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Abstract

We introduce a family of infinite nonamenable discrete groups as an interpolation of the Higman—
Thompson groups by using the topological full groups of the groupoids defined by S-expansions of
real numbers. They are regarded as full groups of certain interpolated Cuntz algebras, and realized as
groups of piecewise-linear functions on the unit interval in the real line if the 8-expansion of 1 is finite or
ultimately periodic. We also classify them by a number-theoretical property of S.
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1. Introduction

The class of finitely presented infinite groups is one of the most interesting and
important classes of infinite groups from the viewpoints of not only group theory but
also geometry and topology. The study of finitely presented simple infinite groups has
begun with Richard J. Thompson in the 1960s. He [32] discovered the first two such
groups. They are now known as the groups V, and 7. Higman [12] and Brown [3]
generalized Thompson’s examples to an infinite family of finitely presented infinite
groups. One of such family is the groups written V,, 1 < n € N, which are called
the Higman—-Thompson groups. They are all finitely presented and their commutator
subgroups are all simple. Their abelianizations are trivial if n is even, and Z; if n is
odd. The Higman-Thompson group V), is represented as the group of right-continuous
piecewise-linear (PL) functions f : [0, 1) — [0, 1) having finitely many singularities
such that all singularities of f are in Z[1/n], the derivative of f at any nonsingular
point is n¥ for some k € Z and fZ[1/n]1N[0,1)) =2Z[1/n] N[0, 1) [32] (see [4, 5, 26]).
Nekrashevych [25] showed that the Higman—-Thompson group V,, appears as a certain
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subgroup of the unitary group of the Cuntz algebra O, of order n. The subgroup of
the unitary group of O, is the continuous full group I';, of O,, which is also called the
topological full group of the associated groupoid (see also [24, Remark 6.3]). Recently,
the authors have independently studied full groups of the Cuntz—Krieger algebras and
full groups of the groupoids coming from shifts of finite type. The first-named author
has studied the normalizer groups of the Cuntz—Krieger algebras [9], which are called
the continuous full groups from the viewpoints of orbit equivalence of topological
Markov shifts and classification of C*-algebras (see [16—18] etc.). He [19] proved that
the continuous full groups are complete invariants for the continuous orbit equivalence
classes of the underlying topological Markov shifts. The second-named author has
studied the continuous full groups of more general étale groupoids (see [21-24] etc.).
He has called them the topological full groups of étale groupoids. He [24] proved
that if an étale groupoid is minimal, the topological full group of the groupoid is a
complete invariant for the isomorphism class of the groupoid. He also showed that if
a groupoid comes from a shift of finite type, the topological full group is of type F
and in particular finitely presented. He furthermore obtained that the topological full
group for a shift of finite type is simple if and only if the homology group Hy(G) of
the groupoid G is 2-divisible. Hence, we know an infinite family of finitely presented
infinite simple groups coming from symbolic dynamics. Nekrashevych’s paper [25]
says that the Higman—-Thompson groups appear as the topological full groups of the
groupoids of the full shifts and as the continuous full groups of the Cuntz algebras.
In [13], a family of C*-algebras Og, 1 < 8 € R has been introduced. It arises from a
family of certain subshifts called the 8-shifts, which are the symbolic dynamics defined
by the S-transformations on the unit interval [0, 1]. The family of the S-shifts is an
interpolation of the full shifts. Hence, the C*-algebras Og, 1 < 8 € R are considered as
an interpolation of the Cuntz algebras Oy, 1 < N € N.

In the present paper, we introduce a family I's,1 < € R of infinite discrete
groups as an interpolation of the Higman-Thompson groups V,,, 1 < n € N such that
I, = V,,1 <neN. The groups I'g, 1 < € R are defined as the continuous full groups
of the C*-algebras Og, 1 < € R. They are also considered as the topological full
groups of the étale groupoids Gz for the S-shifts. We will first study the groupoid Gg
and show that the groupoid Gg for each 1 < 8 € R is an essentially principal, purely
infinite, minimal étale groupoid. The homology groups H;(Gg) are computed as

R

HA(G
G =10 ifi>2.

{K,»(oﬁ) ifi=0,1,
We will show the following theorem.
Tueorem 1.1 (Theorem 3.7). Let 1 < € R be a real number. Then the group I'p is

a countably infinite discrete nonamenable group such that its commutator subgroup
D) is simple.
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For a real number 8 > 1, let us denote by d(1, ) = £1£,&5 ... the S-adic expansion
of 1, which means & € Z, 0 < ¢; < [B] and

The expansion d(1, ) is said to be finite if there exists k € N such that &, = 0 for all
m > k. If there exists [ < k such that

d(1,p)=¢&1.. . &é - Erniérer - i o ke

the expansion d(1,B) is said to be ultimately periodic and written d(1,[3) =
& - &y - &g Tt is well known that the Higman—Thompson group V,,n € N is
represented as the group of right-continuous PL functions f : [0, 1) — [0, 1) having
finitely many singularities such that all singularities of f are in Z[1/n], the derivative of
f at any nonsingular point is #* for some k € Z and f(Z[1/n] N [0,1)) = Z[1/n]1 N [0, 1).
We introduce a notion of S-adic PL functions on the interval [0, 1] and show the
following theorem.

TueOREM 1.2 (Theorems 5.10 and 6.13). Let 1 < 8 € R be a real number such that the
B-expansion d(1,[) of 1 is finite or ultimately periodic. Then the group I is realized
as the group of 5-adic PL functions on the interval [0, 1].

It is well known that d(1, 8) is finite if and only if the -shift (X3, o) is a shift of finite
type, and d(1, 8) is ultimately periodic if and only if the -shift (Xp, o) is a sofic shift
(see [2, I1]). fB=(1+ \/5)/ 2, the number is the positive solution of the quadratic
equation 82 = 8 + 1, so that the B-expansion is finite: d(1,3) = 110000 ---. We will
classify the interpolated Higman-Thompson groups I's, 1 < € R by the number-
theoretical property of S in the following way.

TaeorEM 1.3 (Theorems 7.2, 7.10 and 7.11). Let 1 < B € R be a real number and

d(1,B) = €1&:265 . . . be the B-expansion of 1.

() If d(1,P) is finite, that is, d(1,8) = &1& ... &00. .., then the group I'g is
isomorphic to the Higman—Thompson group Ve ....g41 Of order &g + - -+ + & + 1.

(i) If d(1,B) is ultimately periodic, that is, d(1,B8) = & - &y -+ - Eer, then the
group T'g is isomorphic to the Higman—Thompson group Vg, ....g,, of order

Eiv1 + -+ &kt
(iii) If1 < B € R is not ultimately periodic, then the group Iy is not isomorphic to any
of the Higman—Thompson groups V,,1 <n e N.

2. Preliminaries of the C*-algebra Og

Throughout the paper, we denote by N the set of positive integers and by Z,
the set of nonnegative integers, respectively. We fix an arbitrary real number S8 > 1
unless we specify otherwise. Take a natural number N with N -1 << N. Put
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>={0,1,...,N — 1}. For a nonnegative real number ¢, we denote by [¢] the integer
part of ¢. Let f3 : [0, 1] — [0, 1] be the function defined by

fp(x) =px—[Bx], x€][0,1].

The B-expansion of x € [0, 1] is a sequence {d,(x, 8)},en of integers of ¥ determined
by (see [27, 30])
du(x,B) = [Bf~' 0], neN.

The numbers d,(x, ) will be denoted by d,(x) for simplicity. We then obtain the
B-expansion of x:
) dn
x= ) B
n=1 B "
We endow the infinite product =V with the product topology and the lexicographical

order. The lexicographical order in ¥V means that for x = (x,),er, ¥ = p)nen € N,
the inequality x < y holds if

X1 =V, Xk =Y and  Xg4p < Yre for some k.

We denote by o the shift on >N defined by o ((Xn)new) = (Xps1)nen. Let & =
(&)nert € IV be the supremum element of {(d,(x))nex | x € [0, 1)} with respect to the
lexicographical order in =¥, which is defined by

&g = sup (dp(X))nen-
xe[0,1)

Define the o-invariant compact subset Xg of =¥ by
Xs={wer|o"(w) <é&,m=0,1,2,...}.
Derniion 2.1 (see [27, 30]). The subshift (Xg, o) is called the §-shift.
ExampLe 2.2. =N eNwith N> 1. Aség = (N - 1)(N - 1)..., the subshift
Xy ={(xDpet €(0,1,....,N -1} | x,=0,1,...,N -1}
is the full N-shift.
Exampie 2.3. B= (1 + V5)/2. AsN =2 and d(1,8) = 1100...,& =10101010...,
X452 = (e €10, 1| *11° does not appear in (x,),en}-

This is a shift of finite type X4 determined by the matrix A = [} }].
Exampie 2.4, B=2+ V3. As N =4 and d(1,) = & = 32,

Xy, 5 = {Gnar €10, 1,2, 3" | (yemdnay < 32 forallm =0,1,2,...}.

