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SOME APPLICATIONS OF NEARFIELDS

by HELMUT KARZEL and GUNTER KIST
(Received 16th October 1978)

Nearfields and near-rings are related to many other structures and needed for
several representation theorems. Therefore it is important to gain knowledge about
the structure of near-rings and nearfields and to find construction methods. The first
examples of proper nearfields were constructed by L.E. Dickson 1905, they were
finite. 30 years later H. Zassenhaus completely determined the finite nearfields his
attention having been attracted to them by the study of certain permutation groups.
By the axiomatization of Dickson’s methods, H. Karzel succeeded in giving new
examples of infinite nearfields. In the extensive generalization by J. Timm the
so-called ‘““Dicksonian processes’ are the most important tool for constructions of
nearfields and near-rings. The report (44) by H. Wihling is a summary of the results
on nearfields obtained so far.

In this paper in the first section we will report on mutual connections of nearfields
and neardomains with sharply 2- and 3-transitive permutation groups and with some
geometric structures, the so-called rectangular 2-structures and hyperbola-structures.

We find further relations between nearfields and geometry in the theory of
incidence groups due to E. Ellers and H. Karzel (6). This theory has recently
been extended to non-linear geometries as Mobius-planes, Minkowski-planes, Burau-
geometries by the authors, and spheric spaces by H. Hotje. For a treatment of all
these structures there are needed special nearfield-extensions generalizing the concept
of Dicksonian nearfields. Therefore we will give a short survey on ‘““Dicksonian
nearfield-extensions’ and their properties in the second section. Apart from reporting
known results, we will deal with recent advances made by G. Kist and H. Wihling.
The research on this subject is still in progress.

1. Nearfields, neardomains, sharply 2-transitive groups and 2-structures

1.1. Neardomains and nearfields

The concept of a neardomain (Fastbereich) is a generalization of the concept of
the nearfield. A set F provided with two binary operations “+* and “-” is called a
neardomain (F,+ ,-) if the following axioms are valid (16):

(Fbl) (F,+) is a loop (that means: for all a,b € F each equation a+x=5 and
x+ a = b has exactly one solution in F and there is a neutral element 0 € F with
0+a=a+0=a).
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(Fb2)Va,beF:a+b=0>b+a=0

(Fb3) (F*, -)with F*: = F\{0} is a group (with neutral element 1).

(Fb4) Vae F:0-a=0

(FbS) Va,b,c€ F:a(b+c)=ab+ac

(Fb6) VYa,b € F3,d,, € F* such that: Vxe F:a+(b+x)=(a+b)+d,p- x

A neardomain (F, +, -) is a nearfield if (F,+) is a group, that means d,;, = 1 for all
a, b € F. A neardomain (F, +, ) is called planar or projective if

(Fb7) Va,b,m € F, m#1 IxeF:a+x=b+mx

is valid. There are the following theorems:

Theorem 1.1. A neardomain (F,+,-) is a nearfield if one of the following
conditions is fulfilled:
(a) (F,+,") is planar (16, (5.6))
(b) (F,+,-) is finite (16, (5.7)) or more generally: [F*:Z)eN for Z=
{z € F*|Va € F: az = za} (29, Corollary 1.)
(c) (F,+) is a commutative loop (27, (2.11))
d1+1+1=0(27,3.7)
Up to now it has been an open problem if there exist neardomains which are not
nearfields. The results obtained by W. Kerby and H. Welfelscheid show, that the
structure of a proper neardomain must be rather complicated (24 §8, 30).

1.2. Sharply n-transitive sets and groups

Let M be a set, Sy the symmetric group of M consisting of all permutations of
M, T'C Sy, and n €N. Then the pair (M, T) is called permutation set and permutation
group if I' = Sy. A permutation set (M, I) is called sharply n-transitive if for any two
n-tuples (xi,...,%,), (Y1,.-., ) EM" with [{x,...,x.}l=[y1,...,y.}] =n there is
exactly one permutation y €T with y(x;)=y, for all i€{1,2,..., n} and symmetric, if
for any two permutations a, 8 €T the existence of an x €M with o™ '8(x)=
B 'a(x) # x implies a™'8 = B 'a.

