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ON THE CONSTRUCTION OF HÖLDER AND PROXIMAL
SUBDERIVATIVES

J. M. BORWEIN, R. GIRGENSOHN AND XIANFU WANG

ABSTRACT. We construct Lipschitz functions such that for all s Ù 0 they are s-
Hölder, and so proximally, subdifferentiable only on dyadic rationals and nowhere
else. As applications we construct Lipschitz functions with prescribed Hölder and
approximate subderivatives.

1. Introduction. Let f be an extended real-valued lower semicontinuous function
defined on an open set U ² R and x 2 U. We assume throughout that s Ù 0.

DEFINITION 1. ò 2 R is called an s-Hölder subgradient of f at x if f (x) is finite and
for some õ Ù 0 and é Ù 0 one has

f ( y) ½ f (x) + ò( y � x)� õjy � xj1+s when jy � xj Ú é

We write ò 2 ]hs f (x). When s = 1 such a subdifferential is called a proximal subdiffer-
ential, denoted by ]p f .

DEFINITION 2. f is s-Hölder smooth at x if there exists c Ù 0, é Ù 0, and ò 2 R such
that

j f ( y) � f (x) � ò( y � x)j � cjy � xj1+s whenever jy � xj Ú é

When s = 1 we say that f is Lipschitz smooth at x. More generally, we are considering
derivatives and subdifferentials with power modulus of smoothness, [2].

In [2] Borwein and Preiss show, inter alia, that fx j ]hs f (x) 6= ; and x 2 Ug is dense
in U. In [5] Clarke, Ledyaev and Wolenski construct a C1 function, f , onR such that both
]p f and ]p(�f ) are nonempty only on a set that is small in the sense of both measure
and category. In [1] Benoist shows that for every countable dense set D in R there exist
infinitely many (uncountably many as may be seen from his proof) Lipschitz functions f ,
differing by more than a constant, such that ]p f (x) = (�1Ò 1) if x 2 D and ]p f (x) = ;

if x 62 D. Benoist’s proof is lengthy. A slight modification of Benoist’s proof, allows us
to see that for each countable dense set D in R there exist uncountably many different
Lipschitz functions, f , such that for every s Ù 0 we have ]hs f (x) = (�1Ò 1) if x 2 D and
]hs f (x) = ; if x 62 D. Moreover, we have shown in [4] that
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PROPOSITION 1. Assume S1 and S2 are two arbitrary countable dense sets in R with
S1 \ S2 = ;. Then there exist two countable sets D1 ² S2 and D2 ² S1 with D1 and
D2 dense in R such that there exists a Lipschitz function f :R 7! R having the following
properties: for every s Ù 0
(i) ]hs f (x) = (�1Ò 1) if x 2 D2 and ]hs f (x) = ; if x 2 R nD2.
(ii) ]hs(�f )(x) = (�1Ò 1) if x 2 D1 and ]hs(�f )(x) = ; if x 2 R nD1.

Our goal here is to construct Lipschitz functions, f , whose s-Hölder subdifferential is
nonempty only on dyadic rationals and nowhere else. Needless to say, one may deduce
this from Benoist’s result but the construction method given herein is more explicit and
much simpler, and has certain other virtues.

2. Main Result.

PROPOSITION 2. For every sequence (an) satisfying:
(0) 0 Ú a1 Ú a2 Ú Ð Ð Ð Ú 1, an ! 1,
(1) (2n)s(1 � an) !1 for all s Ù 0,
there exists a 1-Lipschitz function f : [0Ò 1] ! R such that f (0) = 0 and f (1Û2) = a1

2 , for
all s Ù 0 we have ]hs f (x) = (�1Ò 1) when x 2 (0Ò 1) is a dyadic rational, and ]hs f (x) = ;

when x 2 (0Ò 1) is not a dyadic rational.

PROOF. As in [1], f will be the limit of a sequence of functions fn which are affine
on the intervals [iÛ2nÒ (i + 1)Û2n] for i = 0Ò 1Ò    Ò 2n � 1. Denote the slope of fn on this
interval by siÒn.

