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Abstract. We consider a robust class of random non-uniformly expanding local
homeomorphisms and Holder continuous potentials with small variation. For each element
of this class we develop the thermodynamical formalism and prove the existence and
uniqueness of equilibrium states among non-uniformly expanding measures. Moreover, we
show that these equilibrium states and the random topological pressure vary continuously
in this setting.
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1. Introduction
The thermodynamic formalism, developed by Sinai, Ruelle and Bowen in the 1970s and
1990s, is a part of ergodic theory that came into existence through the application of
techniques and results from statistical mechanics in the realm of smooth dynamics. One
of its main goals is to describe the statistical behavior of a dynamical system via invariant
measures, called equilibrium states, that maximize the free energy of the system.

In the classical setting, an equilibrium state associated to a continuous transformation
T : M — M defined on a compact metric space M and a continuous potential ¢ : M —
R is an invariant probability measure (7 4 characterized by the following variational
principle:

PT(¢)=hM,¢(T)+/¢d/LT,¢= sup {hu(T)+f¢du}

HeMr (M)
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where Pr(¢) is the topological pressure, i, (T') denotes the entropy and the supremum is
taken over all invariant probability measures.

This theory was initiated by the pioneering work of Sinai [27] who proved the existence
and uniqueness of equilibrium states for Anosov diffeomorphisms and Holder continuous
potentials. In subsequent works Bowen [11] and Ruelle [25] extended the results of Sinai
to uniformly hyperbolic systems and Holder continuous potentials. Since then, important
contributions for this theory in the deterministic case have been given by several authors
(see, for example, [13, 21, 26, 29]).

In the context of random dynamical systems, the study of equilibrium states is still
quite far from being well understood, despite some advances in the area. Briefly, a random
dynamical system is a skew-product F(w, x) = (8(w), fi(x)) where the randomness
is modeled by an invertible transformation 6 preserving an ergodic measure P. We are
interested in understanding the dynamics of compositions

sz = fenfl(w) o---0 fow) o fuw-

As in the deterministic case, the random topological pressure of the system is the
supremum of the entropy plus the integration of the potential among all invariant
probability measures whose marginal is P. We refer the reader to [6] for the background to
and a treatment of this topic.

Having established a variational principle for random maps, it is natural to ask what
kinds of random dynamical systems and potentials we can develop the theory of equilib-
rium states. In [16] Kifer proved the existence and uniqueness of equilibrium states for
random uniformly expanding maps associated to Holder continuous potentials. In [18] Liu
extended this result for uniformly hyperbolic random systems. Later, the thermodynamical
formalism was developed by Kifer [15] for random expansion in average transformations,
and by Mayer, Skorulski and Urbanski [20] for distance expanding random mappings.
In the context of random countable Markov shifts, the thermodynamic formalism was
proved by Denker, Kifer and Stadlbauer in [14]. The existence of equilibrium states with
positive Lyapunov exponents was proved by Arbieto, Matheus and Oliveira [5] for certain
non-uniformly expanding maps and continuous potentials with low variation. In [10]
Bilbao and Oliveira obtained uniqueness of maximizing entropy measures in this context.
Recently, Stadlbauer, Suzuki and Varandas [28] developed the thermodynamical formalism
for a wide class of random maps with non-uniform expansion and differentiable potentials
at high temperature.

In this work we develop the thermodynamical formalism for a robust class of random
non-uniformly expanding local homeomorphisms associated to Holder continuous poten-
tials with small variation. First, we prove the existence of an invariant measure absolutely
continuous with respect to the leading eigenmeasures of the dual transfer operators. This
invariant measure is indeed an equilibrium state for the random dynamical system and it
is unique in the setting of non-uniformly expanding measures. Moreover, we show that
the random topological pressure is the integral of the leading eigenvalues of the transfer
operators. As an application of our techniques, we extend the results obtained in [5, 9] for
Holder continuous potentials with small variation.
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Finally, we study the persistence of the equilibrium state under small perturbations of
the system. In the context of Sinai—Ruelle-Bowen measures, the continuous dependence
with respect to the dynamics was obtained by Alves and Viana [4] for maps with
non-uniform expansion. Such continuity was also proved by Baladi [7] and Young [30] for
random perturbations of uniformly hyperbolic systems and by Alves and Aratjo in [1] for
random perturbations of non-uniformly expanding maps. More generally, the continuity of
the equilibrium state was proved by Castro and Varandas [12] for a class of non-uniformly
expanding maps and potentials with small variation. This property was also obtained
by Alves, Ramos and Siqueira [3] for non-uniformly hyperbolic systems and hyperbolic
potentials. Here, we deal with a family of random non-uniformly expanding maps and
potentials with small variation. We prove that the non-uniformly expanding equilibrium
state as well as the random topological pressure vary continuously within this family.

We organize this paper as follows. In §2 we present our setting and state the main
results. In §3 we introduce basic definitions such as random topological pressure and
projective metrics. In §4 we recall the definition of reference measures and prove some
properties that will be useful throughout the work. In §5 we use the projective metric
approach to obtain the thermodynamical formalism. In §6 we prove the existence and
uniqueness of equilibrium states among non-uniformly expanding measures. In §7 we
show the continuous dependence of these equilibrium states and the topological pressure
as functions of the random dynamics and the potential. In the final section we describe
some applications of our results.

2. Setting and main results

Let M be a compact and connected manifold with distance d and €2 the space of local
homeomorphisms defined on M. Consider a Polish space X (that is, a separable complete
metric space) and an invertible measurable map 6 : X — X preserving an ergodic Borel
measure P of X. We recall that a random dynamical system is a continuous map f : X — Q
given by w — f,, € @ where (w, x) — fy,(x) is measurable. For every n > 0 we define

fo=1d, fii=fpmiy 00 fow o o fi" =7
The skew-product generated by the maps f, is the measurable transformation
F:XxM—XxM; Flw,x) =00w), fulx)).

In particular, F"(w, x) = (8" (w), f;;(x)) forevery n € Z.

Let Mp(X x M) be the space of probability measures on X x M such that the marginal
on  is IP. Denote by Mp(F) C Mp(X x M) the set of F-invariant measures. Note that,
by Rokhlin’s disintegration theorem [24], for every u € Mp(F) there exists a system of
sample measures {/¢ }yex of w such that

du(w, x) = duy (x) dP(w).

We say that an F-invariant measure u is ergodic if (F, u) is ergodic.

2.1. Hypothesis about the generating maps. For each w € X, let f,, : M — M be a
local homeomorphism satisfying the following requirement: there exist §,, > § > 0 and a
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continuous function L, : M — R, such that for every x € M we can find a neighborhood
U, where f, : Uy = By(w)(fw(x), 8y) is invertible and

d(fy ' ), £ ' @) < Ly(x)d(y, 2) forally, z € fu(Ux) = Boqu(fu(x), 8u)-

As fy is a local homeomorphism defined on a compact metric space, we have that
the number of preimages deg( fy) : #f,, 1(x) is constant for all x € M. We assume that
deg(F) = sup,, deg(fy,) < oo.

Suppose that there are an open region A,, C M, constants oy, > 1 and L,, > 1 close
enough to 1 such that the following conditions hold.

(D Lyx) < Ly forevery x € Ay and Ly (x) < aujl for every x € A = M\ Ay,.
(II)  There exists a finite covering U,, of M, by open domains of injectivity for f,, such
that A, can be covered by ¢q,, < deg(f,,) elements of U,,.
(Il For every & >0 we can find some positive integer 7 = n(w, ¢) satisfying
f;j(w)(Be,»(w)(f,{,(x), €)) = M for any j > 0.

We observe that the continuous function L,,(-) associates the Lipschitz constant of
the inverse branches. This property and the assumption §,, > § > 0 imply the uniform
openness By ) (fuw(x), 8§) C fuy(Uyx), and thus for every (w, x) € X x M there exists a
unique continuous inverse branch of f, defined on By, (fiy (x), §) sending fy,(x) to x.
Conditions (I) and (IT) mean that expanding and contracting behavior may exist in M, but
at least one preimage is required for every point in the expanding region. Condition (III)
means that the skew-product F is fopologically exact.

Next, we present the setting of potentials that will be considered. For o > 0, consider
the space C% (M) of Holder continuous functions ¢ : M — R endowed with the seminorm

0l = sup lo(x) — ()l
“ XF#EY d(x’ y)“

and the norm

lelle = ll@lleo + @]as

where || - || stands for the sup norm. Denote by LﬁD(X , C¥(M)) the space of all measur-
able functions ¢ : X x M — R such that for all w € X, the fiber potential ¢, : M — R
defined by ¢, (x) := ¢ (w, x) is Holder continuous and || ¢ || = fX||¢w||oo dP(w) < +00.
For ¢ € IL%P(X , C*(M)) we assume the existence of some positive g4 > 0 satisfying, for
allw € X,

sup ¢, — inf ¢, + &4 < log deg f,, —log g, and le? |y < s¢ei“f¢w. aIv)

Notice that all potentials ¢ € Lﬁ)(X , C¥(M)) in a neighborhood of zero satisfy condition
(IV). In the literature this class of potentials is referred to as small variation.
Let py := deg fw — qu-. The choice of &4 and L,, must satisfy, for each w € X,

Y = esd,[PwGuj"‘ + quwLly (1 + (Ly — 1)%)
w =

+epLS 1+m(diamM)“] <y <l
deg( /i) } ’ [ i’

V)
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2.2. Statement of results. Consider the space C?(M) of real continuous functions v :
M — R endowed with the uniform convergence norm. Given w € X, let f,, : M — M be
the dynamics and ¢, : M — R be the potential on the fiber. The Ruelle—Perron—Frobenius
operator or simply transfer operator associated to (f,, ¢y,) is the linear operator L, :
CO(M) — CO%(M) defined by

L)) = Y Dy

yefu' ()

Its dual operator L7, : [COM)]* — [CO(M)T* acts on the space of Borel measures as
follows:

/Wd-ETU(PG(w)) =/£w(1ﬁ) d s (w)-

In our first result we describe the thermodynamic formalism for random non-uniformly
expanding maps.

