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Abstract. A ring R satisfies the dual of the isomorphism theorem if R/Ra ∼=
l(a) for every element a ∈ R. We call these rings left morphic, and say that R is left
P-morphic if, in addition, every left ideal is principal. In this paper we characterize
the left and right P-morphic rings and show that they form a Morita invariant class.
We also characterize the semiperfect left P-morphic rings as the finite direct products
of matrix rings over left uniserial rings of finite composition length. J. Clark has an
example of a commutative, uniserial ring with exactly one non-principal ideal. We
show that Clark’s example is (left) morphic and obtain a non-commutative analogue.

2000 Mathematics Subject Classification. Primary 16E50, secondary 16U99,
16S70.

1. Introduction. If R is a ring, the isomorphism theorem asserts that R/l(a) ∼= Ra
for every element a ∈ R (where l(a) denotes the left annihilator). Dually, R is called
left morphic if it satisfies the following equivalent conditions [6, Lemma 1].

• R/Ra ∼= l(a) for every a ∈ R;
• For every a ∈ R there exists b ∈ R such that Ra = l(b) and l(a) = Rb.

Every unit regular ring is left and right morphic and �4 is an example of a non-
regular morphic ring. We call a ring R left special if it satisfies the following equivalent
conditions [6, Theorem 9].

• R is left uniserial of finite length;
• R is left morphic, local and the Jacobson radical J is nilpotent;
• The left ideal lattice is R ⊃ J ⊃ J2 ⊃ · · · ⊃ Jm = 0;
• R is local and J = Rc where c ∈ R is nilpotent.

In this case Jn = Rcn for each n ≥ 0. The ring �pn of integers modulo pn is a
commutative special ring for every prime p, and other examples appear below.

The left morphic rings were studied in [6] where, among other things, the left
artinian, left and right morphic rings were characterized as the finite products of
matrix rings over left and right special rings. Call a ring R left principally morphic (left
P-morphic) if it is left morphic and every left ideal is principal. The local, left P-morphic
rings are just the left special rings, but matrix rings over left P-morphic rings need not
be left morphic. Nonetheless, we prove the following results.
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THEOREM. (Theorem 13) Let R be a left P-morphic ring. Then R is semiperfect if and
only if it is a finite product of matrix rings over left special rings (and so is left artinian).

THEOREM. (Theorem 15) A ring is left and right P-morphic if and only if it is a finite
product of matrix rings over left and right special rings.

Thus matrix rings over left and right special rings are left and right principal ideal
rings.

In the second half of the paper we turn our attention to the local, left morphic
rings in which J is not assumed to be nilpotent, and prove the following theorem.

THEOREM. (Theorem 18) A ring R with left ideal lattice

0 = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ V ⊂ · · · ⊂ U2 ⊂ U1 ⊂ U0 = R

is left morphic if and only if the left and right socles of R are equal.

Such a ring is ‘almost’ left P-morphic in the sense that V is the only non-principal left
ideal. The example of Clark [2] is a commutative ring of this type.

Throughout this paper every ring R is associative with unity and all modules are
unitary. If M is an R-module we write J(M), soc(M) and Z(M) for the Jacobson
radical, the socle, and the singular submodule of M, respectively. The length of a
module means the composition length, and we write N ⊆ess M if N is an essential
submodule of M. We abbreviate J(R) = J, soc(RR) = Sl and soc(RR) = Sr, and we
write U = U(R) for the group of units of R. The left and right annihilators of a subset
X ⊆ R are denoted by l(X) and r(X) respectively. We write � for the ring of integers
and �n for the ring of integers modulo n. See Lam [5] for other ring-theoretic notions.

2. Left principally morphic rings. Recall that a ring R is called left morphic
if R/Ra ∼= l(a) for every a ∈ R. We call a ring R left P-morphic if it is left
morphic and every left ideal is principal. The ring �pn of integers modulo pn is
left P-morphic for each prime p and each n ≥ 0. More generally [6, Theorem 9]
gives

EXAMPLE 1. Every left special ring R is left P-morphic.

EXAMPLE 2. Every semisimple artinian ring is left and right P-morphic.

Proof. This is because matrix rings over division rings are left and right morphic
[6, Theorem 17], products of left (or right) morphic rings are left (or right) morphic
[6, Example 2], and direct summand left (or right) ideals in a semisimple ring are
principal. �

EXAMPLE 3. If R1, . . . , Rn are rings then R1 × R2 × · · · × Rn is left P-morphic if
and only if each Ri is left P-morphic.

