Species detection framework using automated
recording units: a case study of the Critically
Endangered Jerdon's courser
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Abstract With the advent of automated recording units,
bioacoustic monitoring has become a popular tool for the
collection of long-term data across extensive landscapes.
Such methods involve two main components: hardware
for audio data acquisition and software for analysis. In the
acoustic monitoring of threatened species, a species-specific
framework is often essential. Jerdon’s courser Rhinoptilus
bitorquatus is a Critically Endangered nocturnal bird en-
demic to a small region of the Eastern Ghats of India, last
reported in 2008. Here we describe a reproducible and scal-
able acoustic detection framework for the species, compar-
ing several commonly available hardware and detection
methods and using existing software. We tested this pro-
tocol by collecting 24,349 h of data during 5 months.
We analysed the data with two commercially available
sound analysis programmes, following an analysis pipeline
created for this species. Although we did not detect vocal-
izations of Jerdon’s courser, this study provides a framework
using a combination of hardware and software for future re-
search that other conservation practitioners can implement.
Vocal mimicry can aid or confound in detection and we high-
light the potential role of mimicry in the detection of such
threatened species. This species-specific acoustic detection
framework can be scaled and tailored to monitor other species.
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Introduction

M onitoring techniques are crucial for the conservation
of species. Many field-based monitoring techniques,
such as point counts, mist-netting and transect surveys
(Ralph et al., 1995; Dunn & Ralph, 2004) are labour- and ex-
pertise-intensive, but the use of passive acoustic monitor-
ing with automated recording units is gaining momentum
(Teixeira et al., 2019) for monitoring a variety of taxa.
Recorders can be programmed and deployed for long peri-
ods without human intervention, ensuring high research
productivity (Shonfield & Bayne, 2017). The acoustic signals
of many species can be detected at greater distances than
visual cues because they have evolved for use in breeding,
foraging and alarm calling (Laiolo, 2010), and with spe-
cies-specific acoustic signatures passive acoustic monitoring
can be ideal for monitoring many species (Brandes, 2008).

Automated recording units have been used for monitor-
ing several threatened bird species (Williams et al., 2018;
Dema et al,, 2020; Leseberg et al.,, 2020; Vu & Van Tran,
2020), in particular cryptic birds (Frommolt & Tauchert,
2014; Zwart et al., 2014; Bobay et al., 2018; Pérez-Granados
et al., 2018) and those that call infrequently (Goyette et al.,
2011). The success of passive acoustic monitoring primarily
involves a robust combination of hardware (recorders)
and detection software, often specific to a species-habitat
configuration. In this study we used automated recording
units to create a replicable detection framework for the
Critically Endangered Jerdon’s courser Rhinoptilus bitor-
quatus, a nocturnal and cryptic bird, endemic to the
Eastern Ghats of India (BirdLife International, 2017).

Hardware considerations are critical for passive acoustic
monitoring. This includes considerations of the recording
radius of automated recording units, microphone sensitiv-
ity (Darras et al., 2019) and the nature of the habitat
(Pérez-Granados et al., 2019). It is also essential to have
custom-built acoustic algorithms to detect the calls of the
target species (Knight et al., 2017) and reject vocalizations
of co-occurring species (Priyadarshani et al., 2018). This is
particularly useful when there are many hours of recordings
and it is impractical to examine them manually. Thus a
species- and habitat-specific monitoring framework is re-
quired, especially for conservation purposes.

Jerdon’s courser is one of the rarest birds (BirdLife
International, 2017). After being considered extinct, without
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sightings since 1900, it was rediscovered in 1986 (Bhushan,
1986) but has not been detected since 2008. Jerdon’s courser
prefers a type of scrub forest that is under great anthropo-
genic pressure (Jeganathan et al., 2008). The species was
previously detected using labour-intensive methods such
as night searches (Bhushan, 1994), tracking strips and cam-
era traps (Jeganathan et al., 2002). The detection methods
used involved listening for spontaneous calls in places
where Jerdon’s courser is known to have occurred, and
walking transects while listening for calls in response to
playback of the species’ calls. But the rate of spontaneous
calls and the response rate to call playback was poor
(Jeganathan, 2006). So far, Jerdon’s courser has been re-
corded only in a small area of scrubland in the Sri
Lankamalleswara Wildlife Sanctuary. Because of its Crit-
ically Endangered status and highly restricted range, we
conducted this study to develop a site-specific detection
framework using automated recording units and sound