THEOREM A. Consider a random dynamical system F : X x M — X x M satisfying
conditions (1), (II) and (Ill). For any potential ¢ : X x M — R satisfying (IV) and (V)
the following assertions hold.

(1)  There exists a unique measurable family of probabilities {vy,}wex such that
L5 Vo) = hwVw  where hy = vouy) (Ly (1)), for almost every w € X.

(3) There exists a unique measurable family of Holder continuous functions {hy}wex
bounded away from zero and infinity such that

Lyhy = Nphowy and vy(hy) =1 for almost every w € X.
(3)  The probability measure |4 := {jLy }wex Where iy = hy vy, is F-invariant.

We also derive that the F-invariant family {1ty },yex obtained in the last theorem has an
exponential decay of correlations for Holder continuous observables.

THEOREM B. There exists 0 < t < 1 such that for any ¢ € Ll(,u,gn(w)) and y € C*(M)
there exists a positive constant K (¢, V) satisfying

‘/(QDOfu'ﬁ)lﬂ duw—/wduen(w)/lﬂduw

foralln > 1.

< K(p, y)7",

The weak hyperbolicity property of the generating maps allows us to prove that the
F-invariant measure given by Theorem A is indeed an equilibrium state for the random
dynamical system. Moreover, it is unique if we consider only the measures whose pressure
is located on the expanding region. We specify the setting as follows.

Suppose that there exists ¢ > 0 such that for P-almost every w € X we can find Ly
close enough to 1 and 6, > 1 satisfying for every j > O that

Lyjw) < Lw, 6w <04i and LAG, 177 < <1, (VD)

where p is given by Lemma 4.2.
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We say that a subset H of X x M is non-uniformly expanding if there exists some
positive constant ¢ > 0 such that

n—>+oo N

1 n—1 '
H = {(w, x) € X x M;limsup — Z log ng(w)(fuf)(x)) < —2c < O}. (*)
j=0

A probability measure 7, not necessarily invariant, is called non-uniformly expanding with
exponent ¢ if n(H) = 1. Condition (VI) above will be used to prove that the F-invariant
measure given by Theorem A is non-uniformly expanding.

Our next result states uniqueness of equilibrium states for random dynamical systems
among non-uniformly expanding measures.

THEOREM C. Let F : X x M — X x M be a random dynamical system and ¢ : X X
M — R be a potential function satisfying conditions (I)—(VI). There exists only one
F-invariant non-uniformly expanding measure i r g € Mp(F) maximizing the variational
principle

Pri,(#) = f 10g hyy dP(w) = hy,., (FI6) + f ¢ durg = sup {h,me) + f ¢ du}

where the supremum is taken in the set Mp(F). Thus, |LF ¢ is the unique non-uniformly
expanding equilibrium state of (F |0, ¢).

Once we have proved uniqueness of equilibrium states, we will investigate its persis-
tence under small perturbations of the random system and the potential.

As defined above, consider the space ]LI%D(X , C¥(M)) of integrable potentials and let
D C Q be the space of C! local diffeomorphisms defined on M. We shall consider the
product topology on D x ]L]%»(X , C*(M)). We fix an invertible transformation 6 : X — X
preserving an ergodic measure IP and consider the family S of skew-products generated by
maps of D,

F:XxM— XxM;Fw,x)=(0Ww), fukx)),
where (w, x) — f, € D is measurable. Now we define the family
H={(F,¢p)eSx ]L]%D(X, CY(M)); (F, ¢) satisfying conditions (I)~(VI)}.

By Theorem C, each (F, ¢) € H has only one non-uniformly expanding equilibrium state.
Our last main result establishes the continuity in the weak star topology of such equilibria
within this family; this property is called equilibrium stability. We also prove the continuity
of the random topological pressure in this setting.

THEOREM D. The non-uniformly expanding equilibrium state and the topological pres-
sure vary continuously on H.

We point out that we are fixing an invertible transformation 8 : X — X preserving an
ergodic measure P. However, the proof of Theorem D remains true if we vary 6 in the
space of continuous functions.
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3. Preliminaries

In this section we state some basic definitions and results about random dynamical systems
that will be used throughout the text. We also recall the notion of hyperbolic times and
projective metrics.

3.1. Entropy and topological pressure. We start with the definition of entropy and
topological pressure for random transformations. The reader can consult more results and
properties in Kifer [15] and Liu [18].

Let u € Mp(F) be an F-invariant measure. Given a finite measurable partition & of M,
we set

n—1
1 .
hu(F10; &) := lim —/XHM<\/ f;-/(g)) dP(w)

n——+o0o n
Jj=0

where H,(§) = — ZPGS v(P) log v(P) for a finite partition & and p, is the sample
measure of u. The entropy of (Flg, 1) is

hy(F10) = Sl;p{hu(FIG; £)}

where the supremum is taken over all finite measurable partitions of M.

Denote by L%(X , CO(M)) the space of all measurable functions ¢ : X x M — R such
that ¢, : M — R defined by ¢, (x) := ¢ (w, x) is continuous for all w € X and ||¢]; =
JxlI#wlloo dP(w) < +o0.

Fix w € X. Given ¢ > 0 and an integer n > 1, we say that a subset F, C M is
(w, n, ¢)-separated if for every two distinct points y,z € F; there exists some j €
{0, 1,...,n— 1} such that d( £ (y), fi)(2)) > e.

For ¢ € LL(X, C°(M)), & > 0 and n > 1 we consider

Pria(¢)(w, n, €) = sup { Z S B s a (w, n, €)-separated set}
yeF,

where S, (w, ) := Y120 s (uy (fid ()
The random topological pressure of ¢ relative to 0 is defined by

Prip(¢) = lin}) lim sup l / log Prig(¢)(w, n, &) dP(w).
E—> X

n—oo N

Thus, the following pressure map is well defined:

Pri: LL(X,CO%(M)) — RU {oo}
¢ > Prig ().

In particular, the topological entropy of F relative to 0 is hyop(Flg) = Prig(0).
The topological pressure and the entropy are related by the well-known variational
principle. The reader can see a proof of this result in [18].
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THEOREM 3.1. (Variational principle) Assume that (X, P) is a Lebesgue space. Then for
any ¢ € ]LIIP(X, CO%(M)) we have

Prig(¢) =  sup (hu(FIG) +/¢>du)- o))
neMp(F)
Moreover, when P is ergodic, we can consider the supremum over ergodic measures.
Motivated by the variational principle, we say that an F-invariant measure u € Mp(F)

is an equilibrium state for (F|g, ¢) relative to 6 if the supremum (1) is attained by wu,
that is,

Prio(9) = hy (FI6) + f bdp.

Next we define the random topological pressure via open coverings and via dynamic
balls. We take as reference the deterministic case where this approach is characteristic in
dimension theory. We refer the reader to [22, 28] for more details.

Let w € X and denote by U a finite open cover of M. Denote by S,(U) the set
of all strings U = {Ujy, ..., Ui, ;U € U} of length n = n(U) and put S = S(U) =
Unzo S, (U). Given a string U = {U;,, . . ., U;,_,} € S(U), we consider the cylinder

Xw=XyU) :={x € M; fuf(x) €U forj=0,...,nU) — 1}
Let F(n ) be the collection of all cylinders of depth at least N, that is,
Fvw = Fvuw(U) ={XywU); U € Sy(U) forn = N}.

For f € Rand ¢ € LL(X, CO(M)) let

mg(w, ¢, F|0, U, N) = inf{ Z e—ﬂ"(U)+Sn(U)¢(Xw)}’ 2)
XweF(vw)

where S, )¢ (Xw) = sup,ex, Z?So)il gb@j(w)(fd,. (v)) and the infimum is taken over all

finite families ¥ of F (v ) in order that (2) is measurable in w (see, for example, §9 of
[28]). As N goes to infinity we define

mp(w. ¢, FI6. Uy = lim mp(w. ¢. FI6. U. N).

The existence of the limit above is guaranteed by the function mg(w, ¢, F|6, U, N) to be
increasing with N. Taking the infimum over 8 we call

Prig(w, ¢, U) = inf{ B : mg(w, ¢, F|0, U) = 0}.
Let |U| = max{diamU;; U; C U} be the diameter of the cover U and consider

Prig(w, ¢) = \lexigo Prig(w, ¢, U).

In [22, Theorem 11.1] it was showed that this quantity is well defined and does not depend
on the cover U. Moreover, since all quantities defined above are measurable functions of
w € X (see, for example, §9 of [28]), we can define the random topological pressure of
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(F|6, ¢) as

PF\0(¢)=/PF|0(W’ @) dP(w).