Proof. This follows because products of left (or right) morphic rings are left (or
right) morphic [6, Example 2]; and if R is left (or right) morphic, the same is true for
eRe for every idempotent e2 = e ∈ R [6, Theorem 15]. �

We are going to give some characterizations of left P-morphic rings; the following
new description of the left morphic rings will be needed and has independent interest.
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LEMMA 4. The following are equivalent for a ring R.
(1) R is left morphic.
(2) If L ⊆ R is a left ideal and R/L ∼= Ra, a ∈ R, then R/Ra ∼= L.

Proof. (1) ⇒ (2). Let σ : R/L → Ra be an isomorphism. If b = (1 + L)σ then
Rb = Ra and l(b) = L. By (1), there exists c ∈ R such that Rc = l(b) and l(c) = Rb.

Then R/Ra = R/l(c) ∼= Rc = L, proving (2).
(2) ⇒ (1). If a ∈ R we have R/l(a) ∼= Ra, so R/Ra ∼= l(a) by (2). �
LEMMA 5. The following are equivalent for a ring R.
(1) R is left P-morphic.
(2) R is left morphic and every principal left R-module embeds in RR.

(3) R is left morphic and, if L ⊆ R is a left ideal, then L = ker(α) for some α : RR →
RR.

Proof. (1) ⇒ (2). If RM is principal, then M ∼= R/Ra for a ∈ R by (1), and R/Ra ∼=
l(a) by Lemma 4. But there exists b ∈ R such that l(a) = Rb, again by (1), so RM
embeds in RR.

(2) ⇒ (3). If σ : R/L → RR is monic, take α = θσ where θ : R → R/L is the coset
map.

(3) ⇒ (1). If L ⊆ R is a left ideal let L = ker(α) for some α : RR → RR. If a = 1α,

then L = l(a) so L = Rb for some b ∈ R because R is left morphic. �
Since simple left modules are principal, we have

COROLLARY 6. If a ring R is left P-morphic then every simple left R-module embeds
in RR. In particular, the left socle Sl is nonzero.

Every left special ring is left P-morphic but the following example [6, Example 8]
displays a left special ring that is not right P-morphic. It will be referred to several
times.

EXAMPLE 7. Let F be a field with an isomorphism x 
→ x̄ from F to a subfield
F̄ �= F. Let R denote the left F-space on basis {1, c} where c2 = 0 and cx = x̄c for all
x ∈ F. Then R is a left special ring that is not right morphic, and M2(R) is not left
morphic.

Proof. The only left ideals of R are 0, J = Rc = Fc and R. If y ∈ F − F̄ and
a = yc, there is no b ∈ R such that aR = r(b) and r(a) = bR. The last observation is
[6, Example 16]. �

EXAMPLE 8. If p is a prime, then Mn(�pk ) is left and right P-morphic for all n ≥ 1
and k ≥ 1.

Proof. Write R = �pk . Then R is left and right special, so Mn(R) is left and right
morphic by [6, Theorem 17]. But every submodule of M = Rn can be generated by n or
fewer elements (by the fundamental theorem of finite abelian groups) so every left or
right ideal of Mn(R) is principal (for example, see [4, Chapter 2, Corollary 1.4]). �
In Theorem 15 below, we will show more generally that Mn(R) is a left and right
P-morphic ring if R is any left and right special ring.

If R is left morphic and e2 = e ∈ R, the corner ring eRe is again left morphic by
[6, Theorem 15]. However, if R is left P-morphic we do not know whether eRe must be
left P-morphic, even if we assume that ReR = R.
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THEOREM 9. Let L and L′ be left ideals of the left P-morphic ring R. Then R/L ∼=
R/L′ if and only if L ∼= L′.

Proof. If R/L ∼= R/L′ then, by Lemma 5, there exists a ∈ R such that R/L ∼= Ra.

Hence R/L′ ∼= Ra too, so L ∼= R/Ra ∼= L′, by Lemma 4.
Conversely, if L ∼= L′ then Lemma 5 provides a and a′ in R such that R/L ∼= Ra and

R/L′ ∼= Ra′. It follows by Lemma 4 that R/Ra ∼= L ∼= L′ ∼= R/Ra′. Hence Ra ∼= Ra′

by the first half of this proof. But then R/L ∼= R/L′, as required. �
We do not know whether a left principal ideal ring R is left morphic if it satisfies the
condition in Theorem 9.

Before proceeding we prove two technical lemmas about local rings that will be
needed in the next theorem and again in Section 3.

