waring's problem, in which one allows the
exponentsto differ.

There is however, another type of extension of Waring's problem which has
not been addressed so far in the literature, and which appears quite difficult. This
asks for the number of simultaneous representations of vectors of integers by
vectors of additive polynomials. In particular, given two additive polynomials
in n variables, one can inquire about the asymptotic behavior of #{P1 = n1} N
{P2 = n2}NN", (n1,n2) — (00, 00). The Theorem provedin this paper givesnon-
trivial upper bounds to these countsinside theregions R (v;), 1 = 1,...,n — 1.
More precisely, the Theorem immediately impliesthat for any R (v;) there exists
d > O such that

#{P]_ = nl} N {Pz = nz} N N"?

= O(n% "m0 (ng,m2) — (00,00), (n1,12) € Roo(vy).

On the other hand, the asymptotic derived in R (vg) resp. R(vy,) isasimple conse-
guence of the weighted homogeneity of P; resp. P».

In principle, avaluefor § can be given explicitly and shown to be smaller than
1. To increase 6 to 1 would be interesting to establish and natural to expect. To
achievethis, onewill need to understand more precisely the behavior of the singular
integral and series determined by Py, P;. It does not seem unreasonable to believe
that the geometric analysisin this paper will be needed for such improvements.

On the other hand, going from good upper bounds to good lower bounds or
precise asymptotics is not possible to accomplish by the geometric methods used
here. A good deal of much finer arithmetic analysis would be required, especially
in the case of two additive polynomials with no relation between their exponents.

(2) It appearsreasonableto expect that one might be ableto exploit the convexity
of the polyhedra at infinity to verify the Conjecture, described in the Introduction,
for any pair of polynomials, each nondegenerate with respect to its polyhedron at
infinity. However, so far this seems to be difficult to do.

(3) The subject addressed in this paper is a particular case of the more general
problem of the behavior of an integral over the smooth fibers of an algebraic or
analytic morphism. Recent work [Li-5] on thisproblemfor pairsof functionsintwo
variables should be helpful in studying the conjecture, stated in the Introduction,
for any pair of hypoelliptic polynomials on R?.
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Addendum: Details of proofs of lemmasin Section 2

PROOF OF LEMMA 2.15.

Proof of (i). Onefirst checksthat f(u,v)-J, = f(u,v)-Jy foranya € A(u) N
T,(u),b € A(v) NZ,(,). Todo so, onenotesthat if a # i1(u) anda € A(u) NZ,(),
then there exists d < e such that iy(v) = 41(u) andi.(v) = a. Thus

v (Ja — iy 71;[ big(v) * (Ciy(v)Vic(v) = Cic(v)big(v)) = O
g#d,e

Hence, f(u,v) - J, isconstant for a € A(u) N Z,,). Further, if b € A(v) N Z,,,
then b ¢ A(u). If this were not so, then there would exist d such that b = i,4(u).
Clearly, d # 1since(u) > ¢(v). Moreover

Ey - (I — Jiy(w) = Cig(u) * Ciglu H biy(u) * (Pu(u) = Puw)) > 0.
a£ld

But this inequality violates (2.13)(3d). Thus, one concludes that E,, - J, = O for
any b € A(v) NZ,,). Itthenfollowsthat f(u,v) - Jp = f(u,v) - Jj,(, foral such
b. One concludes

flu,v) - Jo = fu,v) - Jp forany a € A(u) NZ,),b € A(v) NI,y
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What needs to be verified next is that for any ¢ ¢ (A(u) mIL(u)) U
(A(v) mIL(U)) , one has

flu,v) - J. < flu,v)-J. forany e € (A(u) ﬂIL(u)) U (A(v) ﬂIL(v)) .

Thisisclear if ¢ € A(u) — Z,(w) becauseinthat case E,, - J. < E, - Jis(w) and
Ey - J. < Ey - Jiyv)- Supposethat ¢ € A(v) — (A(u) UZ,,)). Thenc ¢ A(u)
implies £, - J. = 0 which implies the inequality to be proved. This completesthe
proof of (i).

Proof of (ii). One uses (2.13)(3b,c) to conclude

Ma(f(u,v)) = f(u,v) - Lija)
= (Ey - Jiyw) (Bu - Liyw) — (B - Jiywy) (By - Lijw))
+(Bu - Jiyw)) (v - L)),
Mo(f(u,v)) = flu,v) - iy = f(u,0) - Jiyw)
= (B - Jiyw) (Bo - Jiyv))-

Thisimplies

Mi(f(u,0)) _ BuLis

Ma(f(u,v)) By Jy)

[(Eu Jisw) (v - Liyw)) — (By - Jiyu)) (B - Iz'l(u)):|

_l’_

Sinceiq(u) = iq(v) for somed > 1, asimple calculation showsthat the bracketed
term equals 0. This shows (ii).

Proof of (iii). One again usesthefact that v < v impliesii(u) € A(v). Thus
Ml(Eu) =Ey - Izl(u)
Since Mi(E,) = E, - I;,) by construction, it follows that M;(f(u,v)) =
aMi(E,) + BM1(E,), where the positive numbers «, § are given in (2.14). A
simple calculation then shows
h(Lf(EmEv)) - h(LEu) = (+)[h(LEU) - h’(LEu)]u

where (+) indicates a positive number. By (2.13)(3e), the differenceis positive. O
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PROOF OF LEMMA 2.17.