Start with f0 � 0. Now assume that fn�1 is already defined. Then set fn(0) := 0 and

s2iÒn := anÒ s2i+1Òn := 2siÒn�1 � anÒ if siÒn�1 ½ 0Ò

s2iÒn := 2siÒn�1 + anÒ s2i+1Òn := �anÒ if siÒn�1 � 0

In this way, fn is defined and Lipschitz on the whole interval [0Ò 1] and satisfies fn(2iÛ2n) =
fn�1(iÛ2n�1) for i = 0Ò    Ò 2n�1.
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PRESCRIBED HÖLDER SUBDIFFERENTIALS 499

CLAIM 1. siÒn 2 [�anÒ an] for all i = 0Ò 1Ò    Ò 2n � 1, n 2 N.

PROOF. The claim is true for f0Ò f1, and if it is true for n � 1, then it is also true for
n: If siÒn�1 ½ 0, then s2iÒn = an and s2i+1Òn = 2siÒn�1 � an � 2an�1 � an � 2an � an and
s2i+1Òn ½ 0 � an, and similarly for siÒn�1 � 0.

This proves in particular that: fn ½ fn�1 on [0Ò 1] for all n. In order to see what fn looks
like, we take an := 1 � (15Û16)n. After 9 iterations, Maple gives figure 1:

0
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FIGURE 1: f9

CLAIM 2. The fn are uniformly convergent to a Lipschitz function f .

PROOF. For all x, we have 0 � fn(x) � fn�1(x) � an Ð 1Û2n � 1Û2n, which proves
that the fn are convergent in the uniform norm towards some f . Since j f (x) � f ( y)j �
j f (x)� fn(x)j + j fn(x)� fn( y)j + j fn( y)� f ( y)j � 2Û2n + an Ð jx� yj � 2Û2n + jx� yj for
all n, f is a Lipschitz function.

CLAIM 3. If x 2 (0Ò 1) is a dyadic rational, then ]hs f (x) = (�1Ò 1).

PROOF. Assume x = iÛ2n.
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CLAIM 3A. There exists a k0 2 N such that for all k Ù k0:

f ( y) ½ f (x) + ak Ð ( y � x) for all y 2 [xÒ x + 1Û2k] and

f ( y) ½ f (x) � ak Ð ( y � x) for all y 2 [x � 1Û2kÒ x]Ò

9=
;(1)

with equality for y = x š 1Û2k.

PROOF. For symmetry reasons, it is enough to prove the first inequality. Since for all
k ½ n, we have f ½ fk ½ fn and f (x) = fk(x) = fn(x) and f (x š 1Û2k) = fk(x š 1Û2k),
it is sufficient to show the existence of a k0 ½ n such that the first inequality holds
for all k Ù k0 with f replaced by fk. For this it is enough to find a k0 such that the
slope of fk0 to the right of x, namely si2k0�n

Òk0
, is positive. The assertion then follows,

because then si2k�n Òk = ak for all k Ù k0. Assume therefore that siÒn is negative. Then
s2iÒn+1 = 2siÒn + an+1, and if that is still negative, then s4iÒn+2 = 2s2iÒn+1 + an+2, and so on.
Also, because of Claim 1, s2iÒn+1 = 2siÒn + an+1 ½ siÒn � an + an+1 Ù siÒn. This implies
s4iÒn+2 � s2iÒn+1 = s2iÒn+1 + an+2 Ù siÒn + an+1 = s2iÒn+1 � siÒn Ù 0. Therefore, in each step
one increases the previous slope by a positive, increasing amount. After finitely many
steps the slope will then itself become positive.

CLAIM 3B. ]hsf (x) � (�1Ò 1).

PROOF. Assume ò 2 ]hs f (x). That means that there exists a õ Ù 0 such that for k big
enough, f (x +1Û2k) ½ f (x)+ò Ð1Û2k�õÐ (1Û2k)1+s. We can assume k Ù k0, such that, by
Claim 3A, f (x + 1Û2k) = f (x) + ak Ð1Û2k. This implies ak Ð1Û2k ½ ò Ð1Û2k �õ Ð (1Û2k )1+s

and therefore ak ½ ò � õ Ð (1Û2k)s. Letting k tend to infinity, we get ò � 1. Moreover,
ò = 1 is impossible because of (2k)s Ð (1� ak) !1. In the same way we prove ò Ù �1.

CLAIM 3C. (�1Ò 1) � ]hs f (x).