Here we know the following theorems:

Theorem 1.2. Let (M,T') be a permutation set and o € Sy,.

(@) If (M,T) is sharply n-transitive resp. symmetric, then also (M, oT'),(M,T'a) and
(M, T") (18, (1.1)).

(b) If (M,T) is symmetric and sharply n-transitive, then n =3 or |[M| = 4; for |[M|=4
and n =3 we have T = S, (18, (1.3)).

(¢) If (M,T) is symmetric, sharply 3-transitive, /M| =3 and T contains the identity id,
then T is a group and there is a commutative field K such that T and PGL(2, K) are
isomorphic as permutation groups (18, Theorem; 1).
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(d) If M is finite and |M| odd then (M,T) is symmetric (9, Satz 13 and Satz 15) and
hence T isomorphic to PGL(2,2%), where |[M|=27+1 (8).

(e) If (M,T) is sharply 2-transitive, T'=T,ala CT for all « €T and id €T, then
(M,T) is symmetric (18).

() If (M,T) is a sharply 2-transitive group, then (M, T’) is symmetric (follows from
(e)).

1.3. 2-structures and hyperbola-structures

Let P be a set and &;, &, two subsets of the powerset B(P). The elements of P
respectively &, U &, are called points respectively generators. The triple (P, ®,, ®,) is
called a Minkowski-lattice if the following two axioms are satisfied:

(H.1) Vae P, Vie{1,2}3,[a); €S, :a €[a);
(H.2) VAE®,,VBe®,:]ANB|=1

Two points a, b € P are called joinable if b& [a], U[a),. A quadruple (P, ®,, &, R)
with R C R(P) is called a chain-structure if (P, ®,, &,) is a Minkowski-lattice and if
for each chain K € R and each generator A € &, U &, we have [K N A| = 1. (10).

In a chain-structure (P, &,, &,, R) we can define the following permutations of P :
For any K, L€ R let be:

5 .{P—>P
“Lx=>xlinK]LN[ix;N K}

fP->P [P—>P
(LK) {x >[xL NMllx, N K1, N LY, 2nd (LK {x ~[xL NIxh N KL N L),

K is an involutorial permutation fixing exactly the points on K and interchanging the
generators of &, and &,. (LK), and (LK), are fixing exactly the points on L N K and
mapping each generator of &; on a generator of ®,.

Therefore (LK);: {gj'_?[% AKLN L] is a faithful representation of (LK), on &,.

A chain-structure (P, 8, &,, R) is called symmetric? if:

(S) VK ER, Vx € P\K, VLER with x, K(x)EL:K(L)=L

and rectangular" if:

R) VK, L, XER(LK)(X)ENR

is valid. If in a chain-structure (P, €,, €,, ®) for an n €N the axioms

(H.3) For any n pairwise joinable points a,, a,, ..., a, € P there is exactly one K € R

with a;, a;,...,a, € K.

“For special chain-structures we find equivalent conditions for (S) in (2) and (9) and for (R) in (2) and
(16).
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(H.4) There are n pairwise joinable points
are valid, then (P, €,, &,, R) is called 2-structure for n =2 and hyperbola-structure for
n=3.

For a 2-structure (P, ®,, ®,, R) the pair (P, &, U &, U R) is an affine plane, if and
only if to every K € R and every a € P\K there is exactly one L € R such thata € L
and L N K = @#. A hyperbola-structure is called a Minkowski-plane if we have:

(H5) VKENR, VgE K and Vp e P\(KUI[ql,U[gl)3;,LER:pEL and KNL =gq.

Theorem 1.3. Every symmetric hyperbola-structure is a Minkowski-plane (9, Satz
11).

1.4. Derivations

There are close relations among neardomains, sharply 2-transitive groups and rectan-
gular 2-structures:

Theorem 14. Let (F,+,-) be a neardomain and T the set of all mappings
(m,a): F>F;i;x—»>a+m-x with a€ F,m & F*. Then the pair (F,T) is a sharply
2-transitive group.

Remark. If we replace (F,+,-) by a quasifield, then (F,T') is only a sharply
2-transitive set; if (F, +, -) is a proper alternative field (= field of octaves), then (F,T’)
is a symmetric 2-transitive set but not a group (34).