I
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Fic. 1 (a) The location of Sri
Lankamalleswara Wildlife
Sanctuary in India, (b) the
location of the study area, and
(c) the 1 x 1km grid, indicating
those grid cells in which we
placed recorders and those
where Jerdon’s courser
Rhinoptilus bitorquatus had
been previously detected.

analysis software. We did this first by testing potentially
suitable commercially available recorders, and then by
creating and testing a call detection analysis pipeline using
two commonly available sound analysis programmes. For
the latter, we provide a flowchart to validate detections.

Study area

We conducted this study in the 464 km* Sri Lankamalleswara
Wildlife Sanctuary in Andhra Pradesh, India, which com-
prises scrubland type habitat considered suitable for
Jerdon’s courser (Jeganathan et al., 2004; Fig. 1).

Methods

Call characteristics

Jerdon’s courser has only one known call type, a di-syllabic
kwick-koo repeated in a series (Jeganathan & Wotton,
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2004). The only known recordings of Jerdon’s courser were
obtained by PJ on 11 occasions during June 2001-November
2002, at dusk, from the Wildlife Sanctuary (Fig. 1). The
calls were recorded from three locations, most likely from
multiple individuals, at a distance of 10-100 m from the
birds. These calls were recorded using analogue tapes and
converted to digital format by the Macaulay Library,
Cornell University (accession numbers 274533-43).

To check for variability in Jerdon’s courser calls, we ana-
lysed 145 clear di-syllabic calls from the 312 calls available in
the recordings (faint calls were excluded). The call has a
fundamental note at the lowest frequency between mean
654.55 = SD 54.68 Hz and highest frequency between mean
1,238.05 £ SD 56.48 Hz with two visible harmonics above
this (Fig. 2). The second harmonic appears to have the
highest energy and can be heard at the farthest distance
(see attenuation experiment below). The mean call duration
is 0.4667+SD 0.042 s with a mean inter-syllable-gap of
0.090+SD o0.027 s (Fig. 2). A spectral cross-correlation
matrix was created for each of the two syllables using the
batch correlator function in Raven Pro 2.0 beta (Center for
Conservation Bioacoustics, Cornell University, Ithaca, USA).
Normalized spectral cross-correlation values range from o,
denoting least similarity, to 1, denoting the maximum pos-
sible similarity between two notes (Charif et al., 2010).

Field protocol

Attenuation experiment We conducted an attenuation
experiment using Jerdon’s courser playback calls to deter-
mine the grid size for the deployment of the recorders
(Supplementary Material 1, Supplementary Fig. 1). We used
four types of commercial recorders: SongMeter4 (Wildlife
Acoustics, Maynard, USA), Swift (Cornell Center for Con-
servation Bioacoustics, Cornell University, Ithaca, USA), Rugged
Swift (modified Swift in a Pelican casing, Torrance, USA), and
AudioMoth (Open Acoustics, Eastleigh, UK). We detected the
call at up to 700 m, using all recorders, and conservatively fixed
the field sampling grid cell size at 1x 1 km.

'y TR /T

- inter-syllable gap (ISG). The

hu A N call duration comprises the two
o MaxE syllables and the inter-syllable

gap. The spectral properties
consist of a fundamental note
at the lowest frequency
followed by second and third
harmonics above. The
maximum (SH MaxF)

and minimum frequency

(SH MinF) of the second
harmonic are indicated.