PROOF. The first inequality in (1) implies f ( y) ½ f (x)+òÐ( y�x) for all y 2 [xÒ x+1Û2k]
and all ò � ak, the second inequality implies f ( y)½ f (x)+òÐ( y�x) for all y 2 [x�1Û2kÒ x]
and all ò ½ �ak. Joining the two intervals, we get f ( y) ½ f (x) + ò Ð ( y � x) for all
y 2 [x � 1Û2kÒ x + 1Û2k] and all ò 2 [�akÒ ak]. Taking k large enough, we find any
ò 2 (�1Ò 1) in such an interval. This proves Claim 3.

CLAIM 4. If x is not a dyadic rational, then ]hs f (x) = ;.

PROOF. Assume that ò 2 ]hs f (x); we will show that this leads to a contradiction. If x
is not a dyadic rational, then for every n, x lies in a uniquely determined interval of the
form [iÛ2nÒ (i + 1)Û2n]. Denote by pn the slope of fn in this interval.

CLAIM 4A. pn ! ò for n !1, in fact jò � pnj � õÛ(2n)s.

PROOF. Set y1 := iÛ2n and y2 := (i + 1)Û2n. Then

f ( y1) ½ f (x) + ò Ð ( y1 � x)� õ Ð jy1 � xj1+s and

f ( y2) ½ f (x) + ò Ð ( y2 � x)� õ Ð jy2 � xj1+sÒ
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if n is large enough. Since fn(x) = f ( y1) + pn Ð (x � y1) and fn(x) = f ( y2) � pn Ð ( y2 � x)
and f (x) ½ fn(x), it follows that

f ( y1) ½ f ( y1) + pn Ð (x � y1) + ò Ð ( y1 � x) � õ Ð jy1 � xj1+s and

f ( y2) ½ f ( y2)� pn Ð ( y2 � x) + ò Ð ( y2 � x) � õ Ð jy2 � xj1+s

These are equivalent to pn � ò � õ Ð jx � y1j
s and ò � pn � õ Ð jy2 � xjs, which implies

the claim since jy1Ò2 � xj � 1Û2n.

CLAIM 4B. ò = 1 or ò = �1.

PROOF. Because of pn 2 [�1Ò 1], the only other possibility is jòj Ú 1. This is only
possible if the case pn = šan does not occur after an initial phase. That means that for n
large enough,

pn = 2pn�1 � an if pn�1 ½ 0 and

pn = 2pn�1 + an if pn�1 � 0

But as we saw in the proof of Claim 3A, each of these two cases can happen only
finitely many times in a row, after which time pn changes its sign. Therefore the pn must
converge to 0. But this is also impossible, because if we choose n large enough so that
0 � pn�1 � ¢ and 1�an � ¢, then pn = 2pn�1�an � �1+3¢, a contradiction. Similarly
for pn = 2pn�1 + an.

[Note that the arguments of Claim 4A and Claim 4B imply that f 0(x) = �1 or 1 for
all x 2 (0Ò 1) except for a Lebesgue null set.]

CLAIM 4C. ò = š1 is impossible.

PROOF. Assume ò = 1. Claim 4A now says that 1 � pn � õÛ(2n)s. Since pn � an,
we also have 1 � an � 1 � pn. Therefore we get a contradiction to (2n)s(1 � an) ! 1.
Similarly for ò = �1.

All of this proves Claim 4.

THEOREM 1. There exist uncountably many different Lipschitz functions f :R 7! R

with f (0) = 0 such that for all s Ù 0 one has ]hsf (x) = (�1Ò 1) if x is a dyadic number
and ]hsf (x) = ; otherwise.

PROOF. We extend f in Proposition 2 to all of R. Since f (0) = f (1) = 0, we may
extend f periodically as a Lipschitz function. By the same arguments as in Claim 3
we have ]hs f (x) = (�1Ò 1) if x is an integer. In particular, we have f (0) = 0 and
f (1Û2) = f1(1Û2) = a1Û2. Changing a1, we obtain uncountably many functions, different
at 1/2 and annulling 0, such that they share the same s-Hölder subdifferential for all
s Ù 0.

COROLLARY 1. There exist uncountably many distinct nonnegative Lipschitz func-
tions on R of compact support such that for all s Ù 0 the functions share the same
s-Hölder subdifferential. Moreover such a function, b, only countably has ]hsb(x) 6² f0g.
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PROOF. Define b:R 7! R by b(x) := f (x) for x 2 [0Ò 1] and 0 otherwise. Then b is a
nonnegative bump and for all s Ù 0

]hsb(x) =

8>>><
>>>:

(�1Ò 1) if x 2 (0Ò 1) is dyadic,
; if x 2 (0Ò 1) is not dyadic,
[0Ò 1) if x = 0, and (�1Ò 0] if x = 1,
f0g otherwise.

