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BLOCKS OF HOMOGENEOUS EFFECT ALGEBRAS

GEJZA JENCA

Effect algebras, introduced by Foulis and Bennett in 1994, are partial algebras which
generalise some well known classes of algebraic structures (for example orthomodular
lattices, MV algebras, orthoalgebras et cetera). In the present paper, we introduce
a new class of effect algebras, called homogeneous effect algebras. This class includes
orthoalgebras, lattice ordered effect algebras and effect algebras satisfying the Riesz
decomposition property. We prove that every homogeneous effect algebra is a union
of its blocks, which we define as maximal sub-effect algebras satisfying the Riesz de-
composition property. This generalises a recent result by Riecanova, in which lattice
ordered effect algebras were considered. Moreover, the notion of a block of a homo-
geneous effect algebra is a generalisation of the notion of a block of an orthoalgebra.
We prove that the set of all sharp elements in a homogeneous effect algebra E forms
an orthoalgebra Es. Every block of Es is the centre of a block of E. The set of
all sharp elements in the compatibility centre of E coincides with the centre of E.
Finally, we present some examples of homogeneous effect algebras and we prove that
for a Hilbert space M with dim(H) > 1, the standard effect algebra £ (H) of all effects
in H is not homogeneous.

1. INTRODUCTION

Effect algebras (or D-posets) have recently been introduced by Foulis and Bennett
in [8] for the study of foundations of quantum mechanics. (See also [15, 10].) The
prototype effect algebra is {£(H),©,0, / ) , where H is a Hilbert space and £(H) consists
of all self-adjoint operators A of H such that 0 ^ A ^ / . For A, B € 5(11), A © B is
denned if and only if A + B ^ 1 and then A © B = A + B. £(H) plays an important role
in the foundations of quantum mechanics [16, 3].

The class of effect algebras includes orthoalgebras [9] and a subclass (called MV-effect
algebras or Boolean. D-posets or Boolean effect algebras), which is essentially equivalent
to MV-algebras, introduced by Chang in [4] (see for example, [6, 1] for results on MV-
algebras in the context of effect algebras). The class of orthoalgebras includes other
classes of well-known sharp structures, like orthomodular posets [17] and orthomodular
lattices [14, 2].

Received 2nd October, 2000
This research is supported by grant G-l/7625/20 of MS SR, Slovakia

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 SA2.00+0.00.

81

https://doi.org/10.1017/S0004972700019705 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019705


82 G. Jenca [2]

One of the most important results in the theory of effect algebras was proved by
Riecanova in her paper [20]. She proved that every lattice ordered effect algebra is a union
of maximal mutually compatible sub-effect algebras, called blocks. This result generalises
the well-known fact that an orthomodular lattice is a union of its maximal Boolean
subalgebras. Moreover, as proved in [13], in every lattice ordered effect algebra E the set
of all sharp elements forms a sub-effect algebra Es, which is a sub-lattice of E\ Es is then
an orthomodular lattice, and every block of Es is the centre of some block of E. On the
other hand, every orthoalgebra is a union of maximal Boolean sub-orthoalgebras. Thus,
although the classes of lattice ordered effect algebras and orthoalgebras are independent,
both- lattice ordered effect algebras and orthoalegebras are covered by their blocks. This
observation leads us to a natural question:

QUESTION 1.1. Is there a class of effect algebras, say X, with the following properties?

• X includes orthoalgebras and lattice ordered effect algebras.

• Every E € X is a union of (some sort of) blocks.

In the present paper, we answer this question in the affirmative. We introduce a
new class of effect algebras, called homogeneous effect algebras. This class includes lattice
ordered effect algebras, orthoalgebras and effect algebras satisfying the Riesz decompo-
sition property (see for example [18]). The blocks in homogeneous algebras are maximal
sub-effect algebras satisfying the Riesz decomposition property. We prove that the set of
all sharp elements Es in a homogeneous effect algebra E forms a sub-effect algebra (of
course, Es is an orthoalgebra) and every block of Es is the centre of a block of E. In the
last section we present some examples of homogeneous effect algebras and we prove that
£ (H) is not homogeneous unless dim(H) ^ 1.

2. DEFINITIONS AND BASIC RELATIONSHIPS

An effect algebra is a partial algebra (E; ©, 0,1) with a binary partial operation ffi
and two nullary operations 0,1 satisfying the following conditions.

(El) If a © b is defined, then b © a is defined and a(Bb = b(Ba.

(E2) If a © b and (a(Bb) (Be are defined, then b © c and a © (b ffi c) are defined

and (a © b) © c = a © (b © c).

(E3) For every a £ E there is a unique a' € E such that o © o; = 1.

(E4) If a © 1 exists, then a — 0

Effect algebras were introduced by Foulis and Bennett in their paper [8]. Inde-
pendently, Kopka and Chovanec introduced an essentially equivalent structure called a
D-poset (see [15]). Another equivalent structure, called a weak orthoalgebra was intro-
duced by Giuntini and Greuling in [10].

For brevity, we denote the effect algebra (E, ffi, 0,1) by E. In an effect algebra E,
we write a ^ b if and only if there is c € E such that a © c = b. It is easy to check that
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every effect algebra is cancellative, thus ^ is a partial order on E. In this partial order,

0 is the least and 1 is the greatest element of E. Moreover, it is possible to introduce a

new partial operation 0 ; b © a is defined if and only if a ^ b and then a © (b © a) — b. It

can be proved that a © b is defined if and only if a ^ b1 if and only if b ^ o'. Therefore,

it is usual to denote the domain of © by _L. If a ± 6, we say that a and 6 are orthogonal.