Deployment We created a grid of 1x 1 km cells along the
eastern boundary of the Sanctuary using a preliminary
habitat suitability map (Jeganathan, 2006). We deployed
17 recorders (Swift, Rugged Swift and SongMeter4), one at
the centre of each selected grid cell, and included all loca-
tions where Jerdon’s courser had previously been recorded.
We conducted four recording cycles (c. 30 days each, after
which batteries in all recorders were replaced) during
November 2019-March 2020 as the bird is thought to be
most vocal during this period (Jeganathan & Wotton,
2004). All recorders were randomly distributed across the
grid. We deployed two AudioMoth recorders on the same
tree as other recorders, for further testing (Supplementary
Table 1); data from these were not used in the analysis
(but see below). As Jerdon’s courser is known to vocalize
within an hour after sunset (Jeganathan, 2006), we recorded
continuously during 17.00-06.00 (with a 48,000 Hz sam-
pling rate, in wav format) on 17 recorders X 4 cycles, giving
68 recording instances (one recording instance is c. 290 h of
data collected from one recorder per battery cycle). We also
analysed an additional dataset of 83 h from an AudioMoth
recorder that malfunctioned and recorded only daytime
calls.

Call detection analysis pipeline

Creating a recognizer A recognizer is an algorithm to
detect a single specific category of sounds. Recognizers
can operate either via two steps (first detect a broad range
of sounds, then classify those) or in a single step (only detect
sounds that match a template) (Knight et al, 2017). To build
a detector (an algorithm to detect sounds of potential
interest in a continuous recording), we considered only
the frequency band of the second harmonic of the call,
which ranges from a mean minimum of 1307.25+SD
76.68 Hz to a mean maximum of 2375.65+ SD 89.89 Hz
(Fig. 2). We chose the second harmonic as the first and
third harmonic attenuated faster at increasing distances

Oryx, 2023, 57(1), 55-62 © The Author(s), 2022. Published by Cambridge University Press on behalf of Fauna & Flora International  doi:10.1017/50030605321000995

https://doi.org/10.1017/50030605321000995 Published online by Cambridge University Press

57


https://doi.org/10.1017/S0030605321000995

58

C. Arvind et al.

from the source (Supplementary Fig. 1). For the call detec-
tion we created an analysis pipeline with Raven Pro and
Kaleidoscope (Wildlife Acoustics, 2019).

In Raven Pro the template detector function works on
the principle of spectrogram cross-correlation (Ulloa et al.,
2016). Calls most similar to the template are detected
based on a given threshold cut-off (Knight et al., 2017)
and use certain specific spectrogram parameters (Hann
spectrogram window = 512 samples, discrete Fourier trans-
form size = 512, hop size = 256 samples, grid spacing = 93.8
Hz, overlap =50%). For Raven Pro we chose two clear
and loud FoxPro Predator speaker (FOXPRO, Lewistown,
USA) playback (from our attenuation experiment) di-
syllabic Jerdon’s courser calls as a template and used a
selection around each syllable as an independent template,
resulting in four templates. We chose the playback version
as the signal-to-noise ratio was better in the playback call
and it was recorded on an automated recording unit. The
templates were used in the template detector function of
Raven Pro on a training dataset of 160 Jerdon’s courser
calls. The template detector settings (frequency range=1=5

Hz, threshold value = 0.55) were set to maximize the num-
ber of true positives.

In Kaleidoscope, detection of target species works on
K-means clustering using the hidden Markov model in
which similar sounds are clustered together (Pérez-Granados
& Schuchmann, 2020). In the first step, we conducted a basic
cluster analysis on a training dataset containing 119 Jerdon’s
courser di-syllabic calls and calls of co-occurring species
(common hawk-cuckoo Hierococcyx varius and Jerdon’s
nightjar Caprimulgus atripennis, using the co-occurring spe-
cies-elimination flowchart, as explained below). We used par-
ticular settings (fast Fourier transform size = 512, maximum
distance from cluster centre=o0.1, maximum states =12,
maximum distance to cluster centre=0.5 and maximum
clusters = 10) and fixed signal detection parameters (frequency
band = 1,500-2,300 Hz, detection length =o0.05-0.1 s, inter-
syllable gap =o0.35 s) that resulted in clusters of the target
Jerdon’s courser calls and non-target calls of the co-occurring
species. Calls were then manually annotated and the resulting
file was used as a template to rescan the training data via a se-
cond round of cluster analysis. The second round of clusters
was then manually re-validated and re-annotated to create
the recognizer.