Proof of (i). Set 4/ = {u2 < --- < wug}. By induction, one may assume that
fe—1(p') € 2(i'), and fx_1(p') isalinear combination of E,,, B, . . ., E,, With
positive integer coefficients. Define «y,, G5, by the formulae

ar = fr 1) - (Jiyue) = Jisun) = - = fre1(t) - (Tiyque) = Jin(ua))»
Br = fi(uw1) - Jij(uy)- (1)

Evidently, these two integers are positive. The expression on the second line in
(2.16) is precisely the assertion that

Te(p) = o fr(ug) + Br fe—1(n').
Exactly asin the proof of (2.15)(i), one shows fi (i) € X (u).

Proof of (ii). The proof of (2.15)(ii) extends straightforwardly to show that for
eachk > 2,

gl Lfk(u) =4d Lfl(ul) = _bil(ul)/cil(ul)‘
Proof of (iii). Sinceiq(u1) € A(ug), forany £ > 1, onehas
M(fr(p)) = axMa(f(ua)) + BeMa(fre-a(p"))-
A straightforward calculation now verifies that

h(Lfx(p)) — h(Lf1(u1)) >0

follows from the induction hypothesis A(Lfr 1(')) — h(Lf1(u1)) > 0. This
establishes (iii) and completes the proof. O

PROOF OF LEMMA 2.18. This usesthe following preliminary result.

LEMMA. Let{u1 < --- <ug} € §(C). St

d—1 d
g1 = Z a/iEuia g2 = ZblEuza
i=2 i=2
where a;, b; are positive for any ¢, j. Then

(92 €1 (u1)) (91 " €iy(uz)) = (91 ° €iy(ur)) (92 * €ir(us))-

Proof. Sincei1(u1) = iy(u2) for someq > 2 the difference of the right and left
side of the asserted equation equals

> aibj[(Bu; - €, (u) (Bu; - €yus) — (Bu; - €, (un) (B, - €iy(up))]-
i#j
i,j>2
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(Wheni = j itisclear that the factor of a;b; equals0.) Let ¢; ; denotethe coefficient
of a;b;. Oneshowsthat ¢; ; = Oasfollows. Since A(u2) C A(u;)NA(uj),itfollows
that there exist s, ¢, v, w such that

€iy(u2) = Cis(us) = Cir(uy)> €ir(u2) = Ciy(ui) = Ciw(uj)-
Thus

Usj Uj Usj Uj
cij = | [T b | | I Gincwy | = | T1 Oiccwry | { 11 Pivuy
U#£s k#w (v k#t

Usj Uj
= (H bie(ui)) ' ( II bik(un) [bmui)'bit(un = i (u) 'bz’wwjﬂ

{#£Ss,v k#t,w

= 0 by the above identifications.

This proves the lemma. O

One usesthislemmato prove (2.18) as follows. Set

Gk—2 = fr—2(u2,...,ux_1), k-1 = [r—1(u2, ..., ug).

By (2.17), thelines Lgy,_» and Lg;, 1 are parallel. Furthermore, since (2.15) takes
care of the case k = 2, one may assume by induction on the number of elements
that Lgr_» < Lgi_1. Thus, it sufficesto show

Lf(u1,gk-2) < Lf(u1,9gk-1).
By the formulae in (1) (see above), one seesthat by defining

01 = grk—2" (Jiy(up) — Jir(us))s

02 = Euy - Jiyur)s )

A= gk (iyue) — Jis(ur))s
one obtains

fu1,gk2) = 01Ey, + 029k 2 and  f(u1, k1) = M By, + 029k 1.
Moreover, (2.17)(i) implies

Maf(u1, gk—2) = f(u1,9k-2) * Jijuy) =+ =

Maf(u1, gk-1) = f(u1,9k-1) * Jijuy) =+ =

fut, gk—2) - Jig(up 1)
f(u1, k1) - Jiy(uy)-
Using the expressionsin (2), one sees that

Mo f(u1,gv) = Mo By, - Mo gy, v=k—2k—1
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Now define

One must show § < O, giventhat Lgy_» < Lgi_1.
Using (2), an elementary manipulation shows

0 = (+) [(gk—l ’ Jil(ul))(gk—Z : Jll(uz)) - (gk—l : Jil(uz))(gk—z ’ le(ul))]

|gk—2| |gk—l|

+ - )
Mygr—2 Mogr—1

where (+) = |E,,|/M2 E,, - M2 gi,—2 - M gi,—1. The Lemma above implies that
the factor of (+) equals zero. Thus, ¢ equals the difference in vertical axis inter-
cepts of the lines Lgy 2, Lgir 1, which is negative by the induction hypothesis.
This proves (2.18). O

PROOF OF LEMMA 2.19. Set

91 = fe—da+1(uy, g1, - ug) and g2 = frgr1(udg, g1, - - - Ug)-
It sufficesto show

(i) Lg1 < Lg2;
(if) Lf(u,g1) < Lf(u,g2) for any index w such that {u < u); < -+ < u,} €
S(C).

Itiseasy to verify that (i) and (ii) follow from the same arguments used to establish
(2.17), (2.18). O

https://doi.org/10.1023/A:1000106628405 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000106628405