Let Eo C E be such that 1 € Eo and, for all a, b € Eo with a ^ b, a © b € Eo. Since

a' = 1 0 a and a(Bb= (a? B b)', Eo is closed with respect to © and '. We then say that

(Eo, ©, 0,1) is a sub-effect algebra of E. Another possibility to construct a substructure

of an effect algebra E is to restrict © to an interval [0, a], where a € E, letting a act as

the unit element. We denote such an effect algebra by [0, a]E-

R e m a r k . For our purposes, it is natural to consider orthomodular lattices, orthomodular

posets, MV-algebras, and Boolean algebras as special types of effect algebras. In the

present paper, we shall write briefly "orthomodular lattice" instead of "effect algebra

associated with an orthomodular lattice" and similarly for orthomodular posets, MV-

algebras, and Boolean algebras.

An effect algebra satisfying a i a =>• a = 0 is called an orthoalgebra (see [9]). An

effect algebra E is an orthomodular poset if and only if, for all o, b, c 6 E, a _L b ± c ± a

implies that a © 6 © c exists (see [8]). An orthoalgebra is an orthomodular lattice if and

only if it is lattice ordered.

Let E be an effect algebra. Let C = ( c i , . . . , Cn) be a finite family of elements of E.

We say that C is orthogonal if and only if the sum ci © • • • © c,, exists. We then write

© C = c i©-ff ic n . Forn = 0, wepu t©C = 0. We say that Ran (C) = {cu ... ,Cn} is

the range ofC. Let C = [c\,..., c,,), D = (dl f . . . , d/t) be orthogonal families of elements.

We say that D is a refinement of C if and only if there is a partition P = {Pi,... , Pn}

of {1, . . . , k} such that, for all 1 ^ i ^ n, d = 0 dj. Note that if D is a refinement of

C, then 0 C = 0 D.

A finite subset MF of an effect algebra E is called compatible with cover in X C.E

if and only if there is a finite orthogonal family C = (c\,..., c,,) with Ran(C) C X such

that for every a 6 Mp there is a set A C {1, . . . ,n} with o = 0 C*. C is then called

an orthogonal cover of MF. A subset M of E is called compatible with covers in X C E

if and only if every finite subset of M is compatible with cover in X. A subset M of

E is called internally compatible if and only if M is compatible with covers in M. A

subset M of E is called compatible if and only if M is compatible with covers in E. An

effect algebra E is said to be compatible if E is a compatible subset of E. If {a, b} is a

compatible set, we write a «-> b. It is easy to check that a «-» b if and only if there are

aubi,c € E such that ax ffi c = a, 6i © c = b, and a.i © &i © c exists. A subset M of

E is called mutually compatible if and only if, for all a,b £ M, a «-»• 6. Obviously, every

compatible subset of an effect algebra is mutually compatible. In the class of lattice

https://doi.org/10.1017/S0004972700019705 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019705


84 G. Jenca [4]

ordered effect algebras, the converse also holds. It is well known that in an orthomodular
poset, a mutually compatible set need not to be compatible (see for example [17]).

A lattice ordered effect algebra E is called an MV-algebra if and only if E is compat-
ible (see [6]). An MV-algebra which is an orthoalgebra is a Boolean algebra. Recently, Z.
Riecanova proved in her paper [20] that every lattice ordered effect algebra is a union of
MV-algebras, which are maximal mutually compatible subsets. These are called blocks.
She proved that every block of a lattice ordered effect algebra E is a sub-effect algebra
and a sublattice of E. Note that Riecanova's results imply that every mutually compat-
ible subset of a lattice ordered effect algebra is compatible. Indeed, let M be a mutually
compatible set. Then M can be embedded into a block B, which is an MV-algebra and
hence compatible. Since B is compatible and M C B, M is compatible.

On the other hand, it is easy to prove that every element of an orthoalgebra can be
embedded into a maximal sub-orthoalgebra, which is a Boolean algebra.

We say that an effect algebra E satisfies the Riesz decomposition property if and
only if, for all u, v\, •.., vn € E such that «i ffi • • • ffi un exists and u < v\® •• • ®vn,
there are u\,...,un 6 E such that, for all 1 ^ i ^ n, ut < V{ and u = ui ffi • • • ffi un.
It is easy to check that an effect algebra E satisfies the Riesz decomposition property
if and only if E satisfies the Riesz decomposition property with fixed n = 2. A lattice
ordered effect algebra E satisfies the Riesz decomposition property if and only if E is an
MV-algebra. An orthoalgebra E satisfies the Riesz decomposition property if and only if
E is a Boolean algebra.

Let Ei, E2 be effect algebras. A map <j> : E\ >-*• E2 is called a morphism if and only
if <t>(\) — 1 a n d a l b i m p l i e s t h a t <p(a) 1 <j>(b) a n d t h e n <j>(a ® b) = <j>(a) © <j>(b). A
morphism <j> is an isomorphism if and only if <f> is bijective and 0"1 is a morphism.