LEMMA 10. Let R denote a local ring in which J = Rc, c ∈ R, and J is not nilpotent.
Write V = ∩n≥0Jn.

(1) Jm = Rcm for every m ≥ 0.

(2) Rcm − Rcm+1 = Ucm for every m ≥ 0.

(3) If L � V is a left ideal then L = Jm for some m ≥ 0.

(4) l(ct) ⊆ V for every t ≥ 0.

Proof. (1). If Jm = Rcm then Jm+1 = J(Rcm) = Jcm = (Rc)cm = Rcm+1.

(2). We have Rcm+1 ⊂ Rcm by (1) because c ∈ J and J is not nilpotent. Let x be
an element of Rcm − Rcm+1, say x = ucm, u ∈ R. Then u /∈ Rc = J because x /∈ Rcm+1,

so u is a unit because R is local. Hence x ∈ Ucm. Conversely, if x = ucm, u ∈ U, then
x /∈ Rcm+1 because otherwise we would have cm = u−1x ∈ Rcm+1.

(3). Assume L � V. Since L ⊆ Rc0 = R and L � Rcn for some n ≥ 0, there exists
m ≥ 0 such that L ⊆ Rcm and L � Rcm+1. If x ∈ L − Rcm+1 then (2) gives x = ucm,

u ∈ U, so cm = u−1x ∈ L. Hence L = Rcm.

(4). If l(ct) � V then l(ct) = Rcm for some m by (3). This means Rct+m = 0, that
is Jt+m = 0, contrary to hypothesis. �

LEMMA 11. Let R be a local left morphic ring with a simple left ideal, in which J
is not nilpotent. If Rk ⊆ R is simple choose c ∈ R such that Rc = l(k) and l(c) = Rk.

Then l(ct) ⊂ l(ct+1) for every t ≥ 0.

Proof. Such an element c exists because R is left morphic. We have R/Rc =
R/l(k) ∼= Rk so Rc is maximal. As R is local, J = Rc. Now l(ct) ⊂ l(ct+1) is clear
if t = 0 because l(c) = Rk �= 0. So assume that t ≥ 1 and choose v ∈ R such that
Rv = l(ct) and Rct = l(v). Note that v ∈ V = ∩n≥0Jn by (4) of Lemma 10. We
have vct = 0 so, since vc0 = v �= 0, let vcm �= 0 but vcm+1 = 0 where 0 ≤ m < t. But
v ∈ V ⊆ Jt−m = Rct−m, say v = rct−m. Then rct = vcm �= 0, but rct+1 = vcm+1 = 0.

Hence r ∈ l(ct+1) − l(ct), as required. �
With this we can characterize the local, left P-morphic rings.

THEOREM 12. The following are equivalent for a ring R.
(1) R is local and left P-morphic.
(2) R is local, left morphic, with a simple left ideal and ACC on left annihilators.
(3) R is left special.

Proof. (1) ⇒ (2). The ACC holds because left morphic rings are left noetherian.
As R is a left principal ideal ring, let J = Rc, c ∈ R. Since R is left morphic there
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exists k ∈ R such that Rc = l(k) and Rk = l(c). Since R/l(c) ∼= Rc, Lemma 4 gives
Rk = l(c) ∼= R/Rc = R/J. Since R is local, this shows that Rk is simple.

(2) ⇒ (3). Let Rk be simple, k ∈ R, and choose c ∈ R such that Rc = l(k) and
Rk = l(c). Then R/Rc = R/l(k) ∼= Rk, so Rc is maximal. As R is local we have Rc = J
so, by Lemma 11, if J is not nilpotent then l(c) ⊂ l(c2) ⊂ l(c3) ⊂ · · · , contrary to (2).
Hence J is nilpotent and (3) follows by [6, Theorem 9].

(3) ⇒ (1). This is clear by the definition of left special rings. �
Recall that a ring R is called an exchange ring if RR (equivalently RR) has the

finite exchange property (see [8]). This is a large class of rings, containing every
semiregular ring R (that is, R/J is regular and idempotents can be lifted modulo
J). However, we have

THEOREM 13. The following conditions are equivalent for a left P-morphic ring R.
(1) R is an exchange ring.
(2) R is a semiperfect ring.
(3) R ∼= �k

i=1Mni (Si) where each Si is left special.
(4) R is left artinian.

Proof. (3) ⇒ (4) because left special rings are left artinian; (4) ⇒ (1) is well known,
and (1) ⇒ (2) by [1, Corollary 2] because R is left noetherian. So we prove (2) ⇒ (3).