In the following we present another way to define the random topological pressure. We fix
we Xande > 0.Forn € N, x € M, let By, (x, n, ¢) be the dynamic ball

By(x,n, &) :={y e M :d(f}(x), fi(y)) <& for0<j<n}.
We denote by G (v ) the collection of dynamic balls:
GNw) :={Byw(x,n, &) : x e Mandn > N}.
Let U, be a finite or countable family of Gy, which covers M. For every 8 € R and

¢ € LL(X, CO(M)) let

mg(w, ¢, Fl0,¢e, N) = inf {

e_,B”+Sn¢(Bw (x.n,€)) }
UwCG(N,w)

By (x,n,e)elUy,

where S,¢(By(x,n,¢e)) = SUPye B, (xn,6) Z'};(l) ¢9,-(w)(f1{; (y)). When N goes to infinity
we consider

mg(w, ¢, Fl0,e) = lim mg(w, ¢, Fl0, ¢, N).
N—o00
Taking the infimum over 8, we define
Prig(w, ¢, &) = inf(B : mg(w, ¢, F|6, &) =0}.
Since Prjp(w, ¢, ) is decreasing on & we can take the limit
Prig(w, ¢) = lim Prp(w, ¢, €).
e—0
Now if we consider a finite open cover U of M with Lebesgue number & (U) we have
By (x.n(U), 38) C Xy(U) C By(x, n(U), 2|U|)
which implies that

Prig(w, ¢) = ,}E)% Prio(w, ¢, ¢) = |(L1(i|IE>0 Prio(w, ¢, U).

Therefore, the definitions of random topological pressure via coverings and via dynamic
balls coincide.

3.2. Hyperbolic times. In order to explore the non-uniform expansion of the set H we
need the notion of hyperbolic times. The reader can obtain more details of this concept in
[2, 5]. In our context, the function L, (-) plays the role of the derivative || D Fuw() M.

Definition 3.1. Let we X and Ly : X — R be as in §2. We say that n € N is a
c-hyperbolic time for (w, x) € X x M if

n—1
[T Loiw(fl) <e forevery 1 <k <n. )
j=n—k
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It is a well-known fact that if n is a non-uniformly expanding measure with exponent ¢
then n-almost every point (w, x) € H has infinitely many c-hyperbolic times. A proof of
this result can be found in [2].

The uniform domination required in condition (VI) will allow us to prove that the
F-invariant measure p given by Theorem A is non-uniformly expanding. Thus, we will
conclude that p-almost every point (w, x) € X x M has infinitely many hyperbolic times.

LEMMA 3.1. Given ¢ > 0, there exists 8 = & (¢) > 0 such that, for P-almost every w € X,
if nis a c-hyperbolic time of (w, x) then the dynamical ball By (x, n,8) around x is
mapped homeomorphically onto the ball Bon ) (f(x), S). Moreover, for z € By (x, n, S)
and fI(z) € Bonw)(f1(x), §), we have

d(f175@), 175 @) < e M2d(f1 ), f10)),

foreach 1 <k <n.

We point out that the proof of the lemma above is analogous to the proof of Lemma 5.5
in [5] since in the definition of hyperbolic times we just replace the function || Df,, (-)"!||
by the Lipschitz function of the inverse branches L, (-).

Let B be the Borel o-algebra of M. We say that & is a u-generating partition if

+o0
\/ fujf(g) =, 8 for P-almost every w € X.
Jj=0

The next result states that every non-uniformly expanding measure admits a generating
partition. See a proof of this in [5].

LEMMA 3.2. Given a non-uniformly expanding measure n with exponent ¢ > 0, consider
6 = 6(c) > 0 as in Lemma 3.1. Then any measurable partition P of M with diameter less
than § is an n-generating partition.

3.3. Projective metrics. To finish this section we present the definition of projective
metrics associated to convex cones. This theory was introduced by Birkhoff [10] and
provides an interesting way to obtain spectral properties of the transfer operator (see, for
instance, [8, 19]).

Consider a Banach space V. We say that a subset C C V \ {0} is a cone in V if CN
(—=C)={0}and \ - v € C for all v € C, N > 0. Moreover, a cone C is convex if v, w € C
and A, n > 0 and we have )\ - v + 7 - w € C. The closure of a cone C, denoted by C, is the
set

C:= {w € V| there are v € C and \,, — 0 such that (w + \,v) € Cforalln > 1}.

We say that a cone C is closed if C = C U {0}.
Consider a closed convex cone C. Given v, w € C, define

A(v,w)=sup{t >0: w—rveC} and B(,w)=inf{s >0:sv—w € C},
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where by convention sup ¥ =0 and inf @ = +o0. It is straightforward to check that
A(v, w) is finite, B(v, w) is positive and A(v, w) < B(v, w) for all v, w € C. We set

O (v, w) = log <B(”’ w)>.

A(v, w)

From the properties of A and B it follows that ® (v, w) is well defined and takes values
in [0, +o00]. Notice that ® (v, w) = 0 if and only if v = fw for some ¢ > 0. Therefore, ®
defines a pseudo-metric in the cone C, and so it induces a metric on a projective quotient
space of C. This metric is called the projective metric of C.

It is easy to verify that the projective metric depends monotonically on the cone: if
C1 C C7 are two convex cones in V, then ®; (v, w) < 01 (v, w) for any v, w € Cy, where
® and ®; are the projective metrics in Cy and Cy, respectively.

In particular, if Vi, V, are complete vector spaces and L : V| — V, is a linear
operator such that L(Cy) C C» for Cy,C> convex cones in Vi, V, respectively, then
O (L(v), L(w)) < O1(v, w) for any v, w € C1, where ® and ®; are the projective
metrics in C; and C», respectively. The next result states that L will be a strict contraction
if L(C1) has finite diameter in C5.

THEOREM 3.2. Let Cy and C> be closed convex cones in the Banach spaces Vi and V»,
respectively. If L : Vi — V, is a linear operator such that L(C1) C Cy and A =
diamg, (L(C1)) < oo, then

O2(L(p), L)) < (1 —e ) - O1(p, ¥) forall g,y €C.

In this work we will restrict our attention to cones of locally Hoélder continuous
observables. We prove that, applying the last result, the transfer operator is a contraction
in this setting.

We fix § >0 as in §2 and we say that a function ¢ : M — R is (C, a)-Holder
continuous in balls of radius § if for some constant C > 0 it follows that

lp(x) — ()| = Cd(x, »)* forally € B(x, é).

Denote by |¢|q s the smallest Holder constant of ¢ in balls of radius § > 0.
The next lemma states that every locally Holder continuous function defined on a
compact and connected metric space is Holder continuous.

LEMMA 3.3. Let M be a compact and connected metric space. Given § > 0, there exists
m > 1 (depending only on §) such that if ¢ : M — R is (C, a)-Holder continuous in balls
of radius § then it is (Cm, a)-Holder continuous.

Proof. The compactness allows us to cover M with N balls of radius § where

N depends only on §. Moreover, since M is connected, given x,y € M there are
20 =X,21...2N4+1 =y satisfying d(z;, zi+1) <8 and d(z;, zi+1) <d(x,y) for all
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i=0,...,N. Since ¢ is (C, a)-Holder continuous in balls of radius § we have that
N N
lp() — oI <D oz — @@iy)] < Y Cd(zi, zir)® < C(N+Dd(x, y)*
i=0 i=0
which implies that ¢ is (C - m, o)-Ho6lder continuous form = N + 1. ]

Notice that the same argument used in the lemma above gives an estimate for the Holder
constant of ¢ in balls of radius (1 + )8 for 0 < r < 1. Indeed, letr € [0, 1]and x,y € M
with d(x, y) < (1 +r)$5. Since M is connected there exists z € M such that d(x, z) =§
and d(z, y) < rd(x, z). Thus,

lp(x) — o] =< lox) — @) + |2) — e(y)]
<Cd(x,2)* +Cd(z, y)* <CA+r%d(x, y)*.

Therefore, we conclude thatif ¢ : M — Ris (C, o)-Holder continuous in balls of radius §
then ¢ is (C (1 + r%), o)-Holder continuous in balls of radius (1 + r)8 foreach0 < r < 1.

For each k > 0 we consider the convex cone of locally Holder continuous observables
defined on M by

Clg:{(p:M—)R:<p>Oand|(p|fa’5§k}. @

inf ¢
It follows by definition that C}' € C{ if k; < k».
From Lemma 3.3 and from the definition of |¢|, s we have that
sup ¢ —inf ¢ < |gles-m-d(x, y)* < (inf ¢ - k) -m - (diam M)*, 5)

and thus sup ¢ < inf ¢ - (1 + m(diam M)%*k) for any ¢ € C’g.
In the cone C’g of locally Holder continuous observables we can give a more explicit
expression for the projective metric. We refer the reader to [12] for its proof.

LEMMA 3.4. The projective metric Oy in the cone Clg is given by

Bi(o,
O, ) = log (%)
where
. klx — y%¥ () — (W (@) — ¥ (3))
A =
KO = A cemt Kx = 0 (0) — (9(6) — 9 ()
and
klx — y[%¥ () — -
B e s HETYV@ W@ =)

d(xy)<szem klx — y1%@(2) — (p(x) — ()

In particular, we have that

o(x)
and Bi(p, ¥) 2 sup {m}'

From the expression for the projective metric in the cone C’g one can prove that its
diameter is finite for k large enough; see [12].

. p(x)
Ar(p, ¥) < xlélﬁf/l {m}
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PROPOSITION 3.1. For 0 < y < 1, the cone Cf{k has finite diameter in C]g.

4. Reference measure
For w € X, let f,, : M — M be the fiber dynamics and ¢,, : M — R be the potential. Let
Ly COM) — CO%M) be the transfer operator associated to ( fy,, ¢ ), defined by

L@ = Y Dy

yefu' ()

Consider also its dual operator L}, : [C 0(M)T* — [CO(M)]* which satisfies
[ v azioun = [ L) doo

We say that a probability measure v, € MY (M) is a reference measure associated to
Ay € Rif vy, satisfies

Ly (Vo)) = MV

As in the deterministic case, by applying the Schauder—Tychonoff fixed point theorem, it
is straightforward to prove the existence of a system of reference measures {v,, },,cx Where
vy 1s associated to ., given by

Mo = Lo (1) = vy (Lw(1)) (6)

for P-almost every w € X. See [20] for details. In what follows we derive some properties
of the reference measure.
The Jacobian of a measure n with respect to f is a measurable function J;, f such that

n(ran = [ 1 dn.
A
for any measurable set A where f|4 is injective.