Theorem 1 assures us that we may choose uncountably many such f ’s.

REMARK 1. (i) Note that if f is s-Hölder smooth at x then f is differentiable at x and
]hs f (x) is a singleton. All the Lipschitz functions in Theorem 1 are nowhere s-Hölder
smooth for every s Ù 0, and therefore are nowhere Lipschitz smooth. Moreover, from
Claim 3A we see that all the Lipschitz functions in Theorem 1 achieve (strict) local
minima at dyadic rationals and nowhere else.

(ii) Dyadic translation and dilation each produce countably many different Lipschitz
functions sharing the same Hölder subdifferentials. For any Lipschitz function f given
by Theorem 1, we define fn:R 7! R by fn(x) := 1

2n f (2nx) with n 2 N. Then ]hs fn = ]hs f ,
and fn(0) = 0 = f (0). By the construction f (x) Ù 0 if 0 Ú x Ú 1. Now fn( 1

2 ) = 1
2n f (2n�1) =

0 6= a1
2 = f ( 1

2 ). If nÒm 2 N and n 6= m, we have fm 6= fn + Constant, because the periods
of fn and fm are different.

We may also define fb:R 7! R by fb(x) := f (x + b) � f (b) for any dyadic number b.
Then ]hs fb = ]hs f , and fb(0) = f (0). For infinitely many dyadic number b, fb( 1

2 ) 6= f ( 1
2 ).

If not, we have fb( 1
2 ) = f ( 1

2 ) for all dyadic rationals except for a finite number of them.
By density we have f ( 1

2 + x) = f (x) + f ( 1
2 ) for all x 2 R. In particular, when x = 1

2 we
have 0 = f (1) = 2f ( 1

2 ) = a1 Ù 0. This is a contradiction.
(iii) Note that the proximal normal cone and approximate normal cone for a locally

Lipschitz function f are:

Np
epi f

�
xÒ f (x)

�
:=

n
t(òÒ�1) : ò 2 ]p f (x)Ò t Ù 0

o
[
n

(0Ò 0)
o
Ò

Na
epi f

�
xÒ f (x)

�
:=

n
t(òÒ�1) : ò 2 ]a f (x)Ò t Ù 0

o
[
n
(0Ò 0)

o


We thus see that the Lipschitz functions in Theorem 1 have the following properties:

Np
epi f

�
xÒ f (x)

�
=

8<
:
n
t(òÒ�1) : �1 Ú ò Ú 1Ò t Ù 0

o
[
n

(0Ò 0)
o

if x is dyadic,n
(0Ò 0)

o
otherwise.

(2)

Na
epi f

�
xÒ f (x)

�
=
n

t(òÒ�1) : �1 � ò � 1Ò t Ù 0
o
[
n
(0Ò 0)

o
for every x 2 R.

It is well known that the set of points in the boundary of epi f for which Np
epi f

�
xÒ f (x)

�
6=

f(0Ò 0)g is dense in bdry(epi f ). (2) shows that
n�

xÒ f (x)
�

: Np
epi f

�
xÒ f (x)

�
6= f(0Ò 0)g

o
may

be countable. Indeed by appropriately choosing fang we may ensure that both x and f (x)
are dyadic rationals, and so the proximal normal cone is non-trivial only at a subset of
the dyadic rationals in the plane. For s ½ ¢ Ù 0 an appropriate sequence is given by
an := 1 � (1 � 2�k)n for k a sufficiently large integer.
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(iv) If f is differentiable at x 2 U, then ]hs f (x) ² f f 0(x)g. Therefore ]hs f is
singleton or empty almost everywhere, and there is no Lipschitz function f such that
]hs f (x) = (�1Ò 1) for every x 2 R.

3. Further applications. Theorem 1 allows us to construct Lipschitz functions
with prescribed Hölder subdifferentials. In the sequel we assume 0 Ú s � 1. Given a set
D ² R and a function f defined on R, by f�1 we denote the inverse function of f , and we
define f�1(D) := fx j f (x) 2 Dg.

DEFINITION 3. Assume h: U 7! R. h is said to be C1Òs on U provided that h is
differentiable on U, with h0 being locally s-Hölder continuous on U, i.e., for each x 2 U
there exists K Ù 0 such that jh0( y) � h0(z)j � Kjy � zjs whenever y and z are near x.