Given (2), [6, Theorem 29] shows that R ∼= �k
i=1Mni (Si) where, for each i, Mni (Si)

is left morphic and Si ∼= eiRei for a local idempotent ei ∈ R. Hence each Mni (Si) is left
P-morphic, so (3) follows from the

Claim. If R = Mn(S) is left P-morphic and S is local then S is left special.

Proof. We may assume that S = eRe where e2 = e ∈ R satisfies ReR = R. Then S
is local, left morphic (by [6, Theorem 15]), and left noetherian so, by Theorem 12, it
suffices to show that soc(SS) �= 0. We have JSl = 0, so eSle ⊆ rS(eJe) = soc(SS) (since
S is semilocal). But eSle �= 0 because R(eSle)R = Re(RSlR)eR = RSlR = Sl �= 0 by
Corollary 6. �
Note that the ring R in Example 7 is left artinian and left P-morphic but M2(R) is not
left morphic by [6, Example 16]. Hence the rings identified in Theorem 13 do not form
a Morita invariant class. However, being left and right P-morphic does turn out to be
a Morita invariant property, and we now determine the structure of these rings. The
following result will be needed and is of interest in itself.

THEOREM 14. Let R be a left and right special ring. If 0 �= RM ⊆ Rn then M is a
direct sum of at most n principal submodules.

Proof. Suppose first that M = C1 ⊕ · · · ⊕ Cr where each RCi is principal. Since RR
is uniserial, it follows that soc(RCi) is simple for each i, so soc(M) = soc(C1) ⊕ · · · ⊕
soc(Cr) has composition length r. Since M ⊆ Rn and soc(Rn) has length n, we have
r ≤ n, as asserted.

Hence it suffices to show that M is a finite direct sum of principal submodules.1

The proof proceeds by induction on the composition length of M.

Claim. We may assume that M is faithful.

1A more general result is proved in Facchini’s book [3, Theorem 5.6]: If R is artinian and serial then
every module is a direct sum of cyclic uniserial modules, and any two such direct sum decompositions are
isomorphic. However we give a short, direct proof in this special case.
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Proof. Suppose l(M) = Jt and write R̄ = R/Jt. Then R̄ is left and right special and
M is a faithful left R̄-module via (r + Jt)m = rm for all r ∈ R and m ∈ M. By hypothesis
R̄M = R̄C1 ⊕ · · · ⊕ R̄Cr where each R̄Ci is principal, so RM = RC1 ⊕ · · · ⊕ RCr where
each RCi is principal. This proves the Claim.

If RM is faithful let Slx �= 0 where x ∈ M. Then the map r 
→ rx is an epimorphism
R → Rx with kernel l(x), and l(x) = 0 because Sl � l(x). Hence Rx ∼= RR is injective,
and so M = Rx ⊕ N for some RN ⊆ M. By induction N is a finite direct sum
of principal submodules (or N = 0), so the same is true of M, and the proof is
complete. �

It is interesting to note that the proof of Theorem 14 goes through for rings for which
every image is a left selfinjective ring with finite left composition length, and every
principal left module has a simple socle. Note further that the ring in Example 7 is
left special but not left selfinjective (not even left P-injective). Here R is called left
P-injective if every map Ra → RR, a ∈ R, is right multiplication by an element of R.

Moreover, by [6, Proposition 27], a left morphic ring R is left selfinjective if and only
if it is left P-injective, if and only if it is right morphic.

We can now give our main structure theorem for left and right P-morphic rings.

THEOREM 15. A ring R is left and right P-morphic if and only if R ∼=
Mn1 (R1) × · · · × Mnk (Rk) where each Ri is left and right special.

Proof. If R is left and right P-morphic, then it is left and right noetherian and
so is left and right artinian by [6, Theorem 31]. It follows by [6, Theorem 29] that
R ∼= Mn1 (R1) × · · · × Mnk (Rk) where each Ri is local, left and right morphic, and left
and right artinian, and hence right and left special by [6, Theorem 9].

Conversely, if R is left and right special then, for each n ≥ 1, every submodule
of Rn is n-generated by Theorem 14, and hence every left ideal of Mn(R) is
principal by [4, Chapter 2, Corollary 1.4]. Since Mn(R) is left and right morphic by
[6, Proposition 17], it follows that it is left and right P-morphic. Now the result follows
by Corollary 6. �

Remarkably, Theorem 15 isolates the same class of rings as in Theorem 35 of [6],
so we obtain several other characterizations of the left and right P-morphic rings.