LEMMA 4.1. The Jacobian of v, with respect to f,, is given by J,, fu = e Pv.
Moreover, vy, is an open measure. In particular, supp(vy) = M.

Proof. Let A C M be a measurable set such that f,,|4 is injective. Notice that, for any
bounded sequence {¢,} € C O(M) which converges to the characteristic function X4 of A,
we have

/ N PG, vy = f e gy d( L vpy) = f L@ (y) dvoguy ()
M M M

= f D @) dvp () = / D Gl 0)) dveany ).
M g @)=y M £ @)=y

Since [y, 3" ¢ )=y &a(fr ' (1) dvo(u)(y) converges to [y, Xa(f,, ' (¥)) dvgu(y) and
Jor Xa(f L)) oy (0) = [y X £ (a) dVow) = Vo) (fuw(A)) we conclude that

Voy (fu(A)) = /A he— dvny,
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Moreover, by induction, we obtain for every n € N that
Vgn (w) (frp (A)) = / A e ™S g, @)
A

where \) = )\.gn—](w))\.gn—Z(w) < Ng(w) M-

Now we prove that v, is an open measure. By contradiction, suppose the existence of
some non-empty open set U,, C M such that v,,(U,) = 0. By the exactness assumption,
we can take n € N such that f,ﬁ(Uw) = M. Partitioning U,, into mensurable subsets
Upi .. .Uyx where fwﬁlyw,j is injective for j = 1. .. k, we have

k k
Vgicuy (M) < ) Vi) (fos (U )) = qu } oy fop dvw =0
j=1 j=1 7Y

which is a contradiction. This completes the proof. O

In the next proposition we show that the family {v,},, satisfies a Gibbs property at
hyperbolic times.

PROPOSITION 4.1. Let n be a hyperbolic time for (w, x). For every 0 < & < § there exist
K:(w) > 0and 0 < y. (0" (w)) < 1 such that, for all y € By, (x, n, ¢€),
Vw(Bw(xa n, 8))

n -1
Ve(0" (W) Ke(w) ™" < Xp (S (y) — log 1) < K¢ (w)

where S,y (y) = Z?;(l) ¢9./‘(w)(f$ () and Ny = Nyhoqw) - - - Ngn—1 (y)-

Proof. Fix0<e¢ < §. From Lemma 3.1 and condition (IV) we get
n—1

10w (2) = Saduw (N = Y |gn—t ) (Fi 5 @) = bgn-t(uy (i )
k=0

n—1

<Y bk lae” M2 (2), f ()

k=0

o0
<e Z |¢9k(w)|a€70k/2 < Ke(w)
k=0

for every z, y € By (x, n, €). By once again applying Lemma 3.1 we know that f;} maps
homeomorphically By, (x, n, ) into the ball Bgn () (f(x), €). Hence, since the Jacobian
of vy, is bounded away from zero and infinity we can write

0 < y:(0" (W) < vonu)(fy (Buw(x, n, €)) = / AL e Sn0w@ gy, <1

By (x,n,8)

where ¥, (6" (w)) depends only on the radius ¢ of the ball Byn () ( fi; (x), €). Therefore, for

every y € By (x, n, ¢) it follows that
)\n e_Sn¢w(Z)
n ,—Spow(2) — n ,—Sndw(y) w
e dvy, —/ e <)\nweSn¢w(y)> dvy,

By (x.n,¢)
n

< Ke(w)e SndwOIH0e 0y, (B (x,n, ¢)).

V(0" (w)) < /

By (x.n,8)
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Applying the same argument, we have that

5 log S ‘)\-n e_Snd’w(Z)
e ndw (y)+log vy (By (x, 1, €)) < Ke(w) )\Z)e_ n@w () (%) dvy
By (x,n,¢) )\,’5}6’7 nw(y)

which completes the proof. O

Remark 4.1. 1t is possible to obtain a lower bound for y, (8" (w)). Indeed, from hypothesis
we may find n = n(w, €) such that fg'i,(w)(Bgn(w)(fu’f(x), €)) = M and by definition of
Jacobian it follows that

1= Vguti (o (fon ay (Bon uy (£ (), £)))
< / . Mg e dvgn )
Bon ) (f35(x),€)
< Wongune " ™ 0 vgn () (B (f0 (X), €)).

Thus, ¢ M ¢ ~log e < v:(6"(w)). Since 72 depends only on w € X and & > 0 we

conclude that y, (6" (w)) is uniformly bounded.

Consider ¢ > 0 given by condition (VI). Given w € X, let H,, C M be the subset of M
such that (w, x) has infinitely many hyperbolic times, that is,

. 1 n—1 )
Hy, :={x € M;lim sup — Z log L@j(w)(fujj(x)) < —2¢ <0y,
n——+00 j=0

We next prove that v,,(H,,) = 1 for P-almost every w € X.
Recall that we fix ¢4 > 0 small satisfying ¢4 < inf,, (log(deg fi,) — log qy). In view of
(IV) we may find 0 < gy < & such that

sup ¢, — inf ¢, + &9 < log(deg f,) —log g, forallw € X. ()

Let P be a partition of M with cardinality #P = k. We suppose without loss of generality
that the set A, is contained in the first ¢,, elements of # for all w € X. Consider the
numbers

Pw=k—qy, q=supqy, ¢q=inf q, and p = sup py.
weX weX weX

These numbers are well defined since we assume that deg(F) = sup,, deg(f,) < oo.
For p € (0, 1) and n € Nlet I (p, n) be the set of itinerates

and consider

1
Cp :=lim sup — log #I (p, n).
n n

LEMMA 4.2. [29, Lemma 3.1] Given € > 0, there exists pg € (0, 1) such that C, <
log g + € for every p € (pog, 1).
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Proof. Notice that #I (p, n) < Zzz[pn] (Z)qwqe(w) “ o1 () PwPow) * * * Pon—t=1) (-
By applying Stirling’s formula we have

Z <n>=ﬁ< & >§C1 exp 2t(1 — p)n) for p > l
k 2 \[pn] 2

k=[pn]
Thus, there exist C; and 7 > 0 such that #I(p, n) < Cj exp 2t(1 — p)n) §" p=2".
Taking the limit as n goes to infinity, we have
1
C, =limsup — log#I(p,n) <logg +¢
non
for any p close enough to 1. O
From this lemma we can fix p < 1 such that
&0
1
Recalling equation (8) and the definition of \,, in (6), we have that

C, <logg+

Ay > deg fweinf¢w > elog(deg Jw)+sup ¢y —log(deg fu)+log qu+eo _ e(IOg quw=sup ¢w+50).

Now, using Lemma 4.1, we obtain that

Jv fw — )\w€_¢w 2 e(SUP ¢w+10g quteo—dw) 2 elog quw+€o > G- (9)
PROPOSITION 4.2. We have v, (Hy) = 1 for almost every w € X.

Proof. Given n € N, denote by By,(n) the set of points x € M whose frequency of visits
to {Ay; (w)}ofjf,,_l up to time n is at least p, that is,

1 .
By(n) = {x € M‘ —#HO0<j<n—1:fl(x)€ Agjq} > p}~
n

Let £ be the partition \/;f;é( fI{;)_lP. We cover B, (n) by elements of £ and since
f. is injective on every P € P we may use (9) to obtain

n—1
I WRTAYIE [ ) E
P P
j=0

n—1
> 1_[ O8I 0y, (P > elogd+eony, (p),
j=0

Thus,
Uw(P) < e—(log 67+£0)n.

Since we can assume § < ge0/? it follows that

v (Bw(n)) < #1(p, n)e—(logt?'i'&o)" < e(og g+eo/4n ,—(log G+eo)n < o108 d/q—e0/2n

Hence, the measure v,, (B, (n)) decreases exponentially fast as n goes to infinity. Applying
the Borel-Cantelli lemma, we conclude that v,,-almost every point belongs to By, (n) for
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at most finitely many values of n. Then, in view of (VI) we obtain for n large enough that

n—1

D " 1og Lyjy (f()) < plog Ly + (1 = p) log 6, < —2¢ <0
j=0

which proves that v,,-almost every point has infinitely many hyperbolic times. O

Notice that from the last proposition, and recalling that v,, is an open measure, we
conclude that H,, is dense in M.

5. Transfer operator

Here we prove Theorems A and B. We use the projective metric approach to show that
the transfer operator is a contraction in some cone of locally Holder continuous functions.
This contraction implies the existence of the invariant family {4,,},, uniformly bounded
away from zero and infinity. Recalling the reference measure v, constructed in the
previous section, we define the probability measure u, := hyvy,. From the exponential
approximation of functions in the cone to the family {h,}, we derive that u,, has an
exponential decay of correlations.

5.1. Invariant family. For the construction of the invariant family {%,,},, we follow the
ideas of Castro and Varandas [12].

Let § > O be as in §2 and consider for each £ > 0 the cone of locally Holder continuous
functions

C]g(w):{(pw:M—>R:gow>0andM§k}. (10)
inf @y,

Since the cone does not depend on w, we denote this by C’g. The next proposition shows its
invariance by the transfer operator.