DEFINITION 2.1: An effect algebra E is called homogeneous if and only if, for all
u,vi, V2 € E such that V\ ± v2, u < vi ©u2, u ^ (vi © v2)', there are uuu2 such that
Ui ^ Vi, u2 ^ v2 and u = u\ © u2.

PROPOSITION 2.2.

(a) Every orthoalgebra is homogeneous.

(b) Every effect algebra satisfying the Riesz decomposition property is homo-
geneous.

(c) Every lattice ordered effect algebra is homogeneous.

PROOF: For the proof of (a), observe that u ^ v\ © v2 and u ^ (vi ffi v2)' imply
that u ± u and thus u = 0. (b) is obvious. For the proof of (c), let £ be a lattice
ordered effect algebra. Note that Vi ± v2, u ^ (v\ ffi v2)' imply that the set {u,vx,v2} is
mutually orthogonal and thus mutually compatible. Therefore, by [20], {u, vlt v2} can be
embedded into a block B. Since B is an MV-algebra, B satisfies the Riesz decomposition
property, hence E is homogeneous. D
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PROPOSI T I ON 2 . 3 . Let E be a homogeneous effect algebra. Let u,vi,...,vne

E be such that ^i © • • • © un exists, u ^ V\ © • • •©«„ and u ^ (vi ©• • • ©v n ) ' . Then there

arevl,...,vn such that, for all I ^ z ^ n, Vi ^ u< and u = i*i © • • • © un.

P R O O F : (By induction.) For n — 1, it suffices to put «i = u. Assume that the

proposition holds for n = k. Let u, v i , . . . , vk+i be such that « ! © • • • © i>*+i exists,

u < vi © v2 © • • • © v*+i and it ^ («i © t;2 © • • • © vk+\)'. Since £ is homogeneous, there

are U\ ^ Vi and z < v2 © • • • © v/t+i such that u = ui © z. Since

we see that z ^ (i>2 © • • • © «*+i)'- Thus, we may apply induction hypothesis. The rest
is trivial. D

3. BLOCKS OF HOMOGENEOUS EFFECT ALGEBRAS

Let E be an effect algebra. We say that a sub-effect algebra B of E is a block of
E if and only if B is a maximal sub-effect algebra satisfying the Riesz decomposition
property. This definition of a block is consistent with the definition of a block of the
theory of orthoalgebras (maximal Boolean sub-orthoalgebra) and also in the theory of
lattice ordered effect algebras (maximal mutually compatible subset).

In this section, we prove that blocks of homogeneous effect algebras coincide with
the maximal internally compatible subsets, which contain 1. As a consequence, every
homogeneous effect algebra is a union of its blocks.

The main tool we use is the closure operation M t-¥ M which is defined on the
system of all subsets of an effect algebra E in the following way. Let M be a subset of an
effect algebra E. First we define certain subsets Mn (n € N) of E as follows : Mo — M
and for n e N

(1) Mn+i = {x : x ^ y, y' for some y e Mn) U {y 8 x : x s£ y, y' for some y € Mn}.

Then we put M = (J Mn. Note that, for all n € N, Mn C Mn+i and that M = M. In
n€N

an orthoalgebra, M — M \J {0} for every set M.

LEMMA 3 . 1 . Let E be an effect algebra. Let M be an compatible subset of E.
Then M can be embedded into a maximal compatible subset of E.

PROOF: The proof is an easy application of Zorn's lemma and is left to the reader. D

PROPOSITION 3 . 2 . Let E be a homogeneous effect algebra. Let M C E be
a finite compatible set, a, 6 € M, a > b. Let C = (ci , . . . ,ck) be an orthogonal cover
of M. Let A,B C { 1 , . . . , k} be such that a = © ĉ  and b = 0 Cj. Then, there is

i€A ieB

a refinement ofC, say W = (wi,..., wn) and sets Bw Q Aw C { l , . . . , n } such that

is a refinement of (cj)i£/i and {wi)ieBw is a refinement of(ci)ieB- Moreover, we
have Ra.n{W) C Ran(C).
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P R O O F : If \B \ A\ = 0 then B C A and there is nothing to prove.

Let I € N. Assume that Proposition 3.2 holds for all C, A, B with \B\A\ = I. Let
Co, Ao, Bo be as in the assumption of Proposition 3.2, with \B0 \ Ao\ = I + 1.

To avoid double indices, we may safely assume that Ao and Bo are such that, for
some 0 ^ r, s, t < k, B0\A0 = { 1 , . . . , r}, BQDA0 = { r + 1 , . . . , s}, A0\B0 = { s + 1 , . . . , t}.

Write &i = Ci © • • • © Cj+1, d = c / + 2 © : • • © c,, ai = c5+i © • • • © Cf. Since bx © d = b ^

a = ai © d, we see tha t c;+i ^ &i ^ a i . Since Co is an orthogonal family, Q+i ^ oi'- By

Proposition 2.3, this implies tha t there are va+i,...,vt such that , for all s + 1 ^ i ^ t,

V{ < Cj and Q + I = vJ + i ©•••©!;« . Let us construct a refinement of Co, say C\ = (e*), as

follows.

C i = ( C i , . . . , C ( , V 1 + i , . . . , t > t , C | + 2 , . . . , C , , C J + i 6 « « + ! , . • -,Ct @Vt,Ct+i,. . . ,C

Obviously, C\ is a refinement of Co and Ran(Ci) C Ran(Co). Moreover, we have

b = ® ( c i , ...,ct, v,+u ...,vt, c,+2,..., cs)

and

a = 0 ( t V n , • • •, vt, C | + 2 ) . . . , ct, c,+i e v,+i, ...,CtQ vt).