COROLLARY 16. The following conditions are equivalent for a ring R.
(1) R is left and right P-morphic.
(2) R is left artinian and left and right morphic.
(3) R is semiprimary and left and right morphic.
(4) R is left perfect and left and right morphic.
(5) R is a semiperfect, left and right morphic ring in which J is nil and Sr ⊆ess RR.

(6) R is a semiperfect, left and right morphic ring with ACC on principal left ideals
in which Sr ⊆ess RR.

(7) R is a finite direct product of matrix rings over left and right special rings.

Thus, for example, a left (or right) perfect, left and right morphic ring is a left and right
principal ideal ring. Another surprising fact is now given.

COROLLARY 17. Being left and right P-morphic is a Morita invariant. In addition, if
R is left and right P-morphic the same is true of eRe for any idempotent e ∈ R.
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Proof. Let R be left and right P-morphic. If e2 = e ∈ R then eRe, is left and right
morphic by [6, Theorem 15], so eRe is left and right P-morphic by [6, Theorem 15]
and (2) of Corollary 16. Next, let R ∼= �k

i=1Mni (Ri) where each Ri is left and right
special. Then Mn(R) ∼= �k

i=1Mnni (Ri), so Mn(R) is left and right P-morphic by (7) of
Corollary 16. �

3. On an example of Clark. Clark [2] gives an example of a commutative local
ring R with ideal lattice

0 ⊂ Rv1 ⊂ Rv2 ⊂ · · · ⊂ V ⊂ · · · ⊂ Rc2 ⊂ Rc ⊂ R

which answers a question of Faith (in the negative). We are going to show that R is a
morphic ring, so R is ‘almost’ P-morphic because V is the only non-principal ideal. In
fact, we give a noncommutative version of this example. Recall that a ring is called left
duo if every left ideal is two-sided.

THEOREM 18. Suppose that R is a ring with left ideal lattice

0 = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ V ⊂ · · · ⊂ U2 ⊂ U1 ⊂ U0 = R.

(1) Then Um = Jm and Lm = r(Jm) for each m, and V is the only non-principal left
ideal. Moreover, R is a left duo ring.

(2) R is left morphic if and only if r(J) = l(J), equivalently Sl = Sr.

Proof. (1). Note first that Um and Lm are principal left ideals for each m ≥ 0 (for
example Um = Rx for any x ∈ Um − Um+1). In particular, U1 = J = Rc for some c ∈ R.

Moreover, J is not nilpotent (otherwise R would be left special by [6, Theorem 9], and
so left artinian). Hence the conclusions of Lemma 10 all hold for R.

Now Jm/Jm+1 is semisimple (R is semilocal) and so is simple or zero (being
uniserial). But Jm = Jm+1 implies Jm = 0 because (Lemma 10) Jm = Rcm for each
m ≥ 1. Hence Jm+1 is maximal in Jm for each m ≥ 0, and it follows by induction that
Um = Jm for each m.

Next we show that Lm = r(Jm) for each m ≥ 0. This is clear if m = 0; if m = 1
we have L1 = Sl = r(J) because R is semilocal. In general, if Lm = r(Jm) then Lm is a
two-sided ideal. If we write R̄ = R/Lm, then the ring R̄ satisfies the hypotheses of the
theorem. Since soc(RM) = {m | Jm = 0} for any module RM over a semilocal ring R,

we have

Lm+1/Lm = soc[R(R/Lm)] = soc(R̄R̄) = rR̄(J/Lm) = {r + Lm | Jr ⊆ r(Jm)}
= r(Jm+1)/Lm.

It follows that Lm+1 = r(Jm+1), as required.
Finally, we have ∪mLm ⊆ V, and ∪mLm �= Ln for every n. Hence V = ∪mLm and

it follows that V is not principal (indeed, not finitely generated). Moreover this shows
that R is left duo, and so completes the proof of (1).

(2). As J = Rc, c ∈ R, we have Jm = Rcm for all m ≥ 0 by Lemma 10, and so
r(Jm) = r(cm). Observe that r(cm) is a principal left ideal for each m ≥ 0 by (1), say
r(cm) = Rvm where vm ∈ V by Lemma 10.

Claim 1. Rcm = l(vm) for each m ≥ 0.
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Proof. We have Rcm ⊆ l(vm) because vm ∈ r(cm). Hence, by hypothesis, l(vm) =
Rct = Jt where 0 ≤ t ≤ m. Hence Jtr(cm) = JtRvm ⊆ Jtvm = 0, so r(cm) ⊆ r(Jt) =
r(Rct) = r(ct). It follows that r(cm) = r(ct), and hence that t = m by (1). This proves
Claim 1.