PROPOSITION 5.1. For every w € X, there exists 0 < y,, < 1 such that
wk
L,(CH cci™ cck
for some positive constant k large enough.

Proof. Forany ¢ € C§ we will show that

|-£w((p)|a 8
—— < yuk A 0 1.
it Lo(0) = Yu or some 0 < y,, <

Given y,z € M satisfying d(y,z) < J, we denote by y;,z;, 1< j <deg(fw), the
respective preimages under f;,. Note that for any continuous function ¢ we have

deg(fw)

Lu@)y) = Y e”o(y)) > deg(fu)e™ * inf . (1)
j=1
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From the definition of £,, and the constant | .L,,(¢)|o s We obtain

|Luy (@)]a,s — sup [Luw(@(y) — Ly(@2)]
inf Ly, (@) d(y,z)<$ inf Ly, (p) d(y, 2)¥
d w . .
- wp eg(fw) |e¢W(y1)g0(yj) _ e‘/’“’(zf)go(zj)|
d(y.2)<s inf Ly, (@) d(y, 2)*

j=1

By equation (11) the last inequality is less than or equal to

deg(fw) S s .
el ( P jp(y) — p(z;)l sup ple?v (1) — e (E))] ) (12)
=1

e deg(fu)e™ %o inf g d(y, 2)*  deg(fu)e™ Pu inf ¢ d(y, 2)*

d(y,z)<6

Recall that, by hypothesis, we can take some x € M and neighborhood U, C M such that
¥, 2 € By (fw(x), §) and so the inverse branches satisfy

d(f ), i 1(2) < Lu(x) d(y, 2).

Moreover, we are assuming that every point has g,, preimages in the region A and p,,
preimages in the expanding region M \ A where L,, < o,,!. Since, by Lemma 3.3, ¢ is
(1 + (Ly — D¥)|¢las, o)-Holder continuous in balls of radius L,,§ we conclude that the
sum (12) is bounded from above by

L (e 4 (L, — D9 elasLSd(y, 2)¢ sup e |, LY d(y, 2)*
deg(fu)e™ ¢ inf ¢ d(y, 2)* deg(fu)e™ ¢ inf ¢ d(y, z)*

j=1

(e P gl 50, %d (Y, 2)° sup gle?” |, L d(y, 2)*
— deg( fu)e v inf pd(y, 2)* = deg(fy)ef Pv inf ¢ d(y, 2)* )’

And this expression is equal to

P [puo,® + gl (1 + (Lw — D)1 |@las | sup ple?” |a Ly
deg( fy)einf ¢w inf ¢ einféw inf g

Using inequality (5), the definition of cone and condition (IV), it follows that the sum
above is less than or equal to

[E% [prUT“ +qwlf(d + Ly — DY)

i| +ep LG [1+ m(diamM)“]j|k.

deg(fw)
By hypothesis (condition (V)), there exists some positive constant 0 < y,, < 1 such that
the previous sum is bounded from above by y,, k. This finishes the proof. O

From the last proposition we have the invariance of the cone C’g. Since this cone has
finite diameter, according to Proposition 3.1, we can apply Theorem 3.2 to conclude the
next result.

PROPOSITION 5.2. For every w € X the operator Ly, is a contraction in the cone C¥, that
is, writing A,, = diamg, (ngk) > 0, it follows that

Ok (Lu (), L)) < (1 —e %) - Orlp, ¥) forall o,y €Cj.
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Since we assume in condition (V) the existence of y € (0, 1) such that y,, < y for all
w € X we conclude that

Ok(Lu(@). Lu@W)) < (1 —¢ ™) - O(p, ¥) forall g,y € Cyand w € X

where A = sup,, (Ay) < diamg, (Cgk).

Let {vy,},, be the family of reference measures and ., = vg(w)(Ly (1)). The contraction
in the cone allows us to prove the existence of the family {4,,},, invariant by the transfer
operator.

PROPOSITION 5.3. For almost w € X there exists a Holder continuous function hy, :
M — R bounded away from zero and infinity satisfying Ly,hy, = Nyhow).

Proof. Consider the normalized operator J:w = x;lﬁw and define the sequence (¢;),
AN
by ¢n == Ly-n(y (1) where

an o - - -
Lefn(w) = Lefl(w) ° 1:9*2(10) o---0 L@*("*I)(w) © Le—n(w)

for each n > 0. By definition of conformal measure we have

f¢n d\)w :/zz_n(w)(l) de:/Id(-Z:*)g—rl(w)vw :/Idl)g—n(w) =1.

Hence, each term ¢, satisfies sup ¢,, > 1 and inf ¢, < 1. Since 1 € C’g and C’g is invariant,
it follows that ¢, € C’g and so, applying inequality (5), we obtain that the sequence (¢;,),
is uniformly bounded away from zero and infinity by

1
EfinffﬂnilisupfﬂnSR.

where R = (1 + mkdiam(M)%). Moreover, as ¢, is C-Holder continuous in balls of radius
8, by Lemma 3.3 we obtain that ¢, is a Cm-Holder continuous function.

Next we prove that (¢,), is a Cauchy sequence in the C°-norm. From Proposition 5.2,
for every m, [ > n the projective metric satisfies

. Al _
Ok (m, 1) = ®k(£;n—m(w)(l), Ly-1,) (1) < A" wheret:=1—e¢ A

Recalling the expression for the projective metric O (@, @) = log(Bk(@m, 1)/ Ak
(©m» ¢1)), we apply Lemma 3.4 to obtain

e < Ap(@m. ) <inf 2% < 1< sup 2 < Bi(gm. 1) < 7.
(2} (2}

Thus, for all m, [ > n, we have

llom — @ille < IIWIIOOH(p—m - 1” <R - 1) < Rt"
2] 00
which proves that (¢,), is a Cauchy sequence. Hence, (¢,), converges uniformly to a
function /&y, : M — R in the cone C’g satisfying [ hy, dv,, = 1 for almost every w € X. In
particular, this function is Holder continuous and uniformly bounded away from zero and
infinity. To complete the proof of the proposition, we will show that L,/ = hyhe(w).
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Consider the sequence
i = = N
P = Z vi=" Z Loy D).
j=0 j=0
By what we have proved above, (¢, ,,) converges uniformly to /,, for almost every w € X.

From the continuity of £,, we obtain

R . N ’ 1 n—1 L
Loy = tim Ly@nw) = lim — 37 Lo(Lyi) 1)
j=0

) 1 n—1 iy 1w
=, lm - X(:) Lo-i@an@ + — (Lo-nuy D — 1.
/:
Since ZZ—n ©(w)) (D) 1s uniformly bounded we conclude that Ly(hy) = ho(w)- O

From the proof of the previous proposition we conclude that the family {h}yex is
uniquely determined. Moreover, every h,, satisfies

1

z <infhy <1 <suphy <R.
where R = (1 + mk diam(M)%).
5.2. Measurability. In the previous subsection we proved the existence of a family
{hw}w invariant under the action of the transfer operator. Here we prove that this family
is measurable as well as the family {v,},. Moreover, defining the probability measure
Ww = hy vy, we also prove that u,, has an exponential decay of correlations and that the
family {u }y is F-invariant.

The next proposition states an exponential approximation of functions in the cone to the

invariant family {4, },,. This is the main ingredient in the proof of the exponential decay
of correlations.

PROPOSITION 5.4. For almost w € X there exist constants K > 0 and 0 < t < 1 such
that for every ¢ € C’g satisfying [ ¢ dvy, = 1 we have that

1Z3,(@) = Ly (huw)lloo < KT" foralln > 1,
where .Zw = )\;1£w is the normalized operator.

Proof. Given ¢ € C’g satisfying [ ¢ dv,, = 1, we have for every n > 1,

/-Zl;(w) dvgn () = / @ d(L)" (onw)) = / pdv, =1.
Since hy, € c’g also satisfies f hy dvy, = 1, we derive for every n > 1 that

Z (¢)
) (hy)

~

LZ ()

inf —;
Ly,(hw)

<1<su

https://doi.org/10.1017/etds.2022.44 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.44

Uniqueness and stability of equilibrium states 2609

Recalling that .Z:Z) (hw) = hgnqyy for all n > 1, we apply the same projective metric
argument used in the proof of Proposition 5.3 to obtain

AN
" N L (¢) n
120 (0) = Lo (hu) oo < 1hgn ) lloo A,;”“”)—lu <RE" -1 <K' O
w \Mw 00

Let 1, be the probability measure defined by wy, := hy,vy,. From the last proposition
we derive the proof of Theorem B.

THEOREM B. For almost every w € X, the probability measure (i, has exponential decay
of correlations for Holder continuous observables: there exists 0 < T < 1 such that for any
NS Ll(ugn(w)) and Y € C*(M) there exists a positive constant K (¢, V) satisfying for all
n > 1 that

< K(p, ¥)r".

‘/(QOOfﬁ)w duw—/wduen(w)fwduw

Proof. Giveng € L! (1enwy) and ¢ € C%(M), we suppose without loss of generality that
f Y duy = 1. Let jzw = )\;]Lw be the normalized operator. As a first case we consider
Y - hy, in the cone C’g for k large enough. Recalling that w,, = hyvy, and that £ vg) =
AwVw, We have

' Jwo i i~ [ o duma [ v i

= ‘ /(<P o fo)¥ - hy dvy, — f @ - hgn(wy dven(w)

= ‘ / @ - zz,(llf ~hy) dvgn ) — / @ - hon(w) dven (w)

<o IIZs (¥ - hw) — Lo (h)llco-

Since ¢ - hy € Ck and [ ¢ - hy dvy, = [ ¥ dpyy = 1 we can apply Proposition 5.4 to
conclude the existence of constants K > 0 and 0 < t < 1 such that

120 (¥ - ) = Ly (h)lloo < KT for every n = 1.
For the general case we write v - h,, = g where
g=8"—g1¢ =308l £V +C and C=k"'¥ - hulas.