By the latter equations, we can find sets A\, Bi of indices such that a — 0 et, b = 0 e*
iSAi i6Bi

and B\ \ A\ = { 1 , . . . , / } . Moreover, (ej)i€4i is a refinement of (ci)ieA0
 an<i (ei)«eBi is

a refinement of (CJ)J€B0. AS \BI \ Ai\ = I, we may apply the induction hypothesis on
Ci,Ai,Bi to find a refinement W = (wi,...,wn) of Cx with Ran(VK) C Ran(Cj) and
sets Sw C ^ w C { 1 , . . . ,n} such that (wj)ie/iw is a refinement of ( e ^ g ^ and (w
is a refinement of (e^igs,. Obviously, W is a refinement of Co and we see that

Ran(W) C Ran(Ci) C Ran(C0) = Ran(C0).

Similarly, (wi)i£Aw
 i s a refinement of (ci)ieAo and (f>i)ieBw

 i s a refinement of (CJ)J6BO.

This concludes the proof. D

COROLLARY 3 . 3 . Let M be a finite compatible subset of a homogeneous effect
algebra E. Let o, b e M be such that a^b. Then M U {a 0 b} is a compatible set.

PROOF: Let W,AW,BW be as in Proposition 3.2. Then aQb= 0 to,, so W

is an orthogonal cover o f M u f o G b}. i€Aw\Bw g

COROLLARY 3 . 4 . Let M be a finite compatible subset of a homogeneous effect
algebra E. Let a,b G M be such that a Lb. Then M U {a © b) is a compatible set.

PROOF: It is easy to check that, for every compatible set Mo, Mo U Mo = Mo U {a' :
-a 6 Mo} is a compatible set. The rest follows from Corollary 3.3 and from the equation
a © b = (o; 9 by. D

THEOREM 3 . 5 . Let E be an effect algebra. The following are equivalent.
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(a) E satisfies the Riesz decomposition property.

(b) E is homogeneous and compatible.

P R O O F : (a) implies (b): It is evident that E is homogeneous. It remains to prove
that every n-element subset of E is compatible. For n = 1, there is nothing to prove.
For n > 1, let us assume that every (n - l)-element subset of E is compatible. Let
X = {x i , . . . , i n } be a subset of E. By the induction hypothesis, Xo = { x i , . . . ,xn_i}
is compatible. Thus, there is an orthogonal cover of Xo, say C = (c i , . . . , c*) . Since
xn ^ ( © C) © ( © C)' and E satisfies the Riesz decomposition property, there exist y\, j/2
such that yi ^ ( © C ) , y2 < ( © C ) ' and xn = j/i @y2. Since yi ^ (©C1), there are
Zi,..., zk such that, for all 1 ^ i ^ k, zt < c* and j/i = zt © • • • © zk. Consequently,

(zi,ci e zu ..., zfc,ck Q zk,y2)

is an orthogonal cover of X and X is compatible.

(b) implies (a): Let u, v\,v2 € E be such that vi ± u2, w ^ V\ © w2. If «i = 0 or
v2 — 0, there is nothing to prove. Thus, let us assume that v\,v2^ 0. By Proposition 3.2,
vi ^vl(Bv2 implies that there an orthogonal cover W = (wi,..., wm) of {u, vi, v2, vi©v2}
such that, for some Vi C V C { 1 , . . . , m } , we have © Wi = vi © v2 and ® Wj = «i.

<ev «6Vi
This implies that ® Wi = v2. By Proposition 3.2, u ^ vi © v2 implies that there is a

refinement of W, say Q = ( 9 1 , . . . , gn)i and some U C Z C {l,...,n} such that © ^ = u
«et/

and © ft = v\ © «2. Moreover, by Proposition 3.2, we may assume that {qi)i^z is a

refinement of (wi)ieV. This implies that there is Z\ C Z such that © <& = v\. Put

«i = © Qi a n d "2 = © 9»- It remains to observe that u = ui © u2, ui < i»i and
teunZi i€i/n(z\Zi)

u2 ^ v2. D

EXAMPLE 3.6. Let R$ be a 6-element effect algebra with two atoms {a, b}, satisfying
the equation a® a® a = a © 6 © 6 = 1. Since (a, b, b) is an orthogonal cover of R$,
Re is a compatible effect algebra. However, RQ does not satisfy the Riesz decomposition
property, since a ^b © b and a A 6 = 0. This example shows that there are compatible
effect algebras that do not satisfy the Riesz decomposition property.

PROPOSIT1ON 3 . 7 . Let M be a subset of a homogeneous effect algebra E such

that M is compatible with covers in M. Then M is internally compatible.

PROOF: Consider (1). Since each finite subset of M can be embedded into some
Mn, it suffices to prove that, for all n € N, Mn is compatible with covers in M. By
assumption, M = Mo is compatible with covers in M. Assume that, for some n € N, Mn

is compatible with covers in M. Obviously, every finite subset of M n + i can be embedded
into a set of the form

(2) {xuyi exu... ,xk,yk Qxk) C Mn + 1 ,
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where for all 1 ̂  i ^ k we have x{ < yi: «/;' and yt € Mn. D

We now prove the following

CLAIM. Let xit yt be as above. For every cover Co of {j/i , . . . , yk}, there is a refinement
W of Co such that W covers {zi, y\ © X\,..., xk, yk © xk} and Ran(VK) C Ran(C0).