Claim 2. l(d) = l(Rd) for any d ∈ R.

Proof. If a ∈ l(d) then aR ⊆ l(d) because l(d) is a right ideal by (1). Hence
aRd = 0, whence a ∈ l(Rd). Thus l(d) ⊆ l(Rd); as the other inclusion is clear, this
proves Claim 2.

To prove (2), assume first that R is left morphic. Since R/Rc ∼= Rv1 = r(c) by
Claim 1, Lemma 4 gives R/r(c) ∼= Rc. Hence there exists an epimorphism γ : R → Rc
with ker(γ ) = r(c). In particular 1γ is a generator of Rc so 1γ = uc, u ∈ U (R is
local). Hence r(c) = ker(γ ) = l(uc) = l(c)u−1 = l(c) because l(c) is a right ideal by
(1). Using Claim 2, this means r(J) = l(J), that is Sl = Sr (because R is semilocal).

Conversely, assume that Sl = Sr, that is r(c) = l(c) using Claim 2; we must prove
that R is left morphic. It follows by induction that r(cm) = l(cm) for each m ≥ 0.

Claim 3. The left ideals of R are pairwise non-isomorphic.

Proof. V is the only non-principal left ideal. The fact that Rvm has length m for
each m has two consequences: (a) Rvn ∼= Rvm implies that n = m; and (b) Rvm cannot
be isomorphic to Rcn for any n. Finally observe that Rvm = r(cm) = l(cm) = l(Jm) for
each m (using Claim 2). Hence if Rcm ∼= Rcn, that is Jm ∼= Jn, then Rvm = l(Jm) =
l(Jn) = Rvn, and again m = n. This proves Claim 3.

To prove that R is left morphic it suffices by Lemma 4 to show that, if R/L ∼= Ra
where a ∈ R and L is a left ideal of R, then R/Ra ∼= L. We have R/V � Ra for any
a ∈ R because the left submodule lattices are not isomorphic. If L �= V then either
L = r(cm) or L = Rcm. Observe that

R/r(cm) = R/l(cm) ∼= Rcm and R/Rcm = R/l(vm) ∼= Rvm = r(cm).

This, with Claim 3, shows that R is left morphic, and so proves (2). �
Since the Clark example is commutative, Theorem 18 gives

COROLLARY 19. The Clark example is a commutative, local, morphic ring with
exactly one non-principal ideal.

As mentioned above, the left special rings R are local, left morphic rings in
which J = Rc, c ∈ R, and J is nilpotent. These rings have left ideal lattice R ⊃ J ⊃
J2 ⊃ · · · ⊃ Jm = 0. We now investigate the situation where J is not nilpotent, and
prove in Theorem 23 a type of converse of Theorem 18. Lemmas 10 and 11 require that
Sl �= 0. However, if R is left morphic then Sr ⊆ Sl by [6, Theorem 24] and the proof of
our theorem requires the stronger condition that Sr �= 0. The following technical result
gives several equivalent conditions.

LEMMA 20. Let R be a local, left morphic ring with Sl �= 0. If Rk is simple, k ∈ R,

choose c ∈ R such that

Rk = l(c) and Rc = l(k).

Then J = Rc = Z(RR), Sl = r(c), and R/Rk ∼= J as left R-modules. Moreover, the
following conditions are equivalent.
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(1) Sr = Sl.

(2) Sr �= 0.

(3) Sl is simple as a left R-module.
(4) r(c) = l(c).
(5) Rk is a right ideal.
(6) J = r(k).
(7) kR is simple.
(8) J = Z(RR).

When these conditions hold, Sl is simple and essential in RR and Sl = Rk = l(c).

Proof. Since R/Rc = R/l(k) ∼= Rk is simple, Rc is a maximal left ideal. Hence
J ⊆ Rc, and this is equality because R is local. We have J = Z(RR) in any left morphic
ring by [6, Theorem 24]. As R is semilocal, Sl = r(J) = r(Rc) = r(c). Finally, R/Rk =
R/l(c) ∼= Rc = J.

(1) ⇒ (2). Clear as Sl �= 0 by hypothesis.
(2) ⇒ (3). If 0 �= a ∈ R, choose b ∈ R such that Ra = l(b) and Rb = l(a). Then b

is not a unit, so b ∈ J (because R is local) and it follows that Sr = l(J) ⊆ l(b) = Ra.