Therefore, g% € C’g. From the previous estimates on g* and by linearity the proposition
holds. O

Now we state the measurability of the families {v, },, and {h,,},,. We start by observing
that for almost every w € X and every continuous function g € C°(M) we have

ZZ)(g chy) — / g - hydvy, whenn — oo, (13)
hon (w)
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where £ is the normalized operator L, = x;l.ﬁw. Indeed, we can suppose that the
function g,, is Holder continuous because any continuous function is approximated by
such functions. Moreover, following the proof of Theorem 5.2, we can just consider the
case g - hy, € C]g for k large enough. We have that

1 N 1 N
‘—LZ,(ghw)—/ghw dvy, =< HLZ}(ghw)_/ghw dvy 'he”(w)
hen () 0o lhenw)
AN gl’lw AN
< R|gh _— = h
<Rlg w||ooH1:w(f i a’vw> L, (hy) N

By Proposition 5.4 the convergence in (13) follows. We use this on the next result.

LEMMA 5.1. Let Ny, = V) (Lw(1)). The family {vy,} is uniquely determined by
L vow) = V.

Moreover, the map w > vy, (gy) is measurable for any g € ILIIP(X, cO(m)).

Proof. Fix w € X and let (x,) be a sequence of points in M. Define the probability

L),
GADE

Vw,n

Since vy, satisfies the condition L vy = vy We can apply the convergence (13) to
conclude that for almost every w € X and any continuous function g,, we have

. ST (L3,) "8y, (gw) T L gw(xy)
lim vy ,(gw) = lim —2—""—" = lim ——~——
n—00 n—00 _[:wl(xn) n—00 _[:wl(xn)

L';(g—w : hw>(xn>
. hw
= lim

o 1 = vy (8uw)-
"Enw(ﬁ : hw) (xn)

The convergence of vy, , Bl vy, therefore follows. Since the sequence (x,) was arbitrary
the uniqueness of the family {v,,} is proved. Moreover, the equality

”LZ;gw”oo

n=00 |.L oo

= vy (8w)

implies the measurability of w > vy, (gy) since the transfer operator is measurable. O]

The lemma above enables us to define the probability measure v on the Borel sets of
X x M by

v(g) = / / guw dvy dP(w).
X M
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Let ¢ > 0 be given by condition (VI) and let H C X x M be the non-uniformly
expanding set defined in (x). As in §4, for w € X consider

n—+oo N

1 n—1 )
Hy, = {x € M;limsup — Y " log Lgj ) (fi(x)) < —2¢ < o}.
j=0

By Proposition 4.2 for almost every w € X we have v,,(H,) = 1. Thus, we conclude that
v(H) = 1, that is, v is a non-uniformly expanding measure.

Notice that since hyy = Vg(w)(Lw(1)) we have that the map w +— ©,, € R is measur-
able. Recalling that for almost every w € X the function #,, is given by

. AN
hy = nli?go Lg—n(w) 1,

we deduce the measurability of the map (w, y) > hy,(y) from the measurability of X,
and the transfer operator. From this result the probability measure wr ¢ € Mp(X x M) is
well defined by the formula

wrg(8) = / f gu vy dP(w).
X JM

In order to prove the F-invariance of r 4 we first observe that
//Lw(gé(w) o fw) = /gﬂ(w) o fuw - hwdvy

= / L0 (86aw) © fu - h) d Ve (w)

:/ g@(w)'-zzw(hw)

A dpgw) = How)(8ow))-
6 (w)

Therefore, for every integrable function we get

/g oFdurgy = //ge(w) o fux) duydP(w) = //ge(w) dpgw) dP(w) = /g diLFg.

This finishes the proof of Theorem A.

6. Equilibrium states
In this section we prove that the measure u r ¢ constructed above is an equilibrium state for
(Flo, ¢). Moreover, we show that any ergodic non-uniformly expanding equilibrium state
has disintegration absolutely continuous with respect to the system of reference measures.
From this we derive the uniqueness.

As a first step, in the next proposition we obtain an upper bound for the topological
pressure of the random dynamical system.

PROPOSITION 6.1. For any potential ¢ satisfying condition (IV) we have that

Pro(@) < /X log %y dP(w).
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Proof. Fix w € X such that H,, is not empty (see definition in §4) and let & > 0 be small.
Since every point x € H,, has infinitely many hyperbolic times, for N > 1 large enough
we have

Hy c | [ BuGx.n e,

n>N xeH,

where H, = H,(w) denotes the set of points that have n as a hyperbolic time. From
Lemma 3.1 each f"(By(x, n, ¢)) is the ball Bgn () (f(x), €) in M, thus by applying the
Besicovitch covering lemma it is straightforward to check that there exists a countable
family F, C H, such that every point x € H, is covered by at most d = d(dim(M))
dynamical balls By, (x, n, €) with x € F},. Therefore,

Fn ={By(x,n,¢):x € F,andn > N}
is a countable open covering of H, by dynamic balls with diameter less than & > 0.

Recalling that Hy, is dense on M and the closure of By, (x, n, €) is a subset of By, (x, n, 2¢),
we have that

M=H,C U By(x,n,¢e) C U By (x, n, 2¢e).
By (x,n,6)eFN By (x,n,6)eFy

Hence,
gN = {Bw(-xv n, 28) : Bw(x, n, 8) € 7:N}
is a countable open covering of M by dynamic balls with diameter less than 2¢.

Let 8 > [ log hy dP(w). By the definition of topological pressure given in §3 and by
applying Lemma 4.1 to each element in Gy we obtain

mg(w, ¢, Flg,2¢e, N)

IA

Z e—ﬁn+S,,¢(Bw (x,n,2¢))

By (x,n,2e)eGn

<D v (0" W) Kae(w)e™ Pr1oER) N "y (B, (x, n, 26))
nzN xekF,
n—1 X
< dKzg(w) Z y2—81 (9"(10))6_(/3_(1/") Zi:() log x@’(u;))n.

n>N

As from Remark 4.1 the variable yz_sl (6" (w)) is uniformly bounded and by ergodicity

n—1

we have lim,—, oo (1/1) 3 /2 10g Ngi () = [ log ny, dP(w) for almost every w € X, we
obtain as N goes to infinity that

mg(w, ¢, Flg, 2¢) = NETOO mg(w, ¢, Flg, 2, N) =0,
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forany B > [ log hyy dP(w) and ¢ > 0 small. Thus, we necessarily have

X
Since this is true for P-almost every w € X, we prove the proposition. O

In the next subsection we will prove that Pr|, (¢) = f log Ny dP(w).

6.1. Existence. Consider the family {v,},ycx of reference measures and {4}, cx as in
Theorem A. For each w € X let u,, be the probability measure defined by 1y, = hyvy,.
Recalling that the Jacobian of vy, is J,,, fu = hye ™%, itis easy to verify that the Jacobian
of u,, relative to f, is given by

)\weim’hﬂ(w) o fuw

J,uwfwz h
w

(14)

Consider the probability measure r » whose disintegration is {gty }y, that is,

MF,¢(g)=/ / 8w * hyw dvy, dP(w),
X M

for every continuous function g : X x M — R. As we saw in §5.2, ur ¢ is F-invariant. In
the next proposition we show its ergodicity.

PROPOSITION 6.2. The probability measure [if 4 is ergodic.

Proof. Given a F-invariant set A C X x M, for each w € X denote by A, the set A,, =
{z € M; (w, z) € A}. The F-invariance of A implies that fujl(Ae(w)) = A,,. Consider
Xo ={w € X; uw(Ay) > 0}. It is straightforward to check that Xy is a #-invariant subset
of X. Since 6 is ergodic with respect to P, we will obtain the ergodicity of 1t 4 by showing
that for almost every w € Xy we have u,(Ay) = 1, if P(Xp) > 0.

Let ¢,, be the characteristic function of A,,, that is, ¢,, = 14, . Notice that @y () o
fii = @y, holds P-almost everywhere. Given v, € Ll(,uw) such that f Yy diny =0, it
follows from the decay correlation property of 1, (Theorem B) that

pow ((@onw) © fiy) - Yw) — 0 whenn — +oo.

And thus wa Yy djiyy = 0 for any Y, € L' (1) satisfying [ ¥y dpyy = 0. This proves
that wy (Ay) = 1 for P-almost every w € X which finishes the proof. O]

In §5.2 we observe that the measure v defined by

v(g) = / / ¢u dvy dP(w)
X M

is non-uniformly expanding. Since jir g is absolutely continuous with respect to it, we
have that (1 f 4 is also a non-uniformly expanding measure. In particular, by Lemma 3.2, it
admits a generating partition. Thus, we can use the random Rokhlin formula to express the
entropy of i r 4 in terms of its Jacobian.
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THEOREM 6.1. (Random Rokhlin formula) Let u € Mp(F) be an ergodic measure which
admits a |u-generating partition. Then

hu(F10) = / log Ji.(F) du =/X (/M log Ju,, fuw(¥) duw(y)) dP(w),
where J,,, fu denotes the Jacobian of f, relative to piy,.