An application of the mean value theorem shows that each C1Òs function defined on
U is everywhere s-Hölder smooth.

LEMMA 1. A vector v is an s-Hölder subgradient of f at x if and only if on some
neighbourhood of x there is a C1Òs function h � f with h(x) = f (x), h0(x) = v.

PROOF. Suppose there exists an h being C1Òs with v = h0(x), h(x) = f (x), and f ½ h
on a neighbourhood of x. Choose é Ù 0 such that h0 is s-Hölder continuous with Hölder
constant K and exists by the mean value theorem an ë between x and y with

h( y) =
h
h( y) � h(x) � h0(x)( y � x)

i
+ h(x) + h0(x)( y � x)

=
�
h0(ë)� h0(x)

�
( y � x) + h(x) + h0(x)( y � x)

½ �Kjy � xj1+s + h(x) + h0(x)( y � x)

Since f ( y) ½ h( y) ½ f (x) + h0(x)( y � x) � Kjy � xj1+s for y 2 (x � éÒ x + é), we have
v 2 ]hs f (x). Conversely, from Definition 1 we need to verify that h:R 7! R defined by
h( y) := f (x) + ò( y � x)� õjy � xj1+s is C1Òs with respect to y.

CLAIM 1. If 0 Ú s � 1, then (1 + t)s � 1 + ts for 0 � t Ú +1.

PROOF. Letû(t) := 1+ts�(1+t)s. The claim follows from:û0(t) = s
�
ts�1�(1+t)s�1

�
½

0 and û(0) = 0.

CLAIM 2. h(t) := f (x) + ò Ð t�õ Ð jtj1+s is differentiable and h0 is s-Hölder continuous.

PROOF.

h0(t) =

8><
>:
ò � õ(1 + s)ts if t Ù 0
ò + õ(1 + s)(�t)s if t Ú 0
ò if t = 0.

(i) If t1 ½ t2 Ù 0, by Claim 1 we have

ts
1 � ts

2 = ts
2

h
(t1Ût2)s � 1

i
� ts

2(t1Ût2 � 1)s = (t1 � t2)s

The case that 0 Ù t1 ½ t2 is similar.
(ii) If either t1 or t2 is 0, then ts

1 � ts
2 � jt1 � t2js is clearly true.
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(iii) If t1 Ù 0 Ù t2, then

ts
1 + (�t2)s � jt1 � t2j

s + jt1 � t2j
s = 2jt1 � t2j

s

Hence jh0(t1) � h0(t2)j � 2(1 + s)õjt1 � t2js for t1 and t2 near 0.
In R we know that ò 2 ]�f (x), the Dini subdifferential, if and only if there is another

locally Lipschitz function h such that (i) f ( y) ½ h( y) for all y near x, h(x) = f (x), and
(ii) h0(x) = ò and h0 is continuous at x. Comparing this with Lemma 1 we see that the
more restrictive the subdifferential the more restrictive the derivative of h.

LEMMA 2. (i) Let g and g�1 both be C1Òs. Then

]hs f Ž g(x) = g0(x)]hs f (z) with z = g(x)

In particular ]hs f Ž g(x) = ; if and only if ]hs f (z) = ; where z = g(x).
(ii) Let g be C1Òs and f be locally Lipschitz. If g0(x) = 0, then ]hs f Ž g(x) = f0g.

PROOF. (i) Suppose for a C1Òs function h we have f ( y) ½ h( y) for y near g(x)
and f

�
g(x)

�
= h

�
g(x)

�
. Then f

�
g( y)

�
½ h

�
g( y)

�
for y near x. Since the map y !

h0
�
g( y)

�
g0( y) is s-Hölder continuous around x, Lemma 1 shows that h0

�
g(x)

�
g0(x) 2

]hs f Ž g(x), thus g0(x)]hs f (z) ² ]hs f Ž g(x) with z = g(x). Conversely let ò 2 ]hs f Ž g(x).
Then there exists h being C1Òs such that f

�
g( y)

�
½ h( y) for y near x. We have f ( y) ½

h
�
g�1( y)

�
for y near g(x). Since the map y ! h0

�
g�1( y)

�
(g�1)0( y) is s-Hölder continuous

around g(x), Lemma 1 shows (h Ž g�1)0
�
g(x)

�
= h0(x)Ûg0(x) 2 ]hs f (z) with z = g(x),

so we have h0(x) 2 g0(x)]hs f (z) with z = g(x). That is ]hs f Ž g(x) ² g0(x)]hs f (z) where
z = g(x).