Hence Sr ⊆ess
RR by (2). But Sr (viewed as a left ideal) is a direct summand of Sl, so it

follows that Sr = Sl. Thus Sl is simple and essential in RR, and this certainly proves (3).
(3) ⇒ (4). Given (3), we have Rk = Sl, that is l(c) = r(c).
(4) ⇒ (5). Given (4), Rk = l(c) = r(c) is a right ideal.
(5) ⇒ (6). Given (5), kJ = kRc ⊆ Rkc = 0, so J ⊆ r(k). Hence J = r(k) because

R is local.
(6) ⇒ (7). Given (6), kR ∼= R/r(k) = R/J is simple because R is local.
(7) ⇒ (8). Clearly (7) ⇒ (2), so Sr ⊆ess

RR by the proof of (2) ⇒ (3). But if a ∈ J
then Sr ⊆ l(J) ⊆ l(a), whence a ∈ Z(RR). Hence J ⊆ Z(RR), and (8) follows because
R is local.

(8) ⇒ (1). We have Sr ⊆ Sl by [6, Theorem 24]. If a ∈ J then l(a) ⊆ess
RR by (8), so

Sl ⊆ l(a). It follows that Sl ⊆ l(J) = Sr, proving (1).
Finally, if these conditions hold then Sl is simple and essential in RR by the proof

of (2) ⇒ (3), so Sl = Rk because Rk is simple. �
Since Sr ⊆ Sl in every left morphic ring by [6, Theorem 24], Lemma 20 gives:

COROLLARY 21. Let R be a local, left morphic ring. Then Sr �= 0 if and only if
Sl = Sr �= 0, and in this case Sl is simple and essential in RR.

We do not know an example of a local, left morphic ring in which Sr �= Sl.

If R is local and left morphic with Sl �= 0, conditions (1)–(8) in Lemma 20 hold in
the following situations.

(1) R is left duo (then Rk is a right ideal).
(2) R is left perfect (then Sr ⊆ess

RR).
(3) R has ACC on right annihilators (then J = Z(RR) is nilpotent [5, Theorem 7.15],

and hence R is left perfect).
(4) R is left mininjective (then Sl ⊆ Sr by [7, Theorem 1.14]). Here R is called

left mininjective if every R-linear map γ : Ra → RR, where Ra is simple, is right
multiplication by some element of R. Examples include all semiprime and all left
P-injective rings.

LEMMA 22. Let R be a local, left morphic ring with Sr �= 0. If Rk is simple, k ∈ R,

choose c ∈ R such that Rk = l(c) and Rc = l(k). With an eye on Lemma 10 and Clark’s
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example, define

V = ∩m≥0Rcm = ∩m≥0Jm and W = ∪m≥0r(cm).

Then all the properties in Lemmas 10 and 11 hold, and in addition:
(1) l(Jm) = l(cm) = r(cm) = r(Jm) for all m ≥ 0.

(2) W ⊆ l(V ).
(3) For m ≥ 0, choose vm such that l(cm) = Rvm and l(vm) = Rcm. Then

Rvm+1 − Rvm = Uvm+1.

Proof. We have R/Rc ∼= Rk, so J = Rc because R is local. Hence the hypotheses
of Lemmas 10 and 11 are satisfied.

(1). We have r(cm) = r(Jm) by Lemma 10, and l(c) = r(c) by Lemma 20. Now
l(cm) = r(cm) follows by induction on m. Clearly l(Jm) ⊆ l(cm). If acm = 0 then cma =
0 so cmar = 0 for all r ∈ R. But then arcm = 0, and we have aJm = aRcm = 0. Hence
l(cm) ⊆ l(Jm).

(2). We must prove that WV = 0, equivalently that l(cm)V = 0 for every m ≥ 0.

But V ⊆ Rcm so l(cm)V ⊆ l(cm)Rcm ⊆ Rl(cm)cm = 0 because l(cm) is a right ideal by
(1).

(3). Note that each vm ∈ V by Lemma 10. Let b ∈ Rvm+1 − Rvm. Then b = uvm+1,

u ∈ R, and we claim that u ∈ U. For otherwise, u ∈ Rc so, since Rcm is a right
ideal, cmb ∈ cmRcvm+1 ⊆ Rcmcvm+1 ⊆ Rcm+1l(cm+1) = 0. Hence b ∈ Rvm, a contra-
diction. �

We can now prove a ‘converse’ to Theorem 18.