P R O O F OF THE CLAIM: For A; = 0, we may put W = Co. Assume that the Claim
is satisfied for some k = I € N. Let Co be a cover of {j/i , . . . , yi+i} Q Mn. Since Co is
a cover of {j/ i , . . . , y{\ as well, by the induction hypothesis there is a refinement of Co,
say Ci, such that C\ covers {x\, y\ © X\,..., xt,yt © xt} and Ran(Ci) C Ran(C0). As C\
is a refinement of Co, C\ covers {2/1,... ,Vi+i}- Thus, there are ( c j , . . . , Cm) C C\ such
that 7/j+i = C\ © • • • © Cm. Since x(+1 < yt+i, yi+i, Proposition 2.3 implies that there are
z\, • • •, zm such that, for all 1 ̂  i ^ m, Zi ^ c\ and xi+\ = Z\ © • • • © zj. Let us construct
a refinement W of Ci by replacing each of the c '̂s by the pair (z^c* 9 zj. Then W is
a refinement of C\ and VT covers {x\, 3/1 0 ii,...,xj+i,2/;+i © a;/+i}. Moreover, for all
1 ^ i ^ m, Zj ̂  x(+i ^ J/J+I' ^ Cj', hence

Ra,n(W) C Ran(d) C Ran(C0) = Ran(C0).

Now, let MF be a finite subset of Mn+i. We may assume that MF is of the form (2).
By the outer induction hypothesis, Mn is compatible with covers in M, thus {j/i , . . . , t/t} is
compatible with cover in M. Let C be an orthogonal cover of {t/i , . . . , yk} with Ran(C) C
M. By the Claim, there is a refinement W of C, such that W covers MF and Ran(VF) C
Ran(C) C M = M. Thus, Mp is compatible with covers in M and we see that M is
internally compatible. D

The following are immediate consequences of Proposition 3.7.

COROLLARY 3 . 8 .

(a) Let M be an internally compatible subset of a homogeneous effect algebra
E. Then M is an internally compatible set.

(b) Let M be a maximal internally compatible subset of a homogeneous effect
algebra E. Then M = M.

PROPOSITION 3 . 9 . Let E be a homogeneous effect algebra, let M be an in-
ternally compatible set with M = M. Let a,b 6 M, a ^ 6. Then M U {a © b} is an
internally compatible set.

PROOF: Let MF be a finite subset of M. Since M is internally compatible, there is an
orthogonal cover C of MF U {a, 6} with Ran(C) C M. By Corollary 3.3, MFU {a, b, a©b}
is then compatible with cover in Ran(C). Therefore, MF U {a© b} is compatible with
cover in Ran(C). Since Ran(C) C M = M, M U {a © b) is an internally compatible
set. D

As we shall show later in Example 5.6, a sub-effect algebra of a homogeneous effect
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algebra need not to be homogeneous. However, we have the following relationship on the
positive side.

PROPOSITION 3 . 1 0 . Let E be a homogeneous effect algebra. Let F be a sub-
effect algebra of E such that F — F, where the closure is taken in E. Then F is
homogeneous.

PROOF: Let u,vi,V2 € F be such that u ^ v\ © v2 and u ^ (v\ © 112)'- Since E is
homogeneous, there are ui,u2 € E such that wi < v\, u2 ^ v2 and u = ux © u2. For
i e {1,2}, we have ut ^ Vi © v2 and u, ^ (vi © u2)'. Thus, U\,u2 € F = F and F is
homogeneous. D

THEOREM 3 . 1 1 . Let E be a homogeneous effect algebra, let B C E. The fol-
lowing are equivalent.

(a) B is a maximal internally compatible set with 1 e B.

(b) B is a block.

PROOF: Assume that (a) is satisfied. By Corollary 3.8, part (b), B = B. By
Proposition 3.9, this implies that for all a,b € B such that a ^ 6, B U {a Q b} is an
internally compatible set. Therefore, by maximality of B, B is closed with respect to 9.
Since 1 € B, B is a sub-effect algebra of E. Since B is an internally compatible set, B
is a compatible effect algebra. By Corollary 3.8(b), B = B. By Proposition 3.10, this
implies that B is homogeneous. Since B is homogeneous and compatible, Theorem 3.5
implies that B satisfies the Riesz decomposition property.

Assume that (b) is satisfied. By Theorem 3.5, B is an internally compatible subset.
By Lemma 3.1, B can be embedded into a maximal internally compatible subset Bmax of
E. By the above part of the proof, 1 € B C Bmax implies that Bmax is a block. Therefore,
B = Bmax and (a) is satisfied. D

COROLLARY 3 . 1 2 . Let E be a homogeneous effect algebra. Every finite com-
patible subset of E can be embedded into a block.

PROOF: Let M? be a finite compatible subset of E. Let C = (ci,...,Cn) be
an orthogonal cover of Mp. Then Mp U {1} is a compatible set, with cover C+ =
(ci , . . . ,Cn, ( 0 C ) ' ) . Thus, MFU{l}uRan(C + ) is an internally compatible set contain-
ing 1. Therefore, by Lemma 3.1, Mp U {1} U Ran(C+) can be embedded into a maximal
compatible subset B with 1 € B. By Theorem 3.11, B is a block. D

COROLLARY 3 . 1 3 . Let E be a homogeneous effect algebra. Then

E = \J{B : B is a block ofE).