(ii) Assume the Lipschitz constant of f around g(x) is K and the s-Hölder constant of
g0 around x is K̂. By the mean value theorem there exists ë 2 [xÒ x + h] with

j f Ž g(x + h)� f Ž g(x)j � Kjg(x + h) � g(x)j = Kjg0(ë) Ð h � g0(x) Ð hj � KK̂h1+s

This means 0 2 ]hs f Ž g(x). On the other hand,þþþþþ f Ž g(x + h)� f Ž g(x)
h

þþþþþ � K

þþþþþg(x + h)� g(x)
h

þþþþþ Ò
we have ( f Ž g)0(x) = 0. Hence ]hs f Ž g(x) = f0g.

It is well known that for a real-valued function g with domain an open interval, 4,
the inverse g�1 exists if and only if g is strictly monotone on 4. If we assume that g is
C1 and g0(x) 6= 0 then g�1 exists locally around x. In Lemma 2(i) we only need to assume
that g�1 exists locally.

LEMMA 3. Let U be an open subset of R. Suppose that f : U 7! (�1Ò+1] is lower
semicontinuous, and x 2 U. Suppose further that g is s-Hölder smooth at x. Then f + g
is s-Hölder subdifferentiable at x if and only if f is s-Hölder subdifferentiable at x.
Furthermore

]hs( f + g)(x) = ]hs f (x) + g0(x)
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PRESCRIBED HÖLDER SUBDIFFERENTIALS 505

PROOF. It suffices to show ]hs( f + g)(x) ² ]hs f (x) + ]hsg(x). Let ò 2 ]hs( f + g)(x).
By assumption there exist õ1, õ2, é Ù 0 such that

�õ1jy � xj1+s � g( y)� g(x)� g0(x)( y � x) � õ1jy � xj1+sÒ

f ( y) + g( y)� f (x) � g(x) + õ2jy � xj1+s ½ ò( y � x)Ò

whenever jy � xj Ú é. Then

f ( y) � f (x) + (õ1 + õ2)jy � xj1+s

½ f ( y) � f (x) + õ2jy � xj1+s + g( y) � g(x) � g0(x)( y � x)

½
�
ò � g0(x)

�
( y � x)

Note that if ]hs f (x) 6= ;, then ]hs( f + g)(x) 6= ;, conversely if ]hs( f + g)(x) 6= ; then
f = ( f + g) � g shows ]hs f (x) 6= ;.

We may now formulate our main application:

THEOREM 2. Assume f Ò g:R 7! R are locally s-Hölder continuous functions with
f ½ g and f 6� g. Define FÒG:R 7! R by

F(x) :=
Z x

0
f (s) ds and G(x) :=

Z x

0
g(s) ds

Set D1 := fx j x 2 R is dyadicg. Then there exist uncountably many locally Lipschitz
functions h, differing by more than a constant, on R with

]hsh(x) =

8>><
>>:
�
g(x)Ò f (x)

�
if x 2 fy j g( y) Ú f ( y)g \ (F �G)�1(D1),

; if x 2 fy j g( y) Ú f ( y)g n (F �G)�1(D1),
fg(x)g if f (x) = g(x).

PROOF. By Theorem 1 we may choose a Lipschitz H on R with

]hsH(x) =
² (0Ò 1) if x 2 D1,
; otherwise.

(3)

Since f 6� g, for some x0 we have f (x0) Ù g(x0). There exists é Ù 0 such that f Ù g on
[x0 � éÒ x0 + é]. Since H is periodic, by translation and dilation (see Remark 1(ii)) we
may assume at least one period of H is a subset of [(F � G)(x0 � é)Ò (F � G)(x0 + é)].
Now (F�G)0 = f � g implies that F�G is C1Òs. When f (x) 6= g(x) we have (F�G)0 6= 0
around x, and the inverse function theorem in [7] shows that F �G is locally invertible
around x and the local inverse is C1Òs around (F� G)(x). By Lemma 2 we have

]hsH Ž (F �G)(x) =

8>><
>>:
�
0Ò f (x) � g(x)

�
if F(x) �G(x) 2 D1 and f (x) Ù g(x),

; if F(x) �G(x) 62 D1 and f (x) Ù g(x),
f0g if f (x) = g(x).