This is a sofic shift but not a shift of finite type.
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ExampLe 2.5. B= 3. As N = 2 and & = 101000001 ... .,
X372 = {(u)nert € {0, Y | (psmnery < 101000001 ..., m =0,1,2,...}.
This is not a sofic shift (and hence not a shift of finite type).

A finite sequence ¢ = (ui, ..., ) of elements u; € X is called a block or a word.
We denote by |u| the length k of u. Set, for k € N,

Bi(X) = {1 | a block with length k appearing in some x € Xz}
and B.(Xg) = U, Bx(Xp), where By(X3) denotes the empty word 0.
In [13], a family O, 1 < € R of simple purely infinite C*-algebras has been
introduced as the C*-algebras associated with S-shifts (X, o). We will review the

construction of the C*-algebra Op for a fixed 1 < e€R. Let {ep,...,ey-1} be an
orthonormal basis of the N-dimensional Hilbert space CV. We put

HY=CQ (Q: vacuum vector),
7’{/]3‘ = the Hilbert space spanned by the vectors e, = ¢, ® --- ® ¢,,,,

= (1, i) € Bi(Xp).

Let us denote by Hjp the Hilbert space of the direct sum EB;":O?‘(A‘. We denote by
T,,v € B.(Xp) the creation operator on Hj of e,, which is a partial isometry defined by

e, ®e, ifvu € B.(Xp),

T,Q=e, and T,e,= {0 otherwise

We put Ty = 1 for the empty word 0. Let Py be the rank-one projection of Hjg onto the
vacuum vector Q. It immediately follows that Zfi 6] T;T; + Py = 1. For u,v € B.(Xp),
the operator 7, PT; is the rank-one partial isometry from the vector e, to ¢, so that
the C*-algebra generated by the elements of the form T, PyT;, u,v € B.(Xp) is nothing
but the C*-algebra K(Hp) of all compact operators on Hp. Let 75 be the C*-algebra
on Hp generated by the elements 7', v € B,(Xp).

Derinition 2.6 [13]. The C*-algebra Op associated with the S-shift is defined as the
quotient C*-algebra 73/ K (Hp) of 75 by K(Hp).

We denote by S;,i=0,1,...,N—1and S, u € B.(Xp) the quotient images of the
operators T; and T, respectively. Since S, =S, --- S, for u = (uy, ..., € Bi(Xp),
the C*-algebra Op is generated by N — 1 isometries So,...,Sy—> and one partial
isometry Sy_; with the relation Zﬁi{)l §:87 =1. For =N €N, the C*-algebra is
isomorphic to the Cuntz algebra Oy. Hence, the family 0/;, 1 <pB eR is regarded
as an interpolation of the Cuntz algebras Oy, 1 < N € N.

We put a, = §,S, for u € B.(Xp) and define C*-subalgebras of Op:

A, = the C*-subalgebra of Op generated by S S, u € Bi(Xp),

A = the C*-subalgebra of Op generated by S5, 1 € B.(Xp),

Dy = the C*-subalgebra of Op generated by S ,aS ,, u € B.(Xp), a € Ap,

Fp = the C*-subalgebra of Op generated by S ,aS;,u,v € Bi(Xg), k € Z,,a € Ag.
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As S;Su = S;S oS08, the algebra A; is naturally embedded into Apq. It is
commutative and finite dimensional so that the algebras Az, Dy and Fp are all
AF (approximately finite dimensional)-algebras; in particular, Ag and Dg are both
commutative. Put p;(x) = SJ’."ij for x€ Ag, j=0,1,...,N — 1. Then the C*-algebra
Op has a universal property subject to the relations (see [15])

N-1

18585 =1, pjx)=8;x8; forxeA, j=0,1,...,N-1.

j=0
For t e R/Z =T, the correspondence §; — ez”‘mtSj, j=0,1,...,N —1 yields an
automorphism of Op, which gives rise to an action on O of T called the gauge action
written p. The gauge action has a unique KMS state denoted by ¢ on O at inverse
temperature log 8. For the projections ag,.e, =S . S¢.e, € Ag,n=1,2,..., the
values @(ag,..¢,) are computed as

go(agl‘.‘fn)=ﬂn—§1ﬁn_] _"‘_fn—lﬂ_fn: ﬁi 5 n= ]929([13])
i=1
Let m(l) denote the dimension dimA; of A;. Denote by E!, ... E in 0 the set of minimal
projections of A;. As in [13, Lemma 3.3], the projection El’., i=1,...,m(l) is of the
form E! = Gg,.g, — g, for some pi,q;=0,1,.... The projections d;,..,,n € Z;
are totally ordered by the value ¢(ay,..¢,). We order Ell, cees Efn 0 following the order

¢(a§14..gpl) <0< go(agl...gpm(“) in R.
Some basic subclasses of g-shifts are characterized in terms of the S-expansion

d(1,p) of 1 and the projections a, .., in the following way.
Lemma 2.7 ([27], see [13, Proposition 3.8]). The following are equivalent:

(1) (X, 0) is a shift of finite type;
(11) d(1,P) is finite, that is, d(1,8) = £1&5 -+ - 000 - - - for some k;
(iii) ag..g =1 for some k.
We call (Xg, o) an SFT S-shift if (Xg, o) is a shift of finite type.
Lemma 2.8 ([1], see [13, Proposition 3.8]). The following are equivalent:
() (Xg,0) is a sofic shift;
(i) d(1,pB) is ultimately periodic, that is, d(1,) = & - - - &1 - - - Exer for some | < k;
(iil) ag..g = Az, ..g,, for some [ < k.

We call (X3, 0) a sofic -shift if (X, o) is a sofic shift.
The K-groups of the C*-algebra O have been computed in the following way.

Lemma 2.9 [13].
ZlE +&+ -+ & - D2 ifd(1,B) =&1&---&000.. .,
Ko(Op) = {Z/ (1 + -+ + )2 ifd(1,B) =& & - Exars

Z otherwise.
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The position [1] of the unit of Og in Ko(Op) corresponds to the class [1] of 1 € Z in the
first two cases, and to 1 € Z in the third case, and

Ki(Op) =0 foranyp > 1.

3. Topological full groups of the groupoid Gg

The C*-algebra Op, 1 < € R has been originally constructed as the C*-algebra
associated with the subshift (Xg,0),1 <p €R. It is regarded as the C*-algebra
C;(Gp) of a certain essentially principal étale groupoid Gy as in [15, Section 2]. We
will review the construction of the groupoid Gg in the following way. We denote
by Q; = {vll, ey vﬁn ) the finite set with its discrete topology corresponding to the

set of the minimal projections E', ..., Efn 0 of the commutative algebra A;, so that

A =CQy). If Ei.“ < Ef, we write L1,1+1(Vlj+1) = vf. We define an edge e labeled
ae{0,1,...,N -1} from vf to vé’“l if S[’;EZI.SQ > Ej,“. Denote by E; ;. such labeled
edges. Let Qg be the compact Hausdorff space of the projective limit of the system

it Q1 — QL€ Zy:

um 0 =vlle Z+}-

Qp = {(VZ)ZEZ+ € l_[ Q

leZ,

Let G be the set of triplets (u, a,v) € Qg X {0,1,..., N — 1} X Qg such that for each
l € Z, there exists e;;,; € E;;1 whose source is u', terminal is v**! and label is @, where
u = (u)ez, andv = (V')ez, . Then G becomes a zero-dimensional continuous graph in
the sense of Deaconu [10]. Consider the set Gl(go) of one-sided paths of the graph Gg:

GO = {(a,»,u,-);?; e[ao.1....N 1) x )
=1
(s, @inr, 1) € G for all i € N and (ug, @1, ur) € G for some ug € Qﬁ}.