Assessing the performance of the recognizer The efficacy of
the recognizers created with Raven Pro and Kaleidoscope were
evaluated on a test dataset by calculating three performance
metrics (Knight et al., 2017; Priyadarshani et al., 2018):

true positives

Precision = — —
true positives + false positives

true positives

Recall = — -
true positives + false negatives

precision x recall

F . = 1
beta SCOTE ( + ’8) (B* x precision) + recall

An Fy, score balances precision and recall. As the target
species is a rare bird with an infrequent calling pattern, we
wanted to minimize the false negatives and therefore set the
B value = 2, to prioritize recall (Knight et al., 2017). We cre-
ated a synthetic test dataset using 10 h of recordings overlaid
with 415 di-syllabic Jerdon’s courser calls (from Macaulay
Library (Cornell University, accession numbers 274533-43)
and our FoxPro playback from our attenuation experiments,
as described in Supplementary Material 1).

Screening automated recording unit data To segregate
calls of Jerdon’s courser from those of co-occurring species,
we used a species elimination flowchart (Fig. 3) that in-
cluded using eBird (2021) checklists for the region and our
software recognizer. In the first step, we obtained from
eBird an up-to-date list of all bird species present in Sri
Lankamalleswara Wildlife Sanctuary and segregated species
that vocalized within the call frequency band of Jerdon’s
courser. We then used the Raven Pro and Kaleidoscope re-
cognizers to screen the collected recorder data with our re-
cognizers. All detections were manually cross-checked both
visually and aurally (by V] and CA) with species’ calls from
the eBird shortlist. Detected calls were compared with
recordings of shortlisted species available on eBird and
Xeno-canto (Xeno-canto, 2021). In the case of unclear de-
tections, spectrogram audio segments of 60 s before and
after the detections (to examine the context of the occur-
rence of the call) were taken into consideration to identify
the species (by PJ and VJ). Detections were categorized
into known and unknown bird species. The unknown calls
were sent to 11 experts in bird acoustics who are familiar
with the calls of birds of this region or South India, in the
form of a questionnaire for species identification. The ques-
tionnaire consisted of videos of a moving spectrogram of the
unknown calls (Supplementary Material 2). The experts were
asked to rate each call on a five-point Likert scale that ranged
from being least likely to most likely to belong to Jerdon’s
courser. For the calls identified as most likely to belong to
Jerdon’s courser, a spectral cross-correlation was performed
in Raven Pro to quantify the similarity between the detected
call and the known Jerdon’s courser di-syllabic call.

Results

Performance metrics of the recognizers

The Raven Pro recognizer gave us the best results on the
test dataset, with precision = 0.341, recall = 0.490 and Fp,

Oryx, 2023, 57(1), 55-62 © The Author(s), 2022. Published by Cambridge University Press on behalf of Fauna & Flora International ~ doi:10.1017/50030605321000995

https://doi.org/10.1017/50030605321000995 Published online by Cambridge University Press


https://doi.org/10.1017/S0030605321000995

(a) eBird pathway ,

(b) Sound analysis software Raven Pro
and Kaleidoscope

Automated recording units

FiG. 3 Our analysis pipeline,
showing the species
elimination pathways for any

Curate a list of birds of Sri
Lanakamalleshwara Wildlife .
Sancuary from eBird records :

Create a Jerdon'’s courser recognizer in
Raven Pro 2.0 beta and Kaleidoscope

putative calls of Jerdon’s
courser using (a) a database
of species calling within the
Jerdon’s courser call band in

+ Sri Lankamalleswara Wildlife

Y h
Shortlist species calling over {

Evaluate performance of

Sanctuary, and (b) the

recognizer detection algorithms in Raven

: 1-4kHz :

Pro 2.0 beta and Kaleidoscope.
We used known Jerdon’s

\J

: v

Further shortlist species occuring in

Use recognizer to screen collected
automated recordings

courser calls to create a
recognizer in Raven Pro
and Kaleidoscope to screen
automated recordings.

the Jerdon's courser habitat

+ The resulting detections were

o

Manually check detections with
; { calls of birds shortlisted

then manually verified and
categorized into known and
unknown bird species based
on the shortlist of species from

| (a). Unknown calls were

Y

Known bird
species

Jerdon's

courser

Spectral cross-correlation with
Jerdon's courser call

score =0.451. The recognizer created with Kaleidoscope
resulted in precision = 0.116, recall = 0.340 and Fyy, score =
0.245. Higher recall values indicate fewer false negatives. In
our Fy, score, the f values are set to favour recall over pre-
cision and higher scores indicate a greater minimization of
false negatives.