PROOF: By Corollary 3.12. D

COROLLARY 3 . 1 4 . For an effect algebra E, the following are equivalent.
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(a) E is homogeneous.

(b) Every finite compatible subset can be embedded into a block.

(c) Every finite compatible subset can be embedded into a sub-effect algebra
of E satisfying the Riesz decomposition property.

(d) The range of every finite orthogonal family can be embedded into a block.

(e) The range of every finite orthogonal family can be embedded into a sub-
effect algebra satisfying the Riesz decomposition property.

(f) Tie range of every orthogonal family with three elements can be embedded
into a block.

(g) The range of every orthogonal family with three elements can be embedded
into a sub-effect algebra satisfying the Riesz decomposition property.

P R O O F : (a) = > (b) is Corollary 3.12. The implication chains (b) = > (c) =>•
(e) ==> (g) and (b) =>• (d) ==> (f) ==• (g) are obvious. To prove that (g) ==> (a),
assume that E is an effect algebra satisfying (g), and let u,Vi,v2 € E be such that
u ^ i>i © v2, u ^ (vi © V2)'. Then (u, v\, v2) is an orthogonal family with three elements.
By (g), {u, vi,v2} can be embedded into a sub-effect algebra R satisfying the Riesz
decomposition property. Thus, there are ui,u2 € R C E such that ui ^ v\, u2 ^ v2 and
u — U\ © u2. Hence, E is homogeneous. D

QUESTION 3.15. Can every compatible subset of a homogeneous effect algebra E be
embedded into a block ? This is true for orthomodular posets (see for example [17])
and for lattice ordered effect algebras. By Theorem 3.11 and Lemma 3.1, this question
reduces to the question, whether a compatible subset can be embedded into an internally
compatible subset containing 1.

4. COMPATIBILITY CENTRE AND SHARP ELEMENTS

For a homogeneous effect algebra E, we write

K(E) = (~){B : B is a block of E}.

We say that K(E) is the compatibility centre of E. Note that K(E) = K(E) and hence,
by Proposition 3.10, K(E) is homogeneous.

An element a of an effect algebra is called sharp if and only if o A a' = 0. We denote
the set of all sharp elements of an effect algebra E by Es- It is obvious that an effect
algebra E is an orthoalgebra if and only HE — Es- An element a of an effect algebra E is
called principal if and only if the interval [0, o] is closed with respect to ©. Clearly, every
principal element in an effect algebra is sharp. A principal element a of an effect algebra
is called central if and only if for all b € E there is a unique decomposition b = b\@b2 with
b\ ^ a, b2 ^ a'. The set of all central elements of an effect algebra E is called the centre
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of E and is denoted by C(E). In [11], the centre of an effect algebra was introduced and
the following properties of C(E) were proved.

PROPOSITION 4 . 1 . Let E be an effect algebra. Then

• C(E) is a sub-effect algebra of E.

• C(E) is a Boolean algebra. Moreover, for all a € C{E) and x 6 E, a A x
exists.

• For all a € C(E), the map <$> : E i-> [0, a]E given by <j)(x) — a A x is a
morphism.

• For all a 6 C(E), E is naturally isomorphic to [0, O]E X [0, a']^. Moreover,
for all effect algebras E\, E2 such that there is an isomorphism <j> : E >-»
Ei x E2, 4>~l{l, 0) and <f>~l{0,1) are central in E.

A subset / of an effect algebra E is called an ideal if and only if the following
condition is satisfied : a,b G I, a J. b is equivalent to a © b G / . An ideal / is called a
Riesz ideal if and only if, for all i, a, b such that i G / , a ± b and i ^ a © b, there are i\,i2

such that ii ^ a, i2 ^ b and i ^ i\ © i2. Riesz ideals were introduced in [12].

For a lattice ordered effect algebra E, it was proved in [19], that C(E) = K(E)nEs-
Moreover, as proved in [13], for a lattice ordered effect algebra E, Es is a sublattice of
E, a sub-effect algebra of E, and every block of Es is the centre of a block of E. In the
remainder of this section, we shall extend some of these results to the class of homogeneous
effect algebras.

PROPOSITION 4 . 2 . Let a be an element of a homogeneous effect algebra E.
The following are equivalent.

(a) a € Es-

(b) a is central in every block of E which contains a.

(c) a is central in some block of E.

PROOF: (a) implies (b): Assume that a € E is sharp, let B be a block of E such
that a € B. Since a is sharp in E, a is sharp in B. We shall prove that a is principal
in B. Let x\,x2 € B be such that x\,x2 ^ a, X\ ± x2. Since B is a sub-effect algebra
of E, x\ © x2 € .B. Since B is internally compatible, i i © a;2 <-> a in B. By [5],
Lemma 2, Xi © x2 <-> a in B implies that there are y\,y2 € B such that y\ ^ a, y2 ^ a'
and i i © x2 = ?/i © t/2. Since B satisfies the Riesz decomposition property, y2 ^ xi © i 2

implies that there are t\,t2 € B such that t\ ^ i j , t2 ^ x2 and j / 2 = tj ©t2. For i £ {1,2},
t{ ^ a, a'. Since a is sharp in B, this implies that <i = t2 = 0. Thus, xi © a;2 = ?/i ^ a
and a is principal in B and hence [0, a](~\ B is an ideal in B. Since B satisfies the Riesz
decomposition property, every ideal in B is a Riesz ideal. By [5], an element a of an
effect algebra is central if and only if [0, a] is a Riesz ideal. Therefore, a is central in B.