The set Gg)) has the relative topology from the infinite product topology of
{0,1,...,N — 1} x Qg. It is a zero-dimensional compact Hausdorfl space such that
the C*-algebra C (Gg))) of complex-valued continuous functions on G is canonically
isomorphic to the C*-subalgebra Ds of Op, which is called the canonical Cartan
1 S G‘g)) e ((Yi+1, ui+1)l‘oZ1 S G/(30) is a

(o]

subalgebra of Op. The shift map o : (a@;, u);°
surjective local homeomorphism.

Dermnrion 3.1. The groupoid Gg with unit space Gg)) is defined by the étale groupoid

associated with the surjective local homeomorphism o on G;,O) in the following way:

Gp=1{(x,k=1y) € G’ XZX Gy | oj(x) = () for some k, I € Z,}.
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For an étale groupoid G, we let G denote the unit space of G and let s and r denote
the source map and the range map, respectively. For x € G, the set G(x) = r(Gx) is
called the G-orbit of x. If every G-orbit is dense in G, G is said to be minimal
[24, 28].

Lemma 3.2. For 1 < € R, the groupoid Gg is an essentially principal, minimal
groupoid.

Proor. The C*-subalgebra ¥ of Op is the C*-algebra C;(Hp) of an AF-subgroupoid
Hpg of Gg, which is defined by

Hg ={(x,0,y) € Gg)) X 7, X Gg)) | o-é(x) = o-é(y) for some k € Z,}.

As the algebra ¥ is simple [13, Proposition 3.5], the groupoid Hg is minimal, so that
Gg is minimal. O

A subset U C G is called a G-set if r|y, s|y are injective. The homeomorphism
ro (sly)~! from s(U) to r(U) is denoted by . Following [24], G is said to be purely
infinite if for every clopen set A ¢ G there exist clopen G-sets U, V C G such that
s(U)y=s(V)=A,r(U)UrV)c A, r(U)Nnr(V)=0.

Lemma 3.3. For 1 < B € R, the groupoid Gg is purely infinite.

Proor. As the C*-algebra g is isomorphic to the algebra C(Gg))) of continuous

functions on Géo),
Gg)). Hence, a clopen set of Gg)) may be considered as a finite sum of the form
P = S#EfS; for some p € Bi(Xp) with k <1 such that S5, > Ef It is enough to
consider P = § ﬂEf.S ;. for simplicity. The minimal projection Ef € A, is of the form

E! = ag,..¢, — ¢, for some 1 < p;,q; < with ag,..¢, > ag, ., . Note that

we may identify the projections of Dg with the clopen sets of

S;S# > gy - 3.1
There exists y = (y1,...,¥r) € B.(Xp) such that

(‘fl?""é‘:p[’yh""yr) € B*(Xﬁ), (51""7{_‘%’71"'-’7}’) ¢B*(Xﬁ)

Define the words

m m
Gi(m) =(0,...,0), &HOm)=(0,...,0,1).
By [13, Corollary 3.2], there exists m € N such that

gy pyli(m) = Agygpyiam) = 1. (3.2)
Put £y = {i(m), & = LH(m). By (3.1) and (3.2),

Quyy, 2 S;(l afl"'fpis'y{l = Aggyyn = 1,
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so that a,,;, = 1 and similarly a,,;, = 1. We set

U =S EfS:v V= SW{zEzI'S;’

which correspond to certain clopen G-sets in Gg. It then follows that
U'U = SuEjau, ES;, = S,E\S; = P and similarly V'V =P,

so that

* * [ o * [ o *
UU* +VV* = 8,00 EIS o + S 100 EST .

As

5 [ £ Qo #
SyaEiSye =SS ag ¢, — g, )SyS 1 =S 086,95 = 1,

[ o= ) [ o= * ! I o %
PSM{IEiSWg] = S/JEiSV{IEiSw{] = W{nS«/g’l EiSmEiSﬂyg,»

so that PS, ES” . = S50 ElS . This implies UU* < P and similarly VV* < P.

Since SW{IEf.S’;';%I . SW;zEfS;M2 =0, we have UU* + VV* < P. mi

Therefore, we have the following proposition.

Prorosition 3.4. For 1 < € R, the groupoid Gg is an essentially principal, purely
infinite, minimal, étale groupoid.

We will next compute the homology groups H;(Gp) for the étale groupoid Gg. The
homology theory for étale groupoids has been studied in [6]. In [22], the homology
groups H; for the groupoids coming from shifts of finite type have been computed such
that the groups H; are isomorphic to the K-groups K; of the associated Cuntz—Krieger
algebra for i =0, 1, and H; = 0 for i > 2. By following the argument of the proof of
[22, Theorem 4.14], we have the following proposition.

ProposiTion 3.5. For each 1 < 8 € R, the homology groups Hi(Gg) are computed as

Ki(Op) ifi=0,1,

0 ifi>2. (3-3)

Hi(Gp) = {
Proor. Foreach 1 < €R, the map pg : (x,n,y) € Gg — n € Z gives rise to a groupoid
homomorphism such that the skew product Gg X,, Z is homologically similar to
the AF-groupoid Hp (see [22, Lemma 4.13]). We know that the groupoid C*-
algebra C;(Gg X, Z) is stably isomorphic to the crossed product Og X; T of Op
by the gauge action, which is stably isomorphic to the AF-algebra C;(Hp). Since
the Z-module structure on Ho(Gg X,, Z) is given by the induced action ). on
Ko(Op x; T) of the bidual action f) on Op X; T, we get (3.3) by the same argument as
[22, Theorem 4.14]. O

In [22], the notion of topological full groups for étale groupoids has been
introduced. We will study the topological full groups of the groupoid Gg for
the B-shift (X3, o).
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DermnrTion 3.6 [22, Definition 2.3]. The topological full group [[Gg]] of the groupoid
Gy is defined by the group of all homeomorphisms « of Gg)) such that & = my for some
compact open Gg-set U.

In what follows, we denote the topological full group [[Ggl] by I's. By [22,
Proposition 5.6], there exists a short exact sequence

I — U(C(Gy") — N(C(Gy). C(Gp) — Ty — 1.,
where U(C(Gy")) denotes the group of unitaries in C(Gy") and N(C(GY"), C;(Gp))

denotes the group of unitaries in C;(Gg) which normalize C(Gl(go)).

Consider the full n-shift (X,,, o) and its groupoid G, (see [24, 28]). The groupoid
Cr-algebra C(G,) is isomorphic to the Cuntz algebra O, of order n. Nekrashevych
[25] has shown that the Higman—Thompson group V, is identified with a certain
subgroup of the unitary group of O,. The identification gives rise to an isomorphism
between the Higman—Thompson group V,, and the topological full group I',, (see also
[24, Remark 6.3]). Hence, our groups I'z, 1 <8 € R are considered as an interpolation
of the Higman-Thompson groups V,,,1 <n e N. It is well known that the groups
Vu, 1 < n € N are nonamenable and their commutator subgroups D(V,) are all simple.
Proposition 3.4 says that the groupoid Gg is an essentially principal, purely infinite,
minimal groupoid for every 1 < 8 € R. By [24, Proposition 4.10 and Theorem 4.16],
we have the following generalization of the above fact for V,,, 1 <n e N.

Tueorem 3.7. Let 1 < B € R be a real number. Then the group I'g is a countably infinite,
discrete, nonamenable group such that its commutator subgroup D(I'g) is simple.

4. Realization of Og on L*([0, 1])

The Higman—-Thompson group V,,,1 < n € N is represented as the group of right-
continuous PL bijective functions f : [0, 1) — [0, 1) having finitely many singularities
such that all singularities of f are in Z[1/n], the derivative of f at any nonsingular point
is n* for some k € Z and fZ[1/n]l N[0, 1)) =Z[1/n] N[0, 1). In order to represent our
group I'z as a group of PL functions on [0, 1), we will represent the algebra Og on
L?([0, 1]) in the following way.

We denote by H the Hilbert space L*([0, 1]) of the square-integrable functions on
[0, 1] with respect to the Lebesgue measure. The essentially bounded measurable
functions L*([0, 1]) act on H by multiplication. We define the sequence

(o]
§i+n

=, n=12,....
= B

Bu=B —&B T - — b B =
Consider the functions go, g1, . - . , gy-1 defined by

1
gi(x):,E(x+i) fori=0,1,...,N-2, x€][0,1],

gn-1(x) = é(x+ N-1) forxel0, B].
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They satisfy the following equalities:

N-2

| &0, 1) Ugn-1(10, i) = [0, 11,
i=0

fplgix)=x fori=0,1,...,N-2, x¢€][0,1],
fpgn-1(x)) = x for x € [0, B].

