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1. Introduction 

The three-dimensional distribution of galaxies in the redshift surveys differ 
from the true one since the distance to each galaxy cannot be determined 
by its redshift ζ only; for ζ <C 1 the peculiar velocity of galaxies, typically ~ 
(100 — 1000)km/sec, contaminates the true recession velocity of the Hubble 
flow, while the true distance for objects at ζ £ 1 sensitively depends on 
the (unknown and thus assumed) cosmological parameters. This hampers 
the effort to understand the true distribution of large-scale structure of 
the universe. Nevertheless such redshift-space distortion effects are quite 
useful since through the detailed theoretical modeling, one can derive the 
peculiar velocity dispersions of galaxies as a function of separation, and 
also can infer the cosmological density parameter Ωο, the dimensionless 
cosmological constant λο, and the spatial biasing factor b of galaxies and/or 
quasars, for instance. In this talk, I discuss the importance of such redshift 
distortion induced by the geometry of the universe, which summarizes the 
recent results of my collaborative work in this topic (Matsubara & Suto 
1996; Nakamura, Matsubara, & Suto 1998; Magira, Matsubara, Jing, & 
Suto 1998). 

2. Cosmological redshift distortion 

Let us consider a pair of objects located at redshifts z\ and z2 whose redshift 
difference δ ζ = z\ — z2 is much less than the mean redshift ζ = (z\ + z2)/2. 
Then the observable separations of the pair parallel and perpendicular to 
the line-of-sight direction, and are given as δζ/Ηο and ζδθ/Η$, re-
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Figure 1. Solid and dashed lines indicate the positive and negative ( } s \ respectively. 
Contour spacings are A l o g 1 0 | £ | = 0 . 2 5 . Upper: ζ — 0.2, Lower: ζ = 2. 

spectively, where HQ is the Hubble constant and δθ denotes the angular 
separation of the pair on the sky. The cosmological redshift-space distor-
tion originates from the anisotropic mapping between the redshift-space 
coordinates, , a n d the real comoving ones (x\\,x±) = (C||S||,CJ_SJ_); 

cj_ is written as cj_ = Ho(l + Z)DA/Z in terms of the angular diameter 
distance DA, and 

"V ' H{z) ν/Ω0(1 + zf + (1 - Ωο - λ0)(1 + ζ)2 + λ 0 ' V ' 

(Alcock & Paczynski 1979; Matsubara k Suto 1996). 
The relation between the two-point correlation functions of quasars in 

redshift space, £^(s_i_,S||), and that of mass in real space, £ ^ ( χ ) , can be 
derived in linear theory: 

&Hsx,s,) = (l + Ιβ(ζ) + \[β(ζ)]ή ξ0(χ)Ρθ(μ) 

- (~ß(z) + \\β{ζ)?) b(x)P2(ß) + ^[β(ζ)]2ξ4(χ)Ρ4(μ), (2) 

where χ = Jc^s^ + CJ_2S_L2, μ = C\\S\Jx, P n ' s are the Legendre polynomi-
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Redshift-space correlation function: fW(s1,s,) at z=2.2 
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Figure 2. £^(SJ_,SH ) from linear theory {Upper) and N-body simulations {Lower) at 
ζ = 2.2. 

als, 

and D(z) is the linear growth rate. Figure 1 shows the above prediction in 
linear theory for four models with the fixed shape parameter Γ = 0.2 and 
the fluctuation amplitude as — 1 assuming no bias, i.e., b(z) = 1. In fact, 
the above expression by Matsubara & Suto (1996) is the generalization of 
the ζ = 0 result of Hamilton (1992; see also Kaiser 1987) at an arbitrary z. 
The essentially identical formula, but for P(fc), was independently derived 
and discussed by Ballinger, Peacock & Heavens (1996). 

In reality, however, the observable two-point correlation functions would 
be also contaminated by non-linear peculiar velocity as well as statistically 
limited by the available number of tracer objects. To incorporate the non-
linear effect, we compute S||) from a series of N-body simulations in 
C D M models with Ν = 2563 particles in (300/i - 1 Mpc) 3 box (Magira et al. 
1998). Figure 2 shows several examples at ζ = 2.2 for S C D M , O C D M , and 
L C D M models which have (Ω 0 , λ 0 , Γ, σ 8 ) = (1,0,0.5,1.2), (0.3,0,0.25,1.0), 
and (0.3,0.7,0.21,1.0), respectively. The degree to the extent which one can 
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Figure 3. χ2 analysis from the s\\) curve fit using Ν = 2 χ ΙΟ 5 

recover the underlying correlation of small amplitudes is sensitive to the 
sampling rate, or the number density of objects. In computing £ ^ ( 5 - L > s n ) 

from the simulation data, we reduce the number density of objects sys-
tematically by randomly sampling simulation particles. Figure 3 plots the 
reduced χ 2 for the fit of £^(s_i_,S||) from simulations to the linear theory 
prediction. In performing the fit, we exclude the regions with S\\/s± > 2 
which are supposed to be seriously contaminated by nonlinear peculiar ve-
locities. 