Since G is C1Òs, it follows from Lemma 3 that

]hs

�
G + H Ž (F �G)

�
(x) =

8>><
>>:
�
g(x)Ò f (x)

�
if F(x) � G(x) 2 D1 and f (x) Ù g(x),

; if F(x) � G(x) 62 D1 and f (x) Ù g(x),
fg(x)g if f (x) = g(x).
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Denote h := G + H Ž (F� G). Therefore,

]hsh(x) =

8>><
>>:
�
g(x)Ò f (x)

�
if x 2 fy j f ( y) Ù g( y)g \ (F� G)�1(D1),

; if x 2 fy j f ( y) Ù g( y)g n (F� G)�1(D1),
fg(x)g if f (x) = g(x).

(4)

By Theorem 1 plus translation and dilation we can choose uncountably many Lipschitz
functions H1, different from H by more than a constant, which satisfy (3) and have at
least one period as a subset of [(F � G)(x0 � é)Ò (F � G)(x0 + é)]. Then h1:R 7! R

defined by h1(x) :=
�
G + H1 Ž (F � G)

�
(x) also satisfies (4). Now there exist y1Ò y2 2

[(F � G)(x0 � é)Ò (F � G)(x0 + é)] such that H( y1) � H1( y1) 6= H( y2) � H1( y2). Write
yi = (F � G)(xi). Then (h � h1)(x1) = (H � H1) Ž (F � G)(x1) = (H � H1)( y1) 6=
(H �H1)( y2) = (H � H1) Ž (F �G)(x2) = (h � h1)(x2).

REMARK 2. Assume that f Ò g:R 7! R are locally s-Hölder continuous with f 6� g.
With the same notations Theorem 2 becomes:

]hsh(x)

=

8>><
>>:
�
minfg(x)Ò f (x)gÒmaxfg(x)Ò f (x)g

�
if x 2 fy j g( y) 6= f ( y)g \ (F �G)�1(D1),

; if x 2 fy j g( y) 6= f ( y)g n (F �G)�1(D1),
fg(x)g if f (x) = g(x).

As an example, let f Ò g:R 7! R be given by f (x) := sin2(xÛ2) and g(x) := 1Û2. Then there
exist uncountably many Lipschitz functions, h, on R differing by more than constants
such that ]ph(x) =

8>><
>>:
�
minfsin2(xÛ2)Ò 1Û2gÒmaxfsin2(xÛ2)Ò 1Û2g

�
if x 2 R n A with sin x dyadic,

; if x 2 R n A with sin x non-dyadic,
f1Û2g if x 2 A,

where A := fkô + ôÛ2 j k is any integerg.

Note that, in general, if f Ù g on R, the strict monotonicity of F �G shows:

D :=
n

x j
�
F(x)� G(x)

�
2 D1

o
is countable,

and we have the following Corollary:

COROLLARY 2. Suppose f and g are locally s-Hölder continuous functions with f (x)Ù
g(x) for all x 2 R. Then there exists a countable dense set D ² R such that there exist
uncountably many locally Lipschitz functions h, differing by more than a constant, on R
with

]hsh(x) =
( �

g(x)Ò f (x)
�

if x 2 D,
; otherwise.
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Recall the approximate subdifferential [9, 8] and the symmetric subdifferential [10]
are given by:

]ah(x) :=
n

lim
i!1

òi : òi 2 ]ph(xi)Ò xi ! xÒ h(xi) ! h(x)
o
Ò

]sh(x) := ]ah(x) [
�
�]a(�h)(x)

�


If h is Lipschitz near x, we have the Clarke subdifferential: ]ch(x) = co ]ah(x) where “co”
stands for the convex hull. Borwein and Fitzpatrick [3] have shown that in one dimension
the symmetric subdifferential and the Clarke subdifferential are the same. The fact that,
when s = 1, Theorem 2 holds for the proximal subdifferentials shows:

COROLLARY 3. Suppose f and g are locally Lipschitz functions on R with f 6� g.
Then there exist uncountably many locally Lipschitz functions, differing by more than a
constant, on R such that they share the same approximate subdifferential everywhere.
For each such Lipschitz function h one has:

]ch(x) = ]sh(x) = ]ah(x) = co
n
g(x)Ò f (x)

o
for every x 2 R
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