For a measurable subset U of [0, 1], denote by yy the multiplication operator on
H of the characteristic function of U. Define the bounded linear operators 7',
T,,i=0,1,...,N—-2onH by

(Tr,é)(x) =&(fp(x)) forée H xe[0,1],
(To6)(x) = €(gi(x)) foréeH,xe[0,1],i=0,1,...,N-2.
For the function gy_1 on [0, 1], define the operator T, | by

&(gn-1(x)) forx €0, B1],

(Tgmf)(x):{o for x € (81, 1].

The following lemma is straightforward.

Lemma 4.1. Keep the above notation. We have

O T;=/B I T

(i) TpTy=N-1/B+A/BXw.p-

TiT, = {BX[i/ﬁ,(Hl)/ﬁ) fori=0,1,....,N -2,

(i 7,7, = .
Byiwv-np1y  fori=N-—-1.

. . 1 ori=0,1,...,N -2,
@iv) Tg,.Tgi = P f .
Bxio,p1 fori=N-1.

We define the operators s;,i =0,...,N — 1 on H by setting

1
si=—T,, i=0,1,...,N—-1.
VB

By the above lemma, we have the following proposition.

ProrosiTion 4.2. The operators s;,i =0,...,N — 1 are partial isometries such that

N 1 fori=0,1,...,N -2,
578 = ,
X[O,,Bl] fOrl = N— 1,
. N-1
3 ori=0,1,...,.N-2, *
o5t = XUBGDIB) f . and hence sist = 1.
Xiv-ng1y  fori=N -1 0
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The natural ordering of X = {0, 1,..., N — 1} induces the lexicographical order on
B.(Xp), which means that for pr = (uy,...,u,) € By(Xg) and v = (vq,...,vy) € B(Xp),
the order u < vis defined if u; <vyory; =v;fori=1,...,k— 1 for some k < m,n and
Hx < v For a word p = (ui,...,u,) € B,(Xp), denote by fi = (i1, ..., f1,) € B,(Xp)

the least word in B,(Xpg) satisfying (w1, ..., ) < (@1, ..., fp). If = (ui, ..., 1)
is maximal in B,(Xg), we set fi = 0. We will use the following notation for u =

(/l], oo a,un) € Bn(X,B):

=B B2 By =B 2 e

B B B B B B
If i =0, we set r(u) = 1. For pu = (uy, ..., 1,) € By(Xp), we set s, = s, -+ 5y,
Lemma 4.3, For p = (u1, ..., 1,) € By(Xp),

S8y = XUl).r()- (4.1)

Proor. For n = 1, the equality (4.1) holds by the above proposition. Suppose that the
equality (4.1) holds for a fixed n = k. It then follows that for j=0,...,N -1 and
é,neH,

(S Sy 5,55 | 1) = f o€ g dx. (42)

For j=0,1,...,N-2,puty = g;(x) € [j/B,(j + 1)/B], so that x = fz(y) = By — j. The
above equation (4.2) becomes

1
fo XUB.G+ 018 DX 1)) TsONEGIMY) dy = {x (/8,4 1)/pn flgl(u(y),r(y)))f | 7).

As

1
Z, / ; ) 0 £ @10, o)
[J Mo M Mk J ﬂl #2 ﬁk)

IB ﬁz ﬁS ’ +:8k+l :3 ﬁz ﬂS ’ +ng+l ’
SiSut SweSp T Sy Sj T XU/ Bu Bz | B+ /B4 B+ B2+ B3+ B -

Since (j, fi1, - - ., ) is minimal in Byy1(Xp) satisfying (j, 1, - .., p) < (s fas - - - fi)s
the desired equality holds for k+1 and j=0,...,N—-2. For j=N -1, we may
similarly show the equality (4.1). O

The following lemma is straightforward.

Lemva 4.4. For a measurable subset F C [0, 1], we have ijpsj = Xo-\(ry Jor
J
j=0,1,...,N- 1.

We then have the following lemmas.
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Lemma 4.5. For the maximal element &g = (€1,&2,...) € Xp,

Stityt, SerErt = X10,5,0, N EN. 4.3)

Proor. The equality (4.3) holds for n = 1. Suppose that the equality (4.3) holds for
n = k. It then follows that

* *
Sé6r-nr S16r-61 = S5 X108 = Xzl (10, pu)-

Since
—1 _ 1 'ka k-1 _
8en (10, i) = {x €011 g+ 2 <pr = = =&} = (0. )
the equality (4.3) holds forn =k + 1. O
Lemma 4.6. ForneNand j=0,1,...,N — 1,
0 for j> &1,
Sg 6yt J 56166 = AX10Bet]  SOT ] = &ty
1 fOVj < ‘fn+1o

Proor. We have
Se16r-6, 7501660 T S X10.8:156 = Xg7'(10. 8,
and

210, Bul) = {xe [0,1] ‘ LI <ﬁn} = [0, BB,  J1
Since B8, — j = Bn+1 + Env1 — J

S;fz-"f,,js.flfz'"fnj = X0, Bue1+&nr1—j1

If &,41 = Jj, the equality s;&_”&js&&..{"j = X0, 8,1 holds. If &1 < j, we have &, — j

< —1landhence BB, + &,41 — j <0, s0that [0, B,1 + &1 — j] = {0} or @, which shows
that smf2 &) SE1Ertn] = =0.1f&,,1 > j,wehave &,y —j=1andhence B, 1 +&1—j 2 1,
so that [0, B,+1 + &1 — j] = [0, 1], which shows that s§1§z“'§njs§|‘fz'“§" =xpn =1 0O

Therefore, we have the following theorem.

Tueorem 4.7. The correspondence S; — s;j for j=0,1,...,N —1 gives rise to an
isomorphism from Og to the C*-algebra C*(so, 51, ..., Sn—1) On L*([0, 1)) generated by
the partial isometries so, S1, ..., SN—]1-

Proor. Let us denote by Ajp,; the C*-algebra on L*([0, 1]) generated by the
projections s,s,, 4 € Bi(Xg), and Ajp 11 the C*-algebra generated by e Ajo.11.4-
By the previous lemma and [13, Corollary 3.2], the C*-algebra Ajg 1}, is isomorphic
to the C*-subalgebra A; of Og, so that Ajg s is isomorphic to Ay through the
correspondence S S, «— s, for y € B.(Xp). The isomorphism from Ag to Ao,115

u
is denoted by 7. Put p;(x) = S;‘ij forx € Ag, j=0,1,...,N — 1. Then the relations

n(pj(x)) = s;ﬂ(x)sj, X€A j=0,1,...,N-1 4.4)
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hold by the previous lemma. Since the C*-algebra Op has the universal property subject
to the relation (4.4) (see [15]), there exists a surjective *-homomorphism 7 from Og
to C*(so, 51,...,Sy-1) such that #(S;) = s;, j=0,1,...,N — 1 and #(x) = n(x), x € Ap.
As the C*-algebra Og is simple, the *-homomorphism 7 is actually an isomorphism. 0O

In what follows, we may identify the C*-algebra Op with the C*-algebra
C*(s0, 1, ..., Sy-1) through the identification of the generating partial isometries S
and s;,j=0,1,...,N—1.

5. PL functions for SFT g-shifts

In this section, we will realize the group I's for an SFT S-shift as PL functions on
[0, 1). For a word u = (ui, ..., 1) € B,(Xp), denote by U,, C Xp the cylinder set

Uy ={(x)iew € Xg | x1 = 1, ..., Xy = ).

We put
I () = {(x)iew € Xp | (1, - - . s s X1, X2, ... ) € Xp}
for the set of followers of u. Recall that ¢ stands for the unique KMS state for the

gauge action on the C*-algebra Og. We note that the value ¢(ay,..,,,) is computed
inductively in the following way. Forn =1,

1 if uy <&,
elay) =B-& ifu =&,
0 lf/ll >f].

Suppose that the value ¢(ay,..,,) is computed for all u = (uy, ..., ) € Bu(Xp) with
k <n. If (ug,...,p,) is the maximal element (¢4, .. .,&,) in B,(Xp), then

() =B —EP T = = B - & (5.1)

If (uy,...,un) # (&1, -..,&), then there exists k < n such that y; < &. If kK = n, then
p(ay,....,) = 1. If k < n, we see that a,,..,,, = 1, so that

p— * * —
Aoty =S S S Sy = Apyeyopty-

R
Hence,

Py, = Py, )-
Since |(Ug+1, - -, Mn)l < n, the value ¢(ay,,,...,) is computed. Therefore, the value
@(ay,...,) is computed for all (u1, ..., u,) € B,(Xp). The following lemma is clear from

Lemma 4.5 and (5.1).