Theorem 1.5. Each sharply 2-transitive group (M, T’) can be represented by a
suitable uniquely determined neardomain according to Theorem 1.4, (14, §11 or 24,

§6).

Theorem 16. (a) Let (M,I') be a permutation set, P:=MxM, &,:=
{a}xM:ae M}, @,:={M x{a}:ace M} and R:={(x, y(x)):xEM}:y€ET}, then
(P, &, ®,, N) is a chain-structure.

(b) Let (P,8,,®,,R) be a chain-structure, EER and T':={(KE);:K € R}, then
(@,,T) is a permutation set and the chain-structure derived from (&,,T") according to
(a) is isomorphic to (P, ®,, ®,, R).

Theorem 1.7. Let (M,T) be a permutatién set and (P,®,, ®,, R) the associated
chain-structure. Then the following statements are valid:
(@) (M,I) is a group & (P, 8, &,, R) is rectangular?
(b) (M, ) is symmetric & (P, ®,, &,, R) is symmetric®

() (M,I') is sharply 2- respectively 3-transitive &> (P, ®,, &, R) is a 2-structure
respectively hyperbola-structure (16, 9, 21)

DThe proof of (a) respectively of (b) is similar to (16, (4.1)) respectively to (9, p. 16).
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From these theorems we see that there are one to one correspondences among
neardomains, sharply 2-transitive groups and rectangular 2-structures.

Theorem 1.8. Let (P,®,, 8,, R) be a rectangular 2-structure and (F,+,-) the
associated neardomain. Then (P, €, U €, U R) is an affine plane if and only if (F, +,-) is
planar and therefore a planar nearfield (16, (5.5)).

From Theorems 1.2(c), 1.3 and 1.7 follows:

Theorem 1.9. Let (P, ®,, &,, R) be a symmetric hyperbola-structure and (&,,T)
the associated permutation set. Then (P, ®,, &,, R) is a rectangular Minkowski-plane
and (€,, ') a sharply 3-transitive symmetric permutation group.

Remark. By 1.7, 1.2(f) and the remark after 1.4 we have the following results for
2-structures: rectangularity implies symmetry, but not conversely. For hyperbola-
structures: symmetry implies rectangularity by 1.9, but not conversely; for every
rectangular hyperbola-structure (P, ®,, &,, ) the associated sharply 3-transitive
permutation group (compare 1.7) can be represented in a unique way by a KT-field
(F,+,-, o) (that is a neardomain (F, +,-) with an involutorial automorphism o of
(F*,~) such that for all a € F\{0, —1} we have 1—o0(1+ a) = o(1+ o(a)) (28 p. 227)),
and (P, ®,, ®,, N) is symmetric if and only if (F, +, ) is a commutative field (o is then
the mapping x — x~'). But there are KT-fields (F, +, -, o) where (F, +, ') is a proper
nearfield (28 §2). The question has not yet been answered if there are KT-fields
(F, +,-, o) where (F,+,) is not a nearfield. One can however suppose, that proper
KT-fields do not exist, since W. Kerby could prove the strong result: Each KT-field
F of characteristic F = 1(mod 3) is a nearfield (25).

2. Nearfield-extensions and incidence groups

2.1. Dicksonian nearfield-extensions

Very general nearfield structures from which we can derive geometric structures
are the Dicksonian nearfield-extensions defined by G. Kist.¥ Let (F,+,0) be a
nearfield and K a subnearfield of F. Then the nearfield-extension (F, K) is called

normal if Vvae F:aK=Kvoa
central f VYa€E FYAEK:acA=Aca
quadratic if Vae F:aca€K+a-K

Dicksonian if there is a map -: F X K— F such that (K, +, ') is a field, (F, K, ") is a
right vector space over K and satisfies:
(D) For K¥F:VaeF:a°K=a-K

Yn (32) they were called *‘Fastkdrpererweiterungen” defined by equivalent conditions.
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(D) For K=F:VYae€ F*= K* the mapping y,:x—>a"'- (a°x)(a”' denotes the in-
verse of a with respect to *-”’) is an automorphism of the field (K, +, -).