The reader can consult [23, Theorem 1.9.7] for a proof of the last result. Now we are
ready to prove that g ¢ is an equilibrium state for (F0, ¢). We have

hw.d,(FI@):/ / log Jyu,, fu () dpw (y) dP(w)
X JIM

)\w 7¢wh w) © fuw
:/ / 10g< © f )(y)dw(y)dl@(w)
X JM w

- / / log Mo djtu () dP(w) — / / bu djw(y) dP(w)
X JM X JM

+ f / (1oghe<w>ofw<y>—1oghw(y>> ditn(y) dP(w).
X JIM

From the F-invariance of ur 4 we derive that

/X fM <log hoqw) © fu(y) — log hw<y>) diw(y) dP(w) = 0.

Thus, we can write
hyup, (FI6) = / / log My djtu(y) dP(w) — / / b diiw(y) dB(w)
X JIM X JIM

=j 10g A dP(w)—/Mw,qb.
X

Applying the variational principle (1) and Proposition 6.1, it follows that
/ log hy dP(w) = hy , (F|0) + / ¢durg < Prio(¢) < / log hy dP(w),
X X

which implies, in particular, that Prjg(¢) = fx log \y dP(w) and so g is an equilib-
rium state.

6.2. Uniqueness. So far we have proved the existence of an equilibrium state for
(Flg, ¢). Here we prove uniqueness in the set of non-uniformly expanding measures.

Let n be an ergodic non-uniformly expanding equilibrium state for (F|g, ¢). We prove
that the disintegration of 1 is absolutely continuous to the reference measure. For this we
use the following remark from the basic calculus.

Remark 6.1. (Jensen’s inequality) Given positive numbers p; >0 and ¢g; >0, i =

1,...,n, such that >/, p; = 1, we have that )/, p; log g; <log(}_i_, pigi), with
equality holding if and only if the g; are equal.
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PROPOSITION 6.3. Consider any ergodic non-uniformly expanding equilibrium state n €
Mp(F) of (Flg, ¢) and let (ny)y be its disintegration. Then, for almost w € X, ny, is
absolutely continuous with respect to vy,.

Proof. We begin by proving that for almost every w € X the Jacobian of 7, is given by
)\we_¢w : h&(w) o fuw
Iy '

Indeed, since 7 is an ergodic non-uniformly expanding equilibrium state we can apply the
Rokhlin formula to obtain that

hy (F16) =/ ([ log Jy,, fu (¥) dnw(y)> dP(w) =/ log Jy,, fu(y) dn(w, y).
X M XxM

Jrlw fw =

Recalling that 4, is a bounded function and that the Jacobian of ., is given by J,,, fu =
Mwe P - hg(w) © fu/hw, We have

[ 10e =2 ann, )
My JW

— [1og sy fudn- [ <logxw—¢w+1og s f”’)
w

= hy(FI0)— Prip(@) + / G + 10 hy —10g Ry 0 fr d > 0.
From the definition of Jacobian we can write

- J‘Il}f
Y nfu'@log —Jn w(z)dn(w,y)=/log
Z_f*l(, waw
= fuw )

J’]w f w

T fu ) dn(w, y) = 0.

15)

Take p; = Jy, [ 1(zl-) and g; = Jy,, fw(zi)/Ju, fw(zi) where the z; are the preimages

. d w -
of y. Since (fu)«Nw = Ngw) Wwe have Z,’ig](f ) pi = Zz=fl;1(y) Inwfo l(Z) =1 for
No(w)-almost every y € M. Therefore, we can apply Remark 6.1 to conclude that

-1

E 1 ﬂufw § anfw "Iﬂwfw

‘]7711) fw (Z) log J f (Z) = log < JM fw (Z)
—1 —1 w

z=fu ) =fu

= log <Zz_fu7'<y> e¢w(Z)hw(Z)>
xth(w) o fuw(@)

. <the<w>(y)) _
)\whé(w)(y)

for ng(w)-almost every y € M. Recalling the inequality (15), we obtain that

”"’];“’ (2) dn(w, y) = 0.

I _
Sflog T f“’ ) dn(w, y) =/ >y ta (@) log ;
Ky J W i w
z=fuw (¥)

Thus, from the second part of Remark 6.1, the values g; = J;,, fu (zi)/Jp,, fw(zi) must be
the same for all z; € f, 1 (y) in a full ng(y)-measure set. In other words, for every y € M
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on the preimage of a full 1y ,)-measure set, we have

e~ - hg o fu
hy

Ay
Jrlwfw(y)zJ/waw(y)z (y)

To finish the proof of the proposition we observe that 1/h,, - n,, is a reference measure
associated to \,, for the dual transfer operator:

1 1
-l:*w< . Ue(w))(lﬁ) = / Ly () (x) d< . Ue(w))
ho(w) ho(w)

1
_ 3 P OG)- (xX) dno(w)
—~ (w)
y:fw (x)

:/ 3 w(y)( hw (y) )dne
) e gy o fu()) T

= f Z ’}\w%‘]nu)fi;l(y) d”le(w)
v=fi'lwy "

o fon)

From the uniqueness given by Theorem A we conclude that 1/h,, - n,, is equivalent to vy,
and thus 7, is absolutely continuous to the latter. [

hg

Finally, we prove the uniqueness of the equilibrium state associated to (F|g, ¢).
Suppose that there exist two ergodic equilibrium states p and 1. Let (i) wex and (7y)wex
be the disintegration of & and 7, respectively.

By the proposition above we have that ., and 7, are equivalent measures. From the
Radon-Nikodym theorem we know that there exists a mensurable function g, : M — R
such that p,, = gy ny for every w € X. Consider g : X x M — R, defined by g (w, x) =
qw(x). Given a measurable set £ C X x M, consider E,, C M the intersection E,, =
E N M. Then we have that

w(E) = / M (Ey) dP(w) = / f qu dny dP(w) = / q dn.
X X w E

Moreover, it follows from the F-invariance of p and 7 that

R(E) = Fup(E) = (q o F)Fin(E) = (q o F)n(E).

Since the Radon—-Nikodym derivative is essentially unique, we conclude thatg = g o F
at n-almost every point. By ergodicity we have that ¢ is constant everywhere and thus
w=n.

6.3. Positive Lyapunov exponents. The main tool in the proof of Proposition 6.3
is the existence of a generating partition for the equilibrium state. In the context of
random dynamical systems generated by non-uniformly expanding maps, the existence of
generating partitions for ergodic measures with Lyapunov exponents bounded away from
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zero was proved by Bilbao and Oliveira in [9]. Therefore, in this setting we can also apply
our Proposition 6.3 to obtain uniqueness of equilibrium states. This is our goal now.

Consider a compact and connected Riemann manifold M? of dimension d. Let F : X x
M — X x M be the skew-product (0 (w), fiy(x)) generated by C!local diffeomorphisms
fw 1 M — M satisfying conditions (I)—(IIT). For 1 <k <d — 1, define

1
Cir(w, x) = lim sup — log ||AkDf,’Z(x)|| and Cr(w, F) = ma}‘z; Cr(w, x),
xe

n——+00

where A is the kth exterior product. We suppose that, for some & > 0,

A

B(F):=({—¢) / log deg( fiy)dP(w) — | max | / Cr(w, F) dP(w) > 0.
-1Jx

For potentials ¢ € ]Lﬁp(X , C¥(M)) satisfying conditions (IV) and (V) such that for almost
every w € X the inequality sup ¢, — inf ¢, < & [ log deg(fy) dP(w) holds, we obtain
the following result.

COROLLARY 6.1. There exists only one equilibrium state associated to (F|g, ¢).

Proof. Let n € Mp(F|0) be an ergodic equilibrium state for (F|g, ¢). Denote by
M(w, x) <--- < Ag(w, x) the Lyapunov exponents of n at (w, x). We claim that they

are bigger than B(F) > 0. If not, by applying the random version of the Marquis—Ruelle
inequality [18, Theorem 2.4] we have

d
hy (F|6) S/ij(w,x) dn(w, x)
i=1

Z/xf(w,x) dn(w,x)+/ Z A (w, x) di(w, x)
)

ie{2..d

<6+ [ Cortwox) dntw.n) < pE)+ max [ Cuw. ) apw)

< (1 - o) [ togdeg() dP(w).
Thus, for potentials such that sup ¢,, — inf ¢, < € f log deg( fiy) dP(w) it follows that

hy(F10) + / ¢pdn<(l—eg) / log deg(fu) dP(w) + / sup ¢y
< / log deg(fw) dP(w) + / inf ¢y, dn < Prip(9).

which is a contradiction. Therefore, the Lyapunov exponents of 1 are bigger than 8(F), and
so n admits generating partitions with small diameter. Applying the proof of Proposition

6.3, we have that 7 is absolutely continuous with respect to v, and thus the uniqueness is
proved. O
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7. Equilibrium stability
Consider a sequence (Fy, ¢x) in H converging to (F, ¢). For each k € N, let uy be
the non-uniformly expanding equilibrium state of (Fj, ¢r). We will prove that any
accumulation point p of the sequence (1) is the non-uniformly expanding equilibrium
state of (F, ¢).

For each k € N, consider the disintegration {{tx }wex of px. From Theorem A, we
know that ptg w = hkwVk,w Where hy o, and vy, satisfy

L uvkow) = Mavkw  Lewhkw = Meawheow)  With Mew = Vegw) (Lew(1)).

We point out that for any ¢ € C*(M) we have Ly ,, () converging to L, () in C -norm,
a proof of which is given in [3].

Let Ny, vy, and hy, be as in Theorem A applied to (F, ¢). The main step in the proof of
the equilibrium stability is the following proposition.