Lemma 5.1. Assume that the generating partial isometries So,S1,...,Sn-1 are
represented on L*([0, 1]). For a word j € B.(Xp), the projection S S, is identified
with the characteristic function x(o,4(a,) of the interval [0, p(ay,)).
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Recall that for a word v = (vy, ..., v,) € B,(X3), the notation

Vi " Y Vi W Vn
M==+=++— rVM)=—+=+ -+
B B B B B B
is introduced in Section 4, where ¥ = (¥;,...,¥,) is the smallest word in B,(Xp)
satisfying v < ¥. If v is the maximum word in B,(X3), we set r(v) = 1. The following

two lemmas are crucial.

LEmma 5.2. For u,v € B.(Xg), we have T'*(u) =" (v) if and only if
) =160 _ il
r(v) = l(v)

Proor. We note that I'"(u) = I'*(v) if and only if S .S, = §}S,. By the above lemma,

we have I'"(u) = I'"(v) if and only if ¢(a,) = ¢(ay). Since ¢(S ;S ) =,B‘”'¢(S#S;)

and @(S,S7) = r(u) — (), we have ¢(a,) = ¢(a,) if and only if B¥(r(u) — I(w)) =

BM(r(v) = 1(v)). o
We note that the above lemma holds for any real number 8 > 1 even if (Xg, o) is not
a shift of finite type.

Lemma 5.3. For T € I', there exists u; € N(Dg, Op) such that there exist u(i), v(i) €
B.(Xp),i=1,2,...,m satisfying

(D ur = XL Sp@S ) such that
(a) S::(i)S Vi) = S;(i)Sy(i)» i= 1, 2, ., m,
(b) X, SvS ) = ity S @Sy = 1-
() for ' =u.fu for f € Dp.

Proor. Since (X3, o) is SFT, there exist continuous functions &,/ : Xz — Z, fort € I'g
such that o™ (7(x)) = c*™®(x), x € X5. Hence, there exists a family of cylinder sets
Uyay, -5 Uyomys Uﬂ(l), ey Uﬂ(m) such that

T () = THuG)), i=1,...,m,

m m
Xp = |_1| Uwi) = |_1| Ui
i= i=

and
T(X1, X250 ) = (/'t(l)ls L) 9,u(i)l,'7 -xk,~+la -xk,'+2’ o ) for (xn)nEN € UV(i)a

where I; = |u(0)l, ki = [v(i)| and u(i) = (u(i)1, . .., u(i),)- Hence,
D SiSin =D SuoSin =1 SioSwo = SSuar  i=1,2..,m.
i=1 i=1

By putting u- = 37, S,»S ;). We see that u. belongs to N(Dp, Op) and satisfies
Xu, © = urS S yuy for all n € B.(Xp), so that f o 7' = u ful for f € Dg. O
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Following Nekrashevych [25], we will introduce a notation of tables in order to
represent elements of I's.

DeriniTiON 5.4. A B-adic table for an SFT B-shift is a matrix

udy w2y - p(m)
v(l) v2) --- v(m)
for v(i), u(i) € B.(Xp),i =1,2,...,m such that
(@ TI*v@) =T w@),i=1,2,...,m,
(b) Xp=U! U,y =U", Uy are disjoint unions.

We may assume that v(1) < v(2) < - -- < v(m). Since the above two conditions (a),
(b) are equivalent to the conditions (a), (b) in Lemma 5.3(1), respectively, we have the
following lemma.

Lemma 5.5. For an element T € I'g with its unitary ur = 31| S y»S j(i) € N(Dg,Op) as
in Lemma 5.3, the matrix

() @)y - u(m)
v v - v(m)

is a B-adic table for an SFT 3-shift.

T

DEFINITION 5.6.

(i)  Aninterval [x, x,) in [0, 1] is said to be a B-adic interval for the word v € B..(Xp)
if x; = I(v) and x, = r(v).
(i) A rectangle I X J in [0, 1] x [0, 1] is said to be a B-adic rectangle if both I, J
are -adic intervals for words v € B,(Xp), u € B,,(X) such that I = [I(v), r(v)),
J = [, r(w)) and
r(p) — ) _ s

r(v) = 1(v)

(iii)) For two partitions 0 =xp < x; < < Xp-1 <Xp=1land O=yy<y; <--- <
Ym—1 <ym=10f [0, 1], put I, = [xp_1,xp),Jp = [yp-1,¥p), p = 1,2,...,m. The
partition I, X J4, p,q=1,2,...,mof [0,1) X [0, 1) is said to be a S-adic pattern
of rectangles for an SFT g-shift if there exists a permutation o on {1,2,...,m}
such that the rectangles I, X J(,) are B-adic rectangles for all p = 1,2,...,m.

For a p-adic pattern of rectangles above, the slopes of diagonals s, =
Oop) = Yor-1) (Xp — xp—1), p = 1,2,...,m are said to be rectangle slopes. We then
have the following lemma.

Lemma 5.7. For a B-adic table

T = u()y p@y -+ pim)
) vQR) - v(m)

there exists a B-adic pattern of rectangles whose rectangle slopes are
IBIV(I)I—\#(I)\’ﬁIV(2)|—|ﬂ(2)|’ o ,IBIV(M)I—\M(m)I.
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Proor. We are assuming the ordering such as v(1) < --- < v(m). Since X3 = I_l;f’:l Uuijy
is a disjoint union, there exists a permutation o on {1, 2, ..., m} such that u(oo(1)) <
H(o0(2)) < -+ < uloo(m)). Put

x;i=1lv(i+ 1), yi=Ilulooi+1)), i=0,1,...,m—1
and

I, =[xp-1,%p), Jp=Dp-1,¥p), p=12,...,m.

Define the permutation o := 0'5' on {1,2,...,m}. We note that r(v(i)) = I(v(i + 1)),
r(u(oo(@)) = l(u(oo(i + 1))) fori = 1,2,...,m — 1. Then the rectangles I, X J,(,), p =
1,2,...,m are B-adic rectangles such that

Yo(p) = Yop)-1 _ r(u(p)) — l(u(p))

Xp = Xp-1 r(v(p)) = l(v(p))
Since r(§) = Q) = ¢(S¢S7) = gap(S ;S ) for & € Bu(Xp),

1
r(v(p)) = l(v(p)) = W‘P(S :t(p)S v(p))»

1
rp) = (P = @S S i)

As the condition I'* (v(p)) = I'* (u(p)) implies Sjj(p)S wp) = S;(p)Sﬂ(p),

Yo(p) = Yo(p)-1 =ﬁ|v(p)|—|/1(p)|7 p=12,...m O
Xp — Xp-1

We define a $-adic version of PL functions on [0, 1) in the following way.
Dermnition 5.8. A PL function f on [0, 1) is called a 8-adic PL function for an SFT
B-shift if f is a right-continuous bijection on [0, 1) such that there exists a S-adic
pattern of rectangles I, X J,,p = 1,2,...,m, where I, = [x,_1,X,), Jp = [Yp-1,¥p)s P =
1,2,...,m, with a permutation o on {1, 2, ..., m} such that

SGp-1) =Yoip-1,  [-(Xp) =Vop-1+1, P=1,2,...,m,

where f_(x,) = limj_o4 f(x, —h) and f is linear on [x,_i, x,) with slope
(y(r(p) - ya(p)—l)/(xp - xp—l) for p=L2,... ,m.

The following proposition is immediate from the definition of S-adic PL functions.

Prorosition 5.9. A B-adic PL function for an SFT B-shift naturally gives rise to a
B-adic pattern of rectangles for an SFT [3-shift.

We may directly construct a S-adic PL function fr from a S-adic table 7 =
(40 55 = k] as follows. Put x; = I(v(i + 1)), $i = lu(i + 1),i=0,1,...,m - 1.
Define fr by fr(x))=9,i=0,1,...,m—1 and f; is linear on [x;_j, x;),i =
1,2,...,m with slope (9; = 3i-1)/(x; = xi=1) = (r(u(D) = D))/ (r(v(D) = I(¥(D))) =
BYO-DI Hence, the function fr yields a -adic PL function.