(The dimension of the right vector space (F, K) is called the rank of the Dicksonian
nearfield-extension and will be denoted by [F: K]; for [F:K] =1 that means F = K,
the concept of the Dicksonian nearfield-extension coincides with the concept of
Dicksonian nearfields (13).)

Theorem 2.1. Any Dicksonian nearfield-extension (F, K) satisfies:
(@) a:x—>a-xis, for any a € F*, a bijective semilinear mapping of (F, K, *);
(b) (K, +, o) is a Dicksonian nearfield;

(¢c) The map -:F X K — F can be chosen such that the neutral elements of (F,°) and
(K, ) coincide. In the case K# F the mapping ‘- is then uniquely determined.

For every nearfield (F,+,°) and its kernel Kr:={zE€F:V¥x,y€EF:(x+y)ez=
x oz + y oz} the pair (F, Kr) is a Dicksonian nearfield-extension.

Theorem 2.2. Any normal nearfield-extension (F, K) with K# F is Dicksonian
with respect to -:F X K—F; (a,A)—>a-A:=\Aca (43, Satz 1).

Theorem 2.3. Any nearfield-extension (F,K) with K# F and F finite is Dick-
sonian (32, (3.11)).

Theorem 2.4. Any quadratic Dicksonian nearfield-extension (F, K) with [F: K] =
3 is a division algebra and therefore either a field of quaternions or a field-extension of
characteristic 2 with x*€ K for all x € F (33, Satz 3; 35; 17).

Theorem 2.5. Let (F, K) be a normal nearfield-extension with K# F. Then:
(a) For [F:K)=3 we have: F*|K* commutative <> F is a commutative field (15).

(b) For [F:K1=3 we have:VYa,b,ce F:(a+b)c € Kac+ Kbc & F is a field (42).

(¢) For [F:K]=2 and F finite we have: F*|K* commutative &F is commutative or
F is one of the Dickson-nearfields DF(9,3) or DF(64,4) with 9 or 64 elements (12, Satz
12).

Remark. Up to now it has been an open problem if we can drop the condition
“finite” in 2.5(c).

2.2. Incidence groups as derivations of normal nearfield-extensions

By an incidence group (G, -, y) we understand a set G which is provided with a
group structure - and a geometric structure ‘“‘y” such that for every a € G the
mapping a;: G—G ;x — ax is an automorphism of (G, y).

An incidence group (G, -, v) is called projective respectively punctured affine if y =

@& CPB(G) is the set of “lines” such that (G, ®) is a projective space respectively
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punctured affine space, that is a space gained from an affine space by omitting one
point.¥
We have the following representation theorems (12, 32):

Theorem 2.6. (a) Let (F, K) be a normal nearfield-extension with [F:K]=3 and
¢:F*—> F*/K*,x - K*x. Then the factorial group (F*/K*, -) together with the set of
lines &:={p(Ka+ Kb)*:a,b € F*: Ka* Kb} forms a desarguesian projective in-
cidence group.

(b) Any desarguesian projective incidence group (G,-,€) can be derived from a
suitable normal nearfield-extension according to (a).

Theorem 2.7. (a) Let (F, K) be a Dicksonian nearfield-extension with F# K# Z,.
G:=F*and @:={(a+b- K)*:a €F,be F*}. Then (F*,o,®) is a punctured affine
incidence group.

(b) Any desarguesian punctured affine incidence group can be derived according to

(a).

Because of the Theorems 2.6 and 2.7 it is important in geometry to gain knowledge
of construction methods for nearfields and to study their properties especially the
lattice of subnearfields. Some work in this respect has been done by F. Pokropp (36),
H. Wibhling (44), G. Kist (32) and for the case of near-rings by J. Timm (40), (41).

An other class of incidence groups derivable by normal nearfield-extensions are
the Mobius- and Burau-incidence-groups. A pair (M, ) is called Mébius-plane if M is
a set of “points” and & C B(M) (set of circles) such that the following axioms hold:

(M1) |®]| =2 and |C|=3 for all C € R;

(M2) For any three distinct points a, b,c € M there is exactly one CE R with
ab,ceC,

M3) VKeR, VgeKand peM\K3,LER:pELand KNL=gq.