(b) implies (c): By Corollary 3.13, every clement of E is in some block.
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(c) implies (a): Let a € C(B) for some block B, let b ^ a,a'. Since B = B, b 6 B.
Thus, 6 = 0 and a is sharp. D

COROLLARY 4 . 3 . Let a be an dement of an effect algebra E satisfying the Riesz

decomposition property. The following are equivalent.

(a) a € Es.

(b) aeC(E).

(c) a is principal.

PROOF: By Proposition 4.2, (a) is equivalent to (b). In every effect algebra, all
principal elements are sharp. Every central element is principal. D

COROLLARY 4 . 4 . For a homogeneous effect algebra E, Es is a sub-effect algebra
of E. Moreover, Es is an orthoalgebra.

PROOF: Obviously, 0,1 £ Es and Es is closed with respect to '. Assume a, b € Es,
a -L b. Then {a, b} is a finite compatible set. Thus, by Corollary 3.12, {a, 6} can be
embedded into a block B. By Proposition 4.2, a,b € C(B). Since C(B) is a sub-effect
algebra of B, a © b € C(£ ) . By Proposition 4.2, C(£) C Es, thus a © 6 € £S-

Obviously, £5 is an orthoalgebra. D

Since, for a homogeneous effect algebra E, Es is an orthoalgebra, every compatible
subset of Es can be embedded into a block of Es, which is a Boolean algebra.

PROPOSITION 4 . 5 . Let E be a homogeneous effect algebra. For every block
B° in Es and for every block B of E such that B° C B, B° = C{B).

P R O O F : Let B° be a block of Es. Let B be a block of E with B° C B. By
Proposition 4.2, B° C C{B). Since S° is a block of Es and C(B) is a Boolean algebra,
B° C C(B) implies that £ ° = C(5) . D

QUESTION 4.6. Let B b e a block of a homogeneous effect algebra E. Is it true that
C{B) is a block of ES1

PROPOSITION 4 . 7 . In a homogeneous effect algebra, C{E) = C(K(E)) =

K(E)S.

P R O O F : It is evident that C{E) C C(K{E)) C K(E)S. Let a € /f(£)s- We
shall prove that [0,a] is a Riesz ideal. By Lemma 2 of [5], this implies that a e £?(£).
Suppose x\, £2 ^ «! ^1 -L i2- Then {i i , X2} can be embedded into a block B of £. Since
a e A'(-E), a € B. Since a is sharp, o is central in B. Thus, a is principal in £? and hence
X\ ffi 12 ^ a- Therefore, a is principal in E. Let i € [0, a], 2; J_ y, i ^ x © y. Similarly as
above, {a, x, y} can be embedded into a block B of E, such that a € C{B). Obviously,
i ^ (x ffi y) A a and, since a is central in B, (x ffi y) A a = (x A a) © (y A a). Thus, [0, a] is
a Riesz ideal. D
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Figure 1.

QUESTION 4.8. Let E be a homogeneous effect algebra. Does K(E) satisfy the Riesz
decomposition property? This is true for orthoalgebras and for lattice ordered effect
algebras.

5. EXAMPLES AND COUNTEREXAMPLES

It is easy to check that a direct product of a finite number of homogeneous effect
algebras is a homogeneous effect algebra.

EXAMPLE 5.1. Let E\ be an orthoalgebra. Let E<z be an effect algebra satisfying the
Riesz decomposition property, which is not an orthoalgebra. If either of E\, E2 is not
lattice ordered, then E\ x E2 is an example of a homogeneous effect algebra which is not
lattice ordered. Moreover, since Ei is not an orthoalgebra, E\ x Ez is not an orthoalgebra.

Another possibility to construct new homogeneous effect algebras from old is to
make horizontal sums (sometimes called 0,1 -postings), which means simply identifying
the zeros and ones of the summands.

As shown in the next example, it is possible to construct a lattice ordered (and hence
homogeneous) effect algebra by pasting of two MV-algebras in a central element.

EXAMPLE 5.2. We borrowed the basic idea for this example from Cohen [7]. Consider
a system consisting of a firefly in a box pictured in a Figure 1. The box has five windows,
separated by thin lines. We shall consider two experiments on this system :

(A) Look at the windows a, b, c.

(B) Look at the windows c, d, e.

Suppose that the window c is covered with a grey filter. Unless the firefly is shining
very brightly at the moment we are performing the experiment, we cannot be sure that
we see the firefly in the c window. The outcomes of experiment (A) are
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Figure 2: An eighteen element lattice ordered effect algebra

(a) We see the firefly in window a.
(6) We see the firefly in window b.
(c) We see the firefly in window c, with the level of (un)certainity 1/2.

(c © c) We see the firefly in window c.