It is straightforward to see that the composition of two S-adic PL functions is also
a B-adic PL function. Hence, the set of S-adic PL functions forms a group under
compositions. We reach the following theorem.
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Tueorem 5.10. The topological full group T'g for an SFT S-shift (Xg, 0) is realized as
the group of all B-adic PL functions for an SFT [B-shift.
6. PL functions for sofic S-shifts

In this section, we will represent the topological full group I's for sofic 8-shifts as
PL functions on [0, 1). Throughout this section, we assume that (X3, o) is sofic. By
Lemma 2.7, the algebra Ay is finite dimensional. We set Kz = dimAg. Let £y, ..., Eg,

be the minimal projections of Ag so that Zinl E; = 1. Then any minimal projection E;
is of the form E; = ag, by T gy, for some p;,q; € Z,. We order Ey, . ..., Eg, following
the order @(ag,..¢, ) <+ < ‘P(afwfp,(ﬁ) in R, where ¢ is the unique KMS state on Og

for the gauge action. Recall that p, € Aut(Op), t € R/Z denotes the gauge action on
Og and N(Dg, Op) denotes the normalizer group of Dy C Og. Fix u € N(Dpg, Op) for a
while. For m € Z and u € B,(X3),n € N, put

Uy = fﬁ,(u)e_z”ﬁm’ dt and =S Uy, Uy =u LS,
T

It is straightforward to see the following lemma.

Lemwma 6.1. The operators uy,, u_, for u € B,(Xg) and ug are partial isometries in g
such that u is decomposed as the following finite sum:

u:Z Z Sﬂvﬂ+u0+2 Z u_#S;

n finite u€B,(Xg) n finite u€ B, (Xg)
such that uﬂl)ﬁu;, MZD[;M”, u_HZ)ﬁu"jH and u’iﬂl)ﬁu_,, are contained in Dg.
Define a subalgebra 7‘;{ of ¥ for k € Z, by
Fh=C'(SES; | €n€BiXp)i=1,2,....Kp).
We set
supp, (u) = {u € B.(Xp) | u, # 0}, supp_(u) = {1 € B,(Xp) | u_, # 0}.

Both of them are finite sets. For p € supp,(u), there exists k. (u) € Z, such that
u, € 5’-’; W For 1 € supp_(u), there exists k_(u) € Z,. such that u_, € 5’:/;‘ - There

exists ky € Z, such that ug € (Fﬁk". We then have the following lemma.

Lemma 6.2. Keep the above notation.

(1)  Forp € supp,(u)andn € By, )(Xp),i = 1,2,..., Kg such that u,uy, > S,E;:S ) # 0,
there uniquely exists & € By, )(Xp) such that u,u;, > SfEiS; # 0 and

Ad(u,)(S yEiS}) = S¢EiS ;.
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(ii) For p € supp_(u) and n € By_(Xp),i = 1,2, ..., Kg such that u” ju_, > S,E;S}
# 0, there uniquely exists & € By_(,)(Xp) such that U_yu’, > SfEiS; # 0 and
Ad(u-,)(S ,EiS;) = S‘JcEiS;i.
(iii) For n € By, (Xp),i = 1,2,...,Kp such that uguo > S,E;S} # 0, there uniquely
exists & € By, (Xp) such that uoug > S ¢E;:S 2 # 0 and
Ad(uo)(S,E:S ) = SscE;Sé*:.

Proor. (i) Asu, € 7—“; ¥ it is written Uy = Dt eBy, Xy S edeny S, for some ag,y € Ap.
Suppose that u,u, > S,E;S; # 0. Hence, S5, > E;. It then follows that
Ad(u,)(S yEiS}) = u,S yEiS i
= > See,SySyEiS Sy, S

&8 €Bry (1(Xp)

= Z Sé:af,nEiag,’”S; .
&8 €B, 0(Xp)

Since Ad(uﬂ)(S,,EiS;) belongs to Dg, we have, for & # &,
0= SgS*Ad(uﬂ)(S E:S’ )Sg/ ¢ = SeagyE; af, Sf,,

so that
Adw)(S ESy) = Y. SeagyEiag,S;.

&€By ) (Xp)

Since u,uy, = X e, xp) SeleszS; is a projection the operators agya;, —are
projections in 3{5 forall £ € By, (u)(XB) As S S§a§ 2Ei a S Sfr =ag,E; ag, o, We have
a, ,701‘f 3 na =0 for &£ # &, so that there unlquely ex1sts fe B;@(#)(Xﬁ) such that
ag, ,,a E; =E; for the word 77 and i. By the identity a; , E; a = ag, ,,a E;,

Ad(uﬂ)(S,]E,-S,]) = S§E,~S§.
(i1) and (iii) are similar to (1). O

ProposiTioN 6.3. For a unitary u € N(Dg, Op), there exists a finite family of partial
isometries u,, uo, u_, in Fg such that u is decomposed in the following way:

u= Z Z Syt + ug + Z Z u,ﬂS;
nfinite peBy(Xg) nfinite peB,(Xp)
such that
(1)  Forany n € By, )(Xp) with S ,E; S* < uﬂu,,, the equality
Ad(S yuy )(SyEiS ;) = SuSeEiS (S,
holds for some & € By, )(Xp).
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(2)  For any n € By (Xp) with S ,E;S}, < ujuo, the equality
Ad(uo)(SﬂE,S;) = SfElS:;

holds for some & € By, (Xp).
(3) Foranyn € By )(Xp) with S,E;S; < u’ JU—ps the equality

Ad(u_S (S uSHES,S,) = S¢EiS
holds for some & € By_,)(Xg).
Therefore, we have the following lemma.

Lemmva 6.4. For T € Tg, there exists u, € N(Dg, Op) such that there exists a family
Sv(j)El/SV(J)’ Sﬂ(j)E,/S#(]), =1,2,...,m of projections satisfying
0w =37 SupEi;S ;) such that
(a) Sv(j)SV(/)’S,,(,)Su(/') >E;;, j=12,.
(b) Zj:] Svi)Ei;S,, v(j) Z/ 1Sﬂ(J)Et,Sﬂ(,)
@) for =ufufor f € Dy

Fori=1,2,...,Ks, put
T,() = (e B,(Xp) 1S5Sy 2 B, T2 = 150,
n=0

Forv=(v,...,vp) €l () andi=1,2,..., K, define the projection in Dy by
V0] = SVE,'ST,

and define

r(vip) = l(v) + ﬁ—n¢(a§1-~-§p,-)
Vi v L §p,+1 Epi+2

= E + ﬁ_z o Bn ﬁn+l Ign+2
l(V[,’]) = l(V) +

ﬁn Qa(afl fq, )
! V2 Vn é:qﬁl §(Ii+2

’3 ﬂz"'"' Bn ﬁn+1+ﬁn+2

where E; = ag,..¢, — ag,..¢, . The following lemma is obvious.

Lemma 6.5. Assume that the generating partial isometries So,S1,...,Sn-1 are
represented on L*([0, 1]). For v € T'; (i), the projection S ,E;S? is identified with the
characteristic function xyiy,).roy) of the interval [[(vy), r(vi)).
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ForveTI_ (i) and u €I, (j) with S, E;S, - SHEJ-S; =0, define

Vi < g i r(v) < ).

Note that under the condition S,E;S} - S,E;S}, = 0, the intervals [I(v;)), r(v(;)) and
[I(ug;p), r(ugjp)) are disjoint. Hence, the condition vy;; < ;) implies that the interval
[{(vii), r(vi7)) is located on the left-hand side of [[(uyg;1), r(ug ).

LeEmMA 6.6. Keep the above notation.
(i) For vel,(i) and pel,(j), we have S,ES; -S,E;S;, =0 if and only if
i), rvian) O g, rpgp)) = 0.
(i) For v(j) € F;j(ij),j =1,2,...,m, we have Z;”zl Sv(j)E,-ij(j) =1 if and only if
[0,1)= I_I?‘:1 (D) (VD)) Bs a disjoint union.
(i) For v(j) € I“,‘,j(ij),j =1,2,...,m such that Z;-”Zl Sv(j)Eiij;(j) =1 and v(1);; <
VQipy < -+ < VM),
rov(Di) = 10vG + D), J=12,...,m.
DeriNiTION 6.7. A S-adic table for a sofic S-shift is a matrix
7= |FDun #@piy -+ plm)y,
Dy vy o vmg,)
such that
(@ wv()el;G), wu(h)el i) forj=12,...,m.
() WL UG, r0 D)) = UL L), r(u(ip) = 10, 1.

We may assume that
V(l)[,'l] < V(Z)[iz] <--e < v(m)[,»m].
Therefore, we have the following lemma.