Detection of Jerdon'’s courser call

We obtained 24,432 h of recordings. Data from four record-
ing instances, three from the first recording cycle and one
from the second cycle, were not available as a result of hard-
ware technical issues.

In these recordings we detected 2,384,404 putative
Jerdon’s courser calls with Raven Pro, and 5,167,561 with
Kaleidoscope. The majority of false positives were of co-
occurring species that vocalize in the same bandwidth
as Jerdon’s courser (Supplementary Table 2), including
the common hawk-cuckoo, Jerdon’s nightjar and the
Indian nightjar Caprimulgus asiaticus, which were segre-
gated using our species elimination analysis pipeline
(Fig. 3). We did not detect any Jerdon’s courser di-syllabic
vocalizations that unambiguously matched the known
vocalization.

identification

then sent to 11 experts for

+ identification. We

Unknown bird subsequently performed a

species spectral cross-correlation

between the calls tagged as
most likely belonging to
Jerdon’s courser and the actual
call of Jerdon’s courser, to
check for similarity.

However, we shortlisted four calls that were similar to
that of Jerdon’s courser (Supplementary Fig. 2) and pre-
sented these to the 11 experts. One of these calls was identi-
fied as most likely to belong to Jerdon’s courser by eight
of the 11 experts. To check for similarity in spectral features
of this call with that of Jerdon’s courser we calculated spec-
tral cross-correlation coefficients (Supplementary Table 3).
We found that the first note of this call and that of Jerdon’s
courser had the highest similarity (cross-correlation score =
0.591), and note three of this call was most similar to note
two of Jerdon’s courser (cross-correlation score =0.534).
Both cross-correlation scores were within the range of the
cross-correlation scores among PJ’s field recordings of
Jerdon’s courser.

The context of this call was further examined manually
by screening 1 h of recordings before and after the call.
This call was recorded accidentally (as a result of incor-
rectly synchronized recorder clock settings), which re-
sulted in recordings during the day (at 09.30) rather
than at night. We found calls of other species (bay-backed
shrike Lanius vittatus, Indian thick-knee Burhinus indicus
and red-vented bulbul Pycnonotus cafer) in close succes-
sion to this putative Jerdon’s courser call (Supplementary
Fig. 3). The full call of Jerdon’s courser was not detected
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in this recording, and we believe the call was potentially
a series of mimicked calls by the bay-backed shrike (dis-
cussed below).

Discussion

We used bioacoustics to create a detection framework to
monitor the Critically Endangered, cryptic Jerdon’s courser,
the last confirmed occurrence of which was in 2008. The
framework comprised a field protocol using automated
recording units and an analysis protocol using two brands
of sound analysis software.

Recommended field protocol

We found the Rugged Swift recorders to be the most suitable
for long deployments (> 2 months on a 13-h nocturnal re-
cording schedule). This is because they can hold 12 D-cell
batteries, whereas the other tested recorders can carry
only up to four D-cell batteries (Supplementary Table 1).
Although we did not detect Jerdon’s courser, we recom-
mend retaining the grid size of 1x1 km for recorder
deployment, based on our attenuation study, and expanding
the sampling to surrounding viable habitats for this species
(Supplementary Fig. 4). Differences in vegetation cover and
wind direction can cause differences in attenuation proper-
ties (Yip et al., 2017; Thomas et al., 2020) and may contribute
to the limitations of our study as a result of variability in
the amplitude of natural calls. There could be differences
between attenuation of calls from a live bird and that of
playback calls; however, recording on a grid should detect
the species given that it is likely to range across multiple
grid cells.