Let (P, ®) be a projective space, £ CB(P) and for X C P let X be the projective
closure of X in (P, ®) and R(X): ={K € &: K C X}. Then the triple (P, ®, 8) is called
a Burau-geometry (22) if (B1), (B2), (B3) hold:

Bl) VYKER:Ke®
(B2) VM € & : (M, R(M)) is a Modbius-plane

(B3) For any five distinct points a, b, ¢, d, e € P with ¢ =a,bNd, e holds: Any line
L € ® passing through f: =a, e Nb, d, which meets the circle through a, b, c meets
also the circle through ¢, d, e.

An incidence-group (G, -, y) is called Mobius- respectively Burau-incidence-group
if (G, y) is a Mobius-plane for y = & respectively Burau-geometry for y = (&, &).

YAll geometric notions which are not defined in this paper can be found in (23).
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Theorem 2.8. (a) Let (F,L,K) be a triple of distinct nearfields such that
(F, L),(F,K) and (L, K) are normal nearfield-extensions with [L: K] =2 and ¢ : F*—>
F*/L*; x > L*x. Then the following B-derivation B(F, L, K)=(G,-,®, ®) gives us a
Burau-incidence-group for [F:L]1=3 and a Miquelian (cf. (3)) Mobius-incidence-
group for [F:L)=2:

(G,"):=(F*/L*,-), 8:={p(La+ Lb)*;a,b € F*: La# Lb},
R:={p(Ka+Kb)*:a,be F*: La* Lb}

(b) Any Burau- and Miquelian Mobius-incidence-group can be represented according
to (a). (19), (20)

2.3 Minkowski-incidence-groups

An incidence group (G, -, y), where (G,vy) for y = (&,, &,, &) is a Minkowski-plane
(cf. 1.3), is called a Minkowski-incidence-group. Any symmetric Minkowski-plane
(P, ®,, ®,, ®) can be represented algebraically in the following manner (cf. 1.6, 1.2(c)):
Let K be a commutative field, E: = K*/K*, P:=EXE, @,:={{a}xE:a € E},
®,:={Ex{a}:a € E} and &: = {{(x, x(x):x € E}:x € PGL(2, K)}. By the fundamen-
tal-theorem for symmetric Minkowski-planes the mapping (x, y)— (y(x), py(y)) and
(x, )= (y(y), py(x)) are automorphisms of (P,®,, &, &) if y€ PTL(2,K) and pE
PGL(2, K) and every automorphism of (P, ®,, @,, &) can be obtained in this way.
Therefore the following theorem gives us a construction method for symmetric
Minkowski-incidence-groups:

Theorem 2.9. Let (F,+,0,-) be a set with three binary operations +,°, - such that
F,:=(F,+,°) and F,: =(F, +, ) are nearfields and let K be a subnearfield of F, and
F, such that fF XK =-|F x K and K lies in the centre of F, and F, (that means
(Fy, K) and (F,, K) are central nearfield-extensions) and [F,: K] = [F,: K] = 2. Further
let E,= F\*/K*, E,= F,*/K* and ¢: E,— Aut(F,, K), ¢: E,—> Aut (F,, K) two map-
pings with

Pb - gu(y) = PPy
foral a,b,x,y€E E:=E;=E,
d’“"‘?b(x) = d/a‘l’x

For (a,b)o(x,y):=(a°@y(x), b ,(y)) the quintuple (G=E X E,0,,,8,, &) is a
Minkowski-incidence-group.
Special cases:

(o) @ =1dg, ¢, =1ds,Va €EE,, b € E;:(G,0) is the direct product of (E;,°) and

(E29 ')
(B) ¢ =1dg, Vb EE, or ¢, =1dg, Va € E,:(G,0) is the semidirect product of (E,,°)
and (E,, -)

By 2.9, we do not get all Minkowski-incidence-groups, as the following example
shows: Let (F, K) be a central nearficld-extension with [F : K] = 2 such that there is a
subgroup U of (F* ) of index 2 and H:= U/K*. Then (G,5,®,, &, ®) is a
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Minkowski-incidence-group with respect to

(a-x,b-y) if a-beH

(a,b)o(x,y): ={(a -y,b-x) if a-bezH.
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