Lemma 6.8. For an element T € I'g with its unitary u, = Z;”:l S,,(j)Ei/.Sj(j) € N(Dg, Op)
as in Lemma 6.4, the matrix

_ [y p @iy -+ plmy,)
Ty Y@y e vmg,
is a B-adic table for a sofic B-shift.
Dermnition 6.9. (i)  An interval [x, xp) in [0, 1] is said to be a S-adic interval for the
word vy; if x; = I[(v;)) and x, = r(v;)) for some v € B,(Xg) and i = 1,2,..., K.
(i) A rectangle I X J in [0, 1] X [0, 1] is said to be a S-adic rectangle if both
1, J are B-adic intervals for words vy;, uy;) such that I = [I(v;)), r(v;)) and J =
[{(uiy) (i) and
r(upy) = )

_ gl
r(vig) — 1(viiy) F
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(iii)) For two partitions 0 =xp < x} <+ <Xy <Xp=1land O=yy<y; <:-- <
Ym-1 <Ym =1 0f [0,1], put I, = [xp-1, %), Jp = [Vp-1,¥p),p = 1,2,...,m. The
partition I, X J,, p,q =1,2,...,mof [0,1) X [0, 1) is said to be a B-adic pattern
of rectangles for a sofic B-shift if there exists a permutation o on {1,2,...,m}
such that the rectangles I, X J(,) are B-adic rectangles forall p = 1,2,...,m.

For a p-adic pattern of rectangles above, the slopes of diagonals s, =
Vo) = Yop-1)/(xp — xp-1), p = 1,2, ..., m are said to be rectangle slopes. Similarly
to Lemma 5.7 for an SFT S-shift, we have the following lemma.

Lemma 6.10. For a B-adic table for a sofic B-shift

_|HWiy gy - plmgiy
v(Dy vy - v, |

there exists a B-adic pattern of rectangles for a sofic B-shift whose rectangle slopes are

B gY@ gl

Similarly to the preceding section, we will define a S-adic version of PL functions
on [0, 1) for a sofic B-shift in the following way.

Derinition 6.11. A PL function f on [0, 1) is called a 8-adic PL function for a sofic
B-shift if f is a right-continuous bijection on [0, 1) such that there exists a S-adic
pattern of rectangles I, X J,,p = 1,2,...,m, where I, = [x,_1,Xp), Jp = [Yp-1,¥p)s P =
1,2,...,m with a permutation o on {1, 2, ..., m} such that

fCpo) =Yopy-1, f-(xp) = Yop-1y+1, P=1,2,...,m,

where f_(x,) = lim,o+ f(x, —h) and f is linear on [x,_1,x,) with slope
(y(r(p) - ya(p)—l)/(xp - xp—l) for p=L2,...,m.

Similarly to the preceding section, we have the following proposition.

ProposiTioN 6.12. A B-adic PL function for a sofic B-shift naturally gives rise to a
B-adic pattern of rectangles for a sofic 5-shifft.

We may directly construct a S-adic PL function f; for a sofic S-shift from a

. . _ 1 VWi vDig) - VM —
B-adic table for a sofic SB-shift T = [,1(1)[,:] D uomy, | as follows.  Put x; =

I0/G + Dy §5 = LG + Dy, j=0.1,....m = 1. Define fr by fr(x;) = 9.
j=0,1,...,m~—1 and fr is linear on [xj_1,x;),j=1,2,...,m with slope
(r(u(j)) = L))/ (r(v()) = L)) = B"PEU) The function fr yields a S-adic PL
function for a sofic B-shift.

It is straightforward to see that the composition of two S-adic PL functions for a
sofic B-shift is also a 8-adic PL function for a sofic S-shift. Hence, the set of 8-adic PL
functions for a sofic 8-shift forms a group under compositions. We reach the following
theorem.

Tueorem 6.13. The topological full group 'y for a sofic 5-shift (Xg, o) is realized as
the group of all B-adic PL functions for a sofic 5-shifft.
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7. Classification of the topological full groups I'

In this section, we will classify the groups I'sz for SFT S-shifts and sofic B-shifts.
We will first classify I's for SFT S-shifts.

1. SFT case:

Proposition 7.1. Suppose that the -shift (Xg, o) is a shift of finite type such that the
B-expansion of 1is 1 =ny/B +1m2/B8> + - -- +1,/B". Set

Tl':S,',l forizl,...,m,
Thvi=S8pSic1 fori=1,...,m,
Ty inpsi =Sy SppSic1 fori=1,...,m3,

TT]1+772+"'+77n—1+i = Sﬂlsﬂz T SUn—lsi—l fori=1,....10.
Define the C*-subalgebras 5,3, f)ﬂ of Og by

Op=C*(Ti=1,2,.... + M+ + )
ZA)ﬁ=C*(T,,T,}‘;u=(,u1,-..,um),,ui= L2,...,m+m+---+1,).

Then the C*-algebras 55 and @B coincide with Og and Dp, respectively, and are
isomorphic to the Cuntz algebra Oy, iy,+...sn, and the canonical Cartan subalgebra
Dy +ip+--+m, Tespectively, that is,

Op = Op = Opipsinys - Dp = D = Dyt -

Proor. It is direct to see that the operators 71, 1o, ..., Ty, 4n,+.+y, are all isometries.

Then
m m-1
DITT =) 88 =1-8,580,
i=1 =0
ni+n2 m-1
DT =) 85,8878 = Sy (1= 8,,87)S
i=n+1 j=0
ni+mt+tn, 7];1_1
T,T; = SnSn, --S"”_ISJ-S;S,;‘"?IS,; '--S,’;ZS,;
i=ni+m+- - +1 Jj=0
=Sy Sy, Sy, (1 - ST]V:ST;,)ST;‘_l ”'S;zS;l
= SUISUZ e S”n—lS;]kn—l e S;;ZS;I :
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It follows that

MMt 4,
T.T;
i=1
m ntm mtmtetn,
- Z T,T: + Z TT: +--+ Z T,T;
i=1 i=n+1 i=n+m+- -1 +1
= * * * e e * cee * * =
= 1= 8,87 + Sy (1 =S, 8)8 + -+ 8y Sy -+ Sy S-Sy Sy = 1.

Hence, the C*-algebra (3}; is isomorphic to the Cuntz algebra Oy, 1y,+..4n,. The
inclusion relation Og C O is clear. To show the converse inclusion relation Og C Og, it
suffices to prove that the partial isometry S, belongs to the algebra Og. By the equality

¥ m n
()D(SI]ISTII) =ﬁ_771 = E +ﬁ_2 +-- +ﬂ,:1>
-1 -1
SaSy = D S8+ D 8888 4
j=0 Jj=0
=1
+ S8, ---S,,,HS]'S]’-"S,;‘rl = -S,’]';S,;"z,
=0
so that
Sy = S,,IS,;‘] S,
m-1 m-1
= Z T’I1+j+IS; + Z T’71+'Iz+j+1(S'I2Sj)* o
j=0 j=0
7]11_1
+ Z Tm+7]2+'"+77n71+j+1(Sﬂzsﬂs o .Snn—]Sj)*'
j=0

Denote by 79 the empty word. The following set Wp of the words
W,B = {(]72’773’-~"r]m—1’i) |l: 0’ 1’--~777m - lam: 1,2,...,”}

are all admissible words of Xj. By cutting a word in the subwords beginning with 7,
one easily sees that any admissible word of Xg is decomposed into a product of some
of the words of the following set:

Cﬁ = {(]719n29---a77m717j) |J:09 1’---,77m - l,m = 1,2,...,”}.
Hence, any word of Wy is a product of some of the words of Cg. This implies that the
operators
SpSuy Sy S J=0,1, . 0m—=1m=12,...,n
are products of some of 71, T, . .., Ty, 45, +.+s,. Therefore, S, is written as a product of
T, T!,i=1,2,...,n01 + 12+ -+ + 1. This shows that Oy C Op. The equality Dy = Dy
is direct. O
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The above proposition implies that the SFT g-shift (X3, o) is continuously orbit
equivalent to the full (1, + ny + - - - + 1,)-shift (X;;, 1,444, ) [16, 22, 29]. Therefore,
we have the following theorem.