Recommended software protocol

Both Raven Pro and Kaleidoscope have been used previously
to create recognizers, with variable success rates (Knight
et al., 2017). Their user-friendly interface does not require
any prior programming knowledge, making it accessible
to conservation management agencies and non-technical
personnel. Our comparison of simulated data indicated that
the recognizer created with Raven Pro performed better,
with a higher Fy., score and a higher recall. This is similar
to comparisons for other species (Knight et al, 2017).
The stereotypic short calls of Jerdon’s courser appear to
be more efficiently detected with spectrogram cross-
correlation methods used by Raven Pro (Ulloa et al., 2016)
compared to the K-mean clustering method used by
Kaleidoscope (Joshi et al., 2017).

Previous studies have also observed variable performance
between manual and automated recognizers (Swiston &
Mennill, 2009; Digby et al, 2013; Sidie-Slettedahl et al.,
2015). The choice of method appears to depend on the target

species (Joshi et al., 2017). In an automated approach, the
most common challenges are the high number of false posi-
tives as a result of weak signals (Joshi et al., 2017), the absence
of a good initial template, and any similar-sounding sym-
patric species (Schroeder & McRae, 2020). In our study, al-
though the number of false positives was high, following a
systematic analysis pipeline (Fig. 3) greatly reduced the man-
ual screening time and was less time-consuming than screen-
ing the entire set of audio files, as also reported by Schroeder
& McRae (2020). Automated classification approaches such
as random forests (Ross & Allen, 2014) can sometimes reduce
the number of false positives that need to be manually re-
viewed but we did not examine this possibility.

We detected one call that both our analysis and experts
indicated was similar to that of Jerdon’s courser. However,
we considered the following additional points: (1) the puta-
tive call was during the day, (2) calls of the bay-backed
shrike (a known mimic) were recorded at a similar time
as the putative call, (3) there were also calls of multiple spe-
cies in close succession to the putative call with similar
amplitudes, (4) there was no other instance of the putative
call in the sequence, and (5) the notes of the putative call
had some degree of similarity in their spectral cross-cor-
relation scores compared to those of the Jerdon’s courser
call yet they were not identical (potentially a modification
of the call by the mimic of the model; Zollinger & Suthers,
2004). Jerdon’s courser is nocturnal and calls were previous-
ly heard or recorded only during the night and on a few oc-
casions at dusk. Their calls are also repetitive, with multiple
calls in rapid succession. We believe therefore that the puta-
tive call is likely to be mimicry of a Jerdon’s courser call by
a bay-backed shrike, a known mimic (Yosef et al., 2020).
Mimics can often sound similar to the model in acoustic
characteristics, and are difficult to discern without context
(Agnihotri et al., 2014). In the absence of additional record-
ings, it is difficult to assess definitively whether the detected
call was of Jerdon’s courser or of a mimic. Nevertheless, any
mimicry would indicate exposure of the mimic to the model,
either directly or culturally. Although mimicry can con-
found detections (Crisoglo et al., 2017), in the case of an en-
demic bird with a restricted range mimicry can be a clue for
its detection. The presence of Jerdon’s courser in this loca-
tion cannot therefore be either confirmed or ruled out with-
out more extensive year-round automated recording.

Our attempt to detect Jerdon’s courser was based on the
premise that it has only one call. Additional information on
the call diversity of the species would potentially improve
the ability to detect it. The most conclusive evidence
for the occurrence of Jerdon’s courser comes from camera
traps (Jeganathan et al.,, 2002), which could be used to nar-
row down the location where the species occurs following
any detection with automatic recording units. Although a
comparison of the probability of detection with camera
traps and acoustic recorders cannot be made without
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additional information, acoustic recorders typically have
much larger detection areas than cameras (unless the
species has a very low-amplitude call).

Our species-specific acoustic detection framework could
be scaled up and implemented by conservation agencies for
the detection and long-term monitoring of this Critically
Endangered bird. Knowledge of the local bird community
is important for such research, as behaviours such as mim-
icry by other species need to be considered. Local enthusi-
asm for the conservation of Jerdon’s courser appears to be
high, as local newspaper reports erroneously carried stories
that the species was detected (Supplementary Fig. 5), based
on our study. We recommend an expanded acoustic sur-
vey for the species across all potentially suitable habitats.
The acoustic monitoring protocols described here could
be adapted to monitor other threatened, cryptic species
whose vocalizations have been previously recorded.
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