While Figures 3 demonstrates that the current methodology works in 
principle, Figure 2 clearly shows that the expected for unbi-
ased tracers is quite noisy for realistic number density of quasars at the 
corresponding redshift; the number density of objects £ 0.004/i 3 Mpc - 3 is 
required to discriminate models with Ωο = 1 and Ωο = 0.3 on the basis 
of this straightforward comparison, which is roughly more than one order 
of magnitude larger than the observed quasars (Boyle, Shanks, & Peter-
son 1988). This situation would be significantly improved since quasars are 
(and high-ζ galaxies) are likely to be biased tracers; Franca, Andreani, & 
Cristiani (1998), for instance, reported a correlation length 6 .2±1.6/ i - 1 Mpc 
(comoving) from 388 quasars at an average redshift 1.3. Such a high degree 
of clustering significantly increases the S / N of and results in stronger 
constraints from the current test (cf., Magira et al. 1998). 

3. Implication for galaxy redshift survey 

The cosmological distortion effect becomes important also even for shal-
lower redshift surveys like SDSS (Gunn & Weinberg 1995) and 2dF. One 
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Figure 4- Systematic deviation Aß in the estimates of βο = Ωο"6/6 versus the limiting 
magnitude of redshift surveys in Β band (βο = 0.5). 

may formally expand s^) in terms of the observables, s = yjs2 + s\ 

and μ8 = instead of the unobservable variables (x(z), μχ(ζ)): 

£ ( e ) ( s j_ , s„ ;*) = ΣΞ2ΐ(χ;ζ)Ρ2ι{μχ) = Σ<2L(s] ζ)Ρ2ι(μ8). 

(4) 
1=0 

Since we are interested in ζ 1 galaxy redshift surveys, we can further 
expand the above summation up to the first order in z, and then obtain 

*n; ζ) « Σ C2/(«; ζ)Ρ2ι(μ8)· (5) 
ί=0 

This explicit expression enables us to estimate a systematic bias for βο 
on the basis of Hamilton's method (Hamilton 1992). The result (Nakamura 
et al. 1998) consists of the two terms corresponding to the evolution of 
/3-parameter and the geometrical effect: 

dß 'est 

dz 

sys 

z=0 

dß(z) 

dz + 
1 + 90 

=o ι 4- 5£o ι ML 
1 ^ 7 ^ 3 5 

4 I 7 35 21 49y ξ - ξ 

7 5 15 7 

(6) 

where ço is the deceleration parameter (= Ωο/2 — λο). Figure 4 displays the 
systematic bias for ßo in Γ = 0.25 models with different Ωο and λο· The 
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resulting systematic bias is smaller than the statistical errors of the existing 
surveys (e.g., Ratcliffe et al. 1996), but is expected to be larger than those 
of the next-generation, deep and wide redshift surveys including SDSS and 
2dF. 

4. Conclusions 

Observable spatial distribution of galaxies and quasars is necessarily dis-
torted by the peculiar velocity of objects and by the geometry of the uni-
verse itself. In this talk, I have discussed this cosmological redshift-space 
distortion, especially keeping in mind the application to the future sur-
veys of galaxies and quasars. This effect can be regarded as either noises 
or signals depending on what you are interested in; if you are interested 
in determining the real-space correlation functions of high-z objects or the 
ßg&\(z = 0), the effect is a noise which should be corrected for. If you would 
like to determine the cosmological parameters such as Ωο, λο, and &QSO(^), 
however, the cosmological redshift-space distortion would provide impor-
tant signals in a complementary fashion to the constraints from the cosmic 
microwave background anisotropies. 

The present talk is based on my collaborative work with Y . P . Jing, H. 
Magira, T. Matsubara, and T.T.Nakamura. Numerical computations were 
carried out on VPP300/16R and V X / 4 R at the Astronomical Data Analysis 
Center of the National Astronomical Observatory, Japan, as well as at 
R E S C E U (Research Center for the Early Universe, University of Tokyo) 
and K E K (National Laboratory for High Energy Physics, Japan). This 
research was supported in part by the Grants-in-Aid by the Ministry of 
Education, Science, Sports and Culture of Japan (07CE2002) to R E S C E U , 
and by the Supercomputer Project (No.97-22) of High Energy Accelerator 
Research Organization ( K E K ) . 
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