The outcomes of (B) are similar. The unsharp quantum logic of our experiment is
an eighteen element lattice ordered effect algebra E with five atoms a, b, c, d, e, satisfying

The Hasse diagram of E is given by Figure 2. This effect algebra is constructed by pasting
two MV-algebras

A = {0, a, 6, c, a © c , 6©c, c 0 c , a',&', (c©c)',c', 1}

and
B = {0,c,d,e,c®c,c@d,c(Be,d',e', (c© c)',c', l} .

A and B are then blocks of E. The compatibility centre of E is the MV-algebra

K{E) = {0,c,c©c,(c©c)',c',l}

and the centre of E is {0, c © c,(c(B c)', l}. E$ forms a twelve-element orthomodular
lattice with two blocks; each of them is isomorphic to the Boolean algebra 23 and they
are pasted in one of their atoms (namely c®c).
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Figure 3: A non-lattice ordered homogeneous effect algebra

EXAMPLE 5.3. Let E be an eighteen element effect algebra with six atoms a, b, c, d, e, / ,
satisfying

The Hasse diagram of E is given by Figure 3.

This effect algebra is constructed by pasting of three blocks: two Boolean algebras

B1 = {0,a,6,C,a' I6
/
)c ' , l}

and an MV-algebra

B3 = {O,c,d,

By (3), it is easy to see that the range of every orthogonal family with three elements
can be embedded into a block. Thus, by Corollary 3.14, E is homogeneous. All elements
except for d,d' ,c(Bd,d®e are sharp and Es is an orthoalgebra with fourteen elements,
called the Wright triangle, which is not an orthomodular poset.

PROPOSITI ON 5 . 4 . Let E be a homogeneous effect algebra. Assume that there
is an element a £ E with a ^ a', such that E is isomorphic to [0, O]E- Then E satisfies
the Riesz decomposition property.

PROOF: Let B be a block containing a. Since B is a maximal internally compatible
subset of E, Corollary 3.8(b) implies that [0, a] = {x € E : x < a, a'} C B. This implies
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that [0,O]E satisfies the Riesz decomposition property. Therefore, E satisfies the Riesz
decomposition property. D

COROLLARY 5 . 5 . For a Hilbert space M, £(H) is homogeneous if and only if
dim(IH) ^ 1.

PROOF: The map 4> : £(H) i-» [0,1/2] given by <j>(A) = A/2 is obviously an iso-
morphism and 1/2 ^ (-f/2)'- Therefore, by Proposition 5.4, every homogeneous £(H)
satisfies the Riesz decomposition property. However, it is well known that £(H) satisfies
the Riesz decomposition property if and only if dim(H) ^ 1. D

The following example shows that a sub-effect algebra of a homogeneous effect alge-
bra need not to be homogeneous.

EXAMPLE .5.6. Let E = [0,1] x [0,1], where [0,1]CR denotes the unit interval of the
real line. Equip E with a partial operation © with domain given by (ai,a2) -L (61,62) if
and only if ax + 61 ̂  1 and a2 + 62 ̂  1; then define (ai, a2) © (61,62) = (^i + 61, a2 + b2).
Then (E, ©£, (0,0), (1,1)) is a homogeneous effect algebra (in fact, it is even an MV-
algebra). Let

F={(xux2)eE:xl+x2€<Q)}.

Since (1,1) € F and F is closed with respect to ©, F is a sub-effect algebra of E.
It is easy to see that the map <j> : F <-¥ [(0,0),(l/2,1/2)]F, given by <j>(xi,x2) =

(xj/2, x2/2) is an isomorphism. Note that F is not a compatible effect algebra: for exam-
ple, {(1,0), (1/TT, 1 - (l/7r))} is not compatible in F. Consequently, F does not satisfy
the Riesz decomposition property and hence, by Proposition 5.4, F is not homogeneous.

EXAMPLE 5.7. Let /i be the Lebesgue measure on [0,1]. Let E C [0,1]10'1' be such that,
for all feE, .

(a) / is measurable with respect to /x

(b) Ai(supp(/)) € Q
(c) M ( { z e [ 0 , l ] : / ( z ) ^ { 0 , l } } ) = 0 ,

where supp(/) denotes the support of /. It is easy to check that E is a sub-effect
algebra of [0,1]'0'1'. Obviously, E is not an orthoalgebra. We shall show that E is a
homogeneous, non-lattice ordered effect algebra and that E does not satisfy the Riesz
decomposition property. Note that, for all u G E, u ± u if and only if Ran(u) C [0,1/2]
and /x(supp(u)) = 0. Thus, for all u £ E and u0 6 [0,1]'0'1' such that u0 ^ u and u _L u,
we have uo € E.

Let u,vi,v2 € E be such that u ^ vx © v2, u ^ (vx © v2)'. Since [0,1]10-1' is an
MV-algebra, there are ui,u2 e [0, l]x such that ui ^ v\, u2 ^ v2 and u — U\ © u2.
By the above paragraph, u ± u and u\,u2 ^ u 6 E imply that ux,u2 e E. There-
fore, E is homogeneous. Let f,g be the characteristic functions of the intervals [0,2/3],
[1/TT, (1/7T) + (1/2)], respectively. Then J\g does not exist in ES- Therefore, Es is not
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lattice ordered and hence, by Theorem 3.3 of [13], E is not lattice ordered. Moreover, E
does not satisfy the Riesz decomposition property. Indeed, assume the contrary. Then,
by Proposition 4.3, Es = C(E). In particular, E$ is then a Boolean algebra. However,
this is a contradiction, since Es is not lattice ordered.
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