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ABSTRACT

We study a process of stochastization of the motions in
an example of the Henon-Heiles model. We propose a new method
to study this process - a method of the field of directions
of motion in the meridional plane, A numerical integration of
the equation for the derivative of this field 3f/3n to the
normal to a trajectory has been made. We denote the points in
which 3f/3n » + « |, and derive the contours of orbit and folds
of directions. The growth of ergodity is connected with the
increase of a number and an area of the folds. May be, a suc-
cessive doubling of a number of folds takes place that results
in a chaos. In the transition region we found a complex perio-
dical orbit. The interpretation of this fact may be made as an
example of cantori., A transition region has very small sizes

about 10_4 .

INTRODUCT ION

In some fields of science (statistical physics,mechanics,
biology, biochemistry etc.), we see an increasing interest to
the problem of ergodity ©r stochasticity) of the motions in the deter-
ministic dyramical systems with a fewdegrees of freedom (see, e.g.,Lich-
tenberg & Liberman 1982,Zadlavsky & Sgdeev 183, Nicolis & Prigogine 1989).

It is well-known that a region of initial conditions is
separated into a set of complex stochastic or ergodic motions
and a set of regular or ordered motions, However, it is not so
clear a reason of such behaviour of the solutions, The struc-
ture of transition region between regular and ergodic motions
is also interesting.
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We consider a simple dynamical system with two degrees
of freedom-a model by Henon & Heiles(1964). It has a force

function
U(R,z) = - 12- ®%+ 22y-rz? + R%/3 @)

Henon and Heiles (1964 ) have shown that this model may result
in the complex trajectories which were named as stochastic
versus the ordered trajectories (regular ones). Some differ-
ences between regular and stochastic trajectories are revea-
led in the Poincare map (R,R): the smooth invariant curves
correspond to the ordered trajectories, and broken curves -
to ergodic ones. A share of the ergodic trajectories (an
ergodic sea) increases with a growth of the energy integral.

Benettin et al., (1976), and Contopoulos and Barbanis
(1989) have studied a behaviour of the Lyapunov characteris-
tic numbers o(t) for the different trajectories in the Henon-
Heiles and Contopoulos models, They have shown nearly exponen-
tial divergence of the nearby trajectories in a case of ergo-
dic motions, (o(t) = const.) and o(t) - 0, t + « for the
ordered motions.

We assume that an appearance of ergodity is connected
with the first folds in the direction field, and a growth of
stochasticity with an increase of a number of folds, their
sizes, and deformation of contours of folds.

METHOD OF STUDY

In order to verify this hypothesis we have considered a
few trajectories in the Henon-Heiles model: as ordered and
stochastic. For every trajectory under study we integrate
numerically an equation for the curvature of the trajectory.

@

of (1
2h

Q
=]

, (2)

[+3)
[~

n

where f is an angle between the tangent to trajectory and the
axis R,U is the force function (1), h = U+l (I is the energy
integral), 2 and n are the directions of tangent and normal
to the trajectory.

Besides, we integrate simultaneously an equation for

af/on:
9 of of |2 1 3u af 3 au (2 1 _
5t () Ttz lm) Tt v TO®)
where
2 .2 2
_ iu _. 2 I 9°u 2
Yy = —P—Sln f + a—ﬁ-51nf —-;;-gcosf @)

(Agekian 1974).
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We must find the points in which 23f/3n = * «, at the
contours of an orbit and the folds of directions, where the
multiplicity of the field varies. 1In order to avoid a sin-
gularity at 9f/9n - * «, we change the variable quantity
3f/%n to q = (3f/3n)~1, when |3f/3n| > 1, and integrate the
equation for q. The points q = 0 correspond to the contours
of orbit and folds.

We consider the trajectories starting from the axis R
orthogonally to it. We have two parameters in the problem: a
quantity R_.~ an abscissa of the starting point, and a quan-
tity I - an integral of energy. We have scanned I at the
fixed Ro (some analog of the third integral) or R, at the
fixed I.

RESULTS

We are interested in transition from the order to the
chaos. Therefore we try to find some transition regions in
the space (RO,I).

The first example of a complication of the picture is
presented in Figures 1-6. We consider Ro = 0,2 and I =1/12,
1/8 and 1/6.

We see an increase in the area of folds with the growth
of I. The invariant curves are smooth and elongated along the
axis R. Then we observe a doubling of invariant curve, a for-
mation of the new folds. In a region of crossing the trajec-
tory and axis R, a multiplicity of direction field is equal
to 4. However, the total ergodity does nmot achieve in this
case,

Other examples are Ry = 0, and the values of I change
from 1/12 to 1/6. The results are shown in Figures 7-12.For
I =1/12 we can see three large folds having the smooth con-
tours, the invariant curves are also smooth. Such a behaviour
takes near about I = 1/6.5. For this, I,we have a small ero-
sion of the invariant curve. A corresponding picture of the
direction field shows increase in the size of folds, a forma-
tion of some supplementary folds in their angles, some dis-
torsion of the contours. A complication of direction field
results in the erosion of invariant curves,

A stronger erosion takes place in Figures 11,12 (I = 1/6).
Here a trajectory tends to the whole ergodity. A number of
folds increases and the contours are loosed shape.

We have studied a transition between ordered and stochas-

tic motions on the small variation of Ry, or 1. It appears
that in the transition field we have a complex periodic orbit
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(see Figure 13). Thus, a periodic orbit is a bound between
the regular and ergodic behaviour in a space of integrals or
quasi-integrals of motion - in this case a space (RO,I).

Also we have determined the Lyapunov characteristic num-

bers o(t) as the functions of time by a method of Benettin

et al, (1976). In Figure 14, we show two examples of such de-
pendences for the variations of I and the same quantity

R, = O. The Figure shows a qualitatively different behaviour.
In the ordered case o(t) tends to zero, and for the stochas-
tic trajectory o(t) ™ const.

CONCLU STON

Thus a disturbance of the smooth invariant curves and a
growth of ergodity of the motions correlate with the incre-
ase in the numbers and sizes and/or the twisting of the bou-
nds of folds. An initial stochasticity is connected with the
appearence of the first small folds. The transition between
the ordered and stochastic regions takes place across a peri-
odic orbit where we observe a sharp decreasing of the Lyapu-
nov exponents,
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Figure 1: Contours of

orbit and folds for the trajectory

with Ro = 0.2 0n I =1/12.
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Figure 2: Invariant curve for the trajectory with Ro =

on I =1/12.
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Figure 3: Contours of orbit and folds for R
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Figure 4:

0.2 and

Invariant curve for Ro = 0.2 and I = 1/8.
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Figure 5: Contours of orbit and folds for Ro = 0.2 and
I =1/6.
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Figure 6: Invariant curves for Ro = 0.2 and I =1/6.
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Figure 7: Contours of orbit and folds for Ro = Q0 and I =1/12,
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Figure 8: Invariant curve for R = 0 and I = 1/12.
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Figure 9: Contours of orbit and folds for Ro

0 and

I1=1/6.5.
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Figure 10:
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Oand I = 1/6.5.
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Figure 11: Contours of orbit and folds for Ro = 0 and

I=1/6.
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Figure 12: Invariant curve for Ro = 0and I =1/6.
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Figure 13: A transient periodic orbit for R0 = - 0.2994 and
1=1/7.
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Figure 14: The dependences o(t) for I = 1/7 (crosses),
I =1/6.5 (circles), and I = 1/6 (dots) for

- - -10
Ro 0 and ARO 10 .
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