THEOREM 23. Let R be a local, left morphic ring in which Sr �= 0 and J is not
nilpotent. If R contains a unique non-principal left ideal then there exists c ∈ R such that
the lattice of left ideals of R is

0 ⊂ l(c) ⊂ l(c2) ⊂ · · · ⊂ V ⊂ · · · ⊂ Rc2 ⊂ Rc ⊂ R.

In particular R is a left duo ring.

Proof. We have J = Rc where l(c) = Sl = Sr by Lemma 20. As in Lemma 22,
write V = ∩m≥0Jm = ∩mRcm and W = ∪m≥0l(cm). We have W ⊆ V since, otherwise,
W = Rck for some k by Lemma 10 whence ck ∈ l(cm) for some m, a contradiction.

Claim. V is not principal.

Proof. If V = Ra then R/V ∼= l(a) by Lemma 4. But l(a) ⊇ l(V ) ⊇ W by
Lemma 22, and RW is not noetherian by Lemma 11. Hence R/V ∼= l(a) is also not
noetherian, a contradiction. This proves the Claim.

Now W is not left principal by Lemma 11, so V = W by hypothesis. If L is a
left ideal of R and L � V then L = Rcm for some m by Lemma 10. Suppose now
that L ⊂ V. By hypothesis L = Rb, b ∈ W, so b ∈ l(cm+1) − l(cm) for some m ≥ 0.

Using the notation of (3) of Lemma 22, this means b = uvm+1, u ∈ U, and we obtain
Rb = Rvm+1 = l(cm+1), as required. �

REMARK. Clark points out that V = Vcn for each n ≥ 1. In fact this holds if R
is any local ring in which J = Rc and J is not nilpotent. Clearly, Vc ⊆ V. If v ∈ V
then v = yc, y ∈ R. Then y ∈ V because otherwise y = ucm, u ∈ U, by Lemma 10,
so cm+1 = u−1v ∈ V ⊆ Rcm+2. It follows that cm+1 = 0, so Jm+1 = 0 by Lemma 10, a
contradiction.
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The left module V/W is mysterious if it is not zero (using the notation of
Lemma 22). Here are some facts about it.

PROPOSITION 24. Let R be a local, left morphic ring in which J is not nilpotent and
Sr �= 0. Suppose that V �= W as in Lemma 22.

(1) If v ∈ V − W then W ⊂ l(v) ⊂ V and W ⊂ Rv ⊂ V.

(2) V/W is not left artinian.
(3) If R is left duo then V/W is not left noetherian.

Proof. (1). Since neither W nor V is principal and R is left morphic, it suffices to
show that W ⊆ l(v) ⊆ V and W ⊆ Rv ⊆ V. Write l(v) = Rb where l(b) = Rv. We
have W ⊆ l(V ) ⊆ l(v) by Lemma 22. If l(v) � V, we have l(v) = Rcm for some m ≥ 0
by Lemma 10 so b = ucm, u ∈ U. But then, since l(cm) is a right ideal by Lemma 22,
Rv = l(b) = l(cm)u−1 = l(cm) ⊆ W, a contradiction. Hence W ⊆ l(v) ⊆ V.

Next, Rv ⊆ V is clear, so it remains to show that W ⊆ Rv = l(b), that is Wb =
0. Since WV = 0 by Lemma 22, it suffices to show that b ∈ V. But b /∈ V means
b = ucm with u ∈ U and m ≥ 0, so Rv = l(b) = l(ucm) = l(cm)u−1 = l(cm) = r(cm) ⊆
W, contradicting the choice of v.

(2). We show that V/W is not artinian by showing that (Rcmv + W )/W ⊃
(Rcm+1v + W )/W for each m ≥ 1. If these are equal then cmv − rcm+1v ∈ W for
some r, whence cmv ∈ W (because c ∈ J). But then cmv ∈ r(cn) for some n, whence
v ∈ r(cm+n) ⊆ W, a contradiction.

(3). Choose v ∈ V − W. Then l(cv) ⊆ l(c2v) ⊆ l(c3v) ⊆ · · · so it suffices to show
that l(cmv) ⊂ l(cm+1v) for each m ≥ 1. Write l(cmv) = Ra where l(a) = Rcmv, and
l(cm+1v) = Rd where l(d ) = Rcm+1v. If l(cmv) = l(cm+1v) then Ra = Rd so, since R
is local, a = ud where u ∈ U. But then l(a) = l(ud ) = l(d )u−1 = l(d ) because R is left
duo, that is Rcmv = Rcm+1v. Since c ∈ J, this implies that cmv = 0, so v ∈ r(cm) ⊆ W,

a contradiction. �
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