PROPOSITION 7.1. For almost all w € X we have the convergence
Mew = Mw Viw =5 vy and hiy — hy o ask goes to infinity.
Proof. Recalling that for each k£ € N we have
deg(frw)e™ % < M < deg(fiw)e™® %o,

the sequence (\x.,,) admits some accumulation point k,,. Moreover, taking subsequences,
if necessary, there exist probability measures vy, and Vg(y) such that vy B Vy and
Vkd(w) —> Dow). We will prove that £ Dg () = Rup D

For any ¥ € C*(M) we can write

L3 09wy (V) = Vo) (Lw(¥)) = Vo) (lim Ly (¥)) = m gy (Liw ().
k— 00 k— 00
From the convergence of vg gy to V() We have
lim Vg (Liw (W) = lim v g (Liw@)) = lim L7, (Vo) (¥).
k— 00 k—o00 k— o0 ’
Since vk g(w) is a reference measure, the last equality can be rewritten as
lim £f , ko) (W) = m Ny vew (W) = kb (P).
k—o0 ’ k—o00

Thus, L D) (¥) = Nww (¥) for any ¥ € C¥(M). Because C*(M) is dense in co'(m)
we conclude that L gy = N Uiy

Now we will verify that X,, = \,. Therefore, from the uniqueness given by Theorem A
it follows that v, = vy,.

Given ¢ > 0 small and n € N, consider a (w, n, £)-separated set F,. Let U be the open
cover of M defined by U := {ﬂ?;(l) fu  (B(fi(x), €)); x € F,}. Because (L")*Vgn(y) =
ML Dy, it follows that

1 =0y(M) = /(Xz)—lz’;(l) dgn ()

< ('}_\Z))_] Z eSIl¢w(z) dl_)gn(w)
veu 'Y
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<Gyt Y S / (51605100 @500
xeF,
N n—1
< ()\.Z})_l Z eSn¢w(X)er=0 |¢9j(w)|a3.

xekF,

Thus, Z?;(l)(log Xe_;(w) = |Pgiw)lat) <1og Prj,(w, n, ). As P is ergodic we obtain

B . 1 n—1 B 1 n—1
/ log %y dP(w) — ¢ / Bule dPw) = lim — 3" log Lysiy = &= D [dpicula
j=0 j=0

1
< lim sup — / log P, (w, n, ) dP(w)

n—oo N

for every ¢ > 0 small. Hence, flog w dP(w) < Pr(¢). On the other hand, since ¥y, is a
reference measure, it satisfies a Gibbs property on hyperbolic times (Proposition 4.1). Thus,
we can apply the proof of Proposition 6.1 to obtain Pr(¢) < [ log \w dP(w). Recalling
that Pr(¢) = [ log Ly dP(w), we have

/ log hp dP(w) < Pr(¢) = f log hy dP(w) < / log Ry dP(w).

Since this is constant for P-almost every w € X, we have proved that o = .
To finish the proof of the proposition it remains to prove the convergence hy ,, — hy,
Since (Fi, ¢x) € H we can assume that the transfer operator Ly ,, preserves the same cone

Ck for k large enough. Then, recalling the proof of Proposition 5.3, we have each Ay ,, € C s
with f hiw dviyw = 1. Moreover, it satisfies

|hiaw(X) = hw (W] = Cmd(x, »)* and  |hw(¥)] < sup hgw < R.

Therefore, (hj,) is a discontinuous and uniformly bounded sequence. From the
Arzela—Ascots theorem there exists some accumulatlon point h,,. Notice that &, is Holder
continuous and f hw dvy = 1 because Viw B V. Moreover, h,, satisfies

Ly(hy) = Ly(lim hgy) = lim Ly (hew) = lim Liw (riw)
k—o00 k—o00 k—o00

= lim Newhiow) = )\w/’_lg(w).
k—o00
By the uniqueness of Theorem A we obtain /,, = h,, almost everywhere. O

From the previous result we obtain for almost w € X that the sequence (1ix ) converges
to [ty defined by py, = hyvy,. Therefore, the sequence (i) converges to the probability
measure 1 whose disintegration is {4y, }wex. As in §6, we have that p is the non-uniformly
expanding equilibrium state of (F|g, ¢). Moreover, since in the family H we have that
P, (¢) = [ log hyy dP(w), we obtain

Pr,(9) = / log Ay dP(w) = lim /10g Mew dP(w) = lim Pr, (),
k— 00 k—o00

which proves that the random topological pressure varies continuously in the family. This
finishes the proof of Theorem D.
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8. Applications

In this section we present some classes of systems which satisfy our results. We start
by describing a robust class of local diffeomorphisms which contains an open set of
non-uniformly expanding maps that are not uniformly expanding. This class was studied
in the deterministic case by several authors [1, 2, 12, 29]. The first example is a
one-dimensional version of this class.

Example 8.1. Let g : S' — S! be a C'-local diffeomorphism defined on the unit circle.
Fix ¢ > 0 small, ¢ < 1 and consider a covering Q of S! by injectivity domains of g and a
region A C S! covered by ¢ elements of Q with ¢ < deg(g) such that

(H1) ||Dg7'(x)|| <1 + ¢, forevery x € A;

(H2) ||Dg'(x)|| <o, forevery x € M \ A.

Let us consider a suitable C! perturbation of g to produce an open set # of C!-local
diffeomorphisms satisfying conditions (I)-(II). The perturbation can be chosen small
enough to guarantee the uniform openness property in the family . We also assume that
every g € ¥ is topologically exact and its degree deg g is constant. Notice that ¥ may
contain expanding maps, perturbations of expanding maps and intermittent maps.

Let 6 : S! — S! be any invertible function preserving an ergodic measure P on S'.
Thus, any random dynamical system g = (gw)y generated by maps g,, € ¥ satisfies the
hypotheses of our theorems. For potentials ¢ € ]L]%, (S, c*(Sh)) satisfying (IV) and (V) we
can apply our results to obtain the thermodynamic formalism in this class and the existence
of only one equilibrium state on the set of non-uniformly expanding measures.

Moreover, if the potential also satisfies the condition sup ¢ < Py (f) then the equilib-
rium state is unique in the class of ergodic measures. Indeed, using the random versions
of Oseledets’s theorem and Ruelle’s inequality (see [18]), for the equilibrium state p the
Lyapunov exponent A (i) satisfies

M) = hyu(g) = Py(g) — / ¢ dp = hiop(g) + inf ¢ — sup ¢

> hiop(g) — (sup ¢ —inf @) > log ¢ > 0.

Therefore, \(u) is positive and bounded away from zero. In dimension one this implies
that the equilibrium state is non-uniformly expanding.

The second example is a generalization of the previous one in higher dimension. The
existence of equilibrium state for random transformations given by maps in this setting was
considered by Arbieto, Matheus and Oliveira [5].

Example 8.2. Let M! be a compact /-dimensional Riemannian manifold and O the space
of C? local diffeomorphisms on M. Let (2, T, P) be a measure-preserving system where
P is ergodic. Define the skew-product by

F: QxM — Qx M
(w,x) — (T(w), f(w)x)

where the map f(w) € D varies continuously on w € 2. Fix positive constants 8¢, 81, 62
small and p, g € N, satisfying for every f(w) € D the following properties.
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(HO) There exist 6,y > 8o > 0 such that for every x € M we can find a neighborhood Uy
where f(w) : Uy — By (f(w)(x), §,) is invertible.

(H1) There exists a covering By ... By ... Bpi4 of M by injectivity domains such
that:
e IDFx) M <(1+8) ! foreveryx € BjU---UB,;
e IDf(x)~Y <1 +8;) forevery x € M.

(H2) f is everywhere volume expanding: | det Df (x)| > o1 with o1 > gq.

(H3) There exists Ag such that | log || fllc2| < Ag forany f € ¥ C D.

Adding other technical hypotheses, the authors in [5] showed the existence of equi-
librium states for potentials with small variation. They also proved that these measures
are non-uniformly expanding. Now, for potentials satisfying conditions (IV) and (V),
we can apply our results to obtain the thermodynamic formalism and the uniqueness
of equilibrium state for this class. Moreover, by considering the set S of skew-products
generated by maps of D where 7 : Q — 2 is fixed,

F:XxXM— XxM; F(w,x)=(T(w), fux)),

we define the family H = {(F, ¢) € S x ]LIIP(X, C*(M)); (F, ¢) satisfying (I)-(VID)} and
observe that H satisfies the hypothesis of Theorem D. Thus, the equilibrium state and the
random topological pressure vary continuously within this family.

Next we present an application of our Corollary 6.1. This example appears in [9] in the
context of maximizing entropy measures. Here we prove uniqueness of equilibrium states
for potentials with small variation.

Example 8.3. Let fo, fi : M — M be C! local diffeomorphisms of a compact and con-
nected manifold M satisfying our conditions (I)—(III). For 1 < k < dim M = d suppose
that 10g||AkDf1|| < log deg f1 and consider

1
Cir(w, x) = lim sup — log ||AkDfu'§(x)|| and Cr(w) = maA); Cr(w, x).
xe

n—+oo N

Let P, be the Bernoulli measure on the sequence space X = {0, 1}Z such that P, ([1]) = «.
In [9] Birkhoff proved the existence of & € (0, 1) close to 1 such that

1
[ Jim,~ togll A% D501 4P (w) < a log deg() + (1 — a) log deg ()
= / log deg(fw) dPy(w)
for every x € M. Therefore, for some ¢ > 0 we have

(1—¢) / log deg(fy) dPy(w) — max / Cr(w) dPy(w) > 0
1<k<d—1 Jx

which means that the hypothesis of Corollary 6.1 was verified.
Thus, for potentials ¢ € ]LHID(X , CY(M)) satisfying (IV) and (V) with variation
sup ¢y, — inf ¢, < & [ log deg(fy) dPy we conclude uniqueness of equilibrium states.
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