TueOREM 7.2. If the B-expansion of 1 is finite such that
ML Th

BB B

then the group Ig is isomorphic to the Higman—Thompson group V, ., +...en,-

1

CoroLLarY 7.3. Let (Xg,0) and (Xg,0) be SFT B-shifts such that their finite B-
expansions of 1 are

1:771 @_77_’1+77/2 m,

1 n
+ - + 0+ —=— —= e —
BB B BB B
respectively. Then the following are equivalent:

(i)  the groups I'g and Ty are isomorphic;
(i)  the Cuntz algebras Oy, iy, +.+n, and Oy, iy +...y, are isomorphic;
Qi) mA+m+-An=ntn, e+,
Proor. The implication (iii) implies that (ii) is trivial, and its converse (ii) implies that
(iii) is well known [7, 8]. Assume that the groups I’z and I's are isomorphic. By
[19] or more generally [24], the C*-algebras C;(Gg) and C;(Gg ) of the groupoids Gg
and Gp associated with their respective shifts (X3, 0) and (Xg, o) of finite type are
isomorphic. Since C;(Gg) = Op and C;(Gg) = Og, Proposition 7.1 implies (ii), so that
the implication (i) implies that (ii) holds. The implication (iii) implies that (i) is a
direct consequence of the above theorem. O
2. Sofic case:
Assume that the S-shift X is sofic. Put

k5=min{keN|ﬂk=ﬂk+1}, K5=k/3+1.

Hence, Ay, = A1 = - = Ap and dimAg = Kp. There exists [ € N with 0 </ < kg
such that
afl'“fkﬁ = Qg and hence d(l,ﬂ) = f] . '§l§l+l cee é:KB' (71)
LetEy, ..., Ek, be the minimal projections of A as in the preceding section, so that
Az =CE; & -- & CE,. (7.2)

Define a labeled graph Gg over £ = {0, 1,..., N — 1} with vertex set {vi,va, ..., vk,}
corresponding to the minimal projections Ej, ..., Eg, in the following way. Define a
labeled edge from v; to v; labeled @ € Zif S}, E;S , > E;. We denote by &g the edge set
of the labeled graph G with labeling map A : &g — X. The vertex set {vy, vz, ..., vk}
is denoted by V. Let Mg be the K X Kp symbolic matrix of Gg and My the Kg X Kp
nonnegative matrix obtained from Mj by putting all the symbols equal to 1. For an
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edge e € &g, denote by A(e) € X and s(e), 1(e) € {1,2, ..., Kp} the letter of the label of
e and the number of the source vertex vy, of e and that of the terminal vertex vy,
of e, respectively. Define a partial isometry s, = Sae)Eye) for an edge e € &z in the
C-algebra Op. Define the |Eg| X |E| matrix Bg = [Bg(e, f)]e reg, With entries in {0, 1}

by
1 if t(e) = s(f),
0 ifr(e) £ s(f).

We have the following lemma (see [31, Section 4]).

Bg(e, f) = {

Lemma 7.4. The partial isometries s., e € Eg satisfy the following relations:

Z Ses, =1, S8, = Z Bg(e, f)sfs}.

668/3 f€8/g

Hence, the C*-algebra C*(s.; e € Eg) generated by s.,e € Eg is isomorphic to the

Cuntz—Krieger algebra Og,.

Proor. We see the identities

>
>~

—_

B B8 N—

1= Ei=>" %" $uSLES.S),

i=1 i=1 a=

The projection S, E;S, is not zero if and only if there exists e € Ez such that & = A(e)

and i = s(e). Hence,
SiESe= Y Eo

ecEg,
a=A(e), i=s(e)
so that
Kg N-1
XSS s Y
i=1 a=0 e€&g, ec&y
a=A(e), i=s(e)

For an edge e € &g,

SpSe = Eve)SyoySae Exe) = Ene)
N-1
= SaS:Et(e)SQSZ

S
(=}

=

Ser D, Eup-Si=) ) Ble. sss).
f€&g, fe&g
a=A(f), (e)=s(f)

S
Il
(=)

Denote by Dp, the canonical Cartan subalgebra of Op,, which is a C*-subalgebra

..S*

of OBﬁ generated by the projections s,, - - S, s oy €1s---> €y € Ep.

* o
€n
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LeEmMma 7.5. 0,3 = OB[; and 2),3 = DB;;-

Proor. Since s, = Sye)Exe), € € Ep, we have s, € Op, so that the inclusion Op, € Op is
obvious. Fora € X ={0,1,...,N-1},i=1,2,..., K, we know that S, E; # 0 if and
only if S, > E;, which is equivalent to the condition that there exists an edge e € &g
such that @ = A(e),i = t(e). Fori = 1,2,..., Kp, take e € Eg such that @ = A(e), i = t(e).
We then have s;5, = Ey) = Ej, so that E; € Op,. For @ € %,

K,
So= i SoE;i = Z Sae)Ere) = Z Se,
i=1

ee&Eg,a=A(e) eeEg,a=A(e)

so that S, € Op,. We thus have the inclusion Og C Op, and hence O = Ogp,.
We will next show that Dy = Dp,. We have ses, = Sie)Exe)S ) € Dp- Suppose
that s, - -+ s, 5, + 5;, € Dp. By the equality

*
e"

*

* * e PEEEEY PECIRY * *
SegSe; " " Se, S *SeSey = S/l(e(,)Et(eo)sel Se,Se, selET(en)S/l(eo) € D.B’

the inclusion relation Dp, C Dy holds by induction. Conversely, suppose that S o E:S,
is not zero. Take e € &g such that a = A(e), i = t(e), so that

SoEiS 4 = Sae)Eve)Sye) = SeSe

belongs to Dg,. Suppose next that S,,..,,ES), .., belongs to Dg, and
S 1S i EiSS 1y, S 1y 18 MOt zeTO. The labeled graph Gy is left-resolving, which means
that there uniquely exists a finite sequence of edges ey, e, ..., e, € &g for the vertex v;

such that

Alep) = pp, tlep) = s(epr1) forp=1,2,...,n—1,
Ale,) = M, te,) = i.

Put j = s(e;), so that

* * — ) *
E;j> 8BS s EiSuemEiS ) o Ej = S EiS S .

Take a unique edge ey € Eg such that A(eg) = po, t(eg) = j. Hence, S, E; = s,. It then
follows that

S#oSﬂl'"#nEiS S* = S#OEjSﬂl"'#nEiS;1-~-/1nEjS*

"
M1 o Ho

— . * *
= seOSﬂli..,,”E,Sm,,,ﬂn Sey-

* * £
As Sy, EiS ., € Dpyy We have 5008 iy, EiS .. Sty € Dp,. Thus, the element

S 1S i EiSS 1y, S iy DElONGS to D, By induction, we have Dy C Dp, and hence

Dﬂ = DBﬁ. m}

A nonnegative square matrix B is said to be elementary equivalent to a nonnegative
square matrix M if there exist nonnegative rectangular matrices R and S such that
B =RS and M = SR (see [14]).
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Lemwma 7.6. The matrix Bg is elementary equivalent to the matrix Mp. Hence,
det(1 — Bg) = det(1 — Mpg).

Proor. Note that dimAg = |Vg| = Kp. Define a |Eg| X [V| matrix Rg and a [ V| X |Egl
matrix S g as follows.

1 ifte) =v;, . 1 ifs(f)=v;
Ryle.i) = {O oth(er)wise, s )= {0 othijrzzise j
fore, f€&g,vi,vje Vgandi,j=1,2...,Kg. Itis direct to see that
Bg = RpSp, Mp=SpRs
and det(1 — Bg) = det(1 — Mp). O

Recall that ¢ stands for the unique KMS state on the C*-algebra O under the gauge
action. It satisfies the identities

Plag.e)=p —6f ™ —6p 2~ =B j=1,... Kp.
By (7.2), the Ko-group Ko(Ay,) of the algebra Ay, is generated by the classes of

the minimal projections E, ..., Ex, of A, (=HAp), so that Ko(Ay,) is isomorphic to
ZKs.  Since a minimal projection E; is of the form Ag,.-g, — dg -, , the following
correspondence:

[1] € Ko(A,) — (1,0,0,...,0) e Z@pZ D - © B%Z,
[ag,] € Ko(Ar,) — (=£1,1,0,...,0) e Z@ L& - & fZ,

[ag,..¢,] € Ko(Ay) — (=), =&j-1, ..., —&,-61,1,0,...,0) € ZSPLS - ® f¥Z
for j=1,..., Kp yields an isomorphism from Ko(Ay,) to ZS&LLS - -- ®LY7Z as a
group, which we denote by @. By (7.1),

B =& — e — = & B —
=p -ap T - Hp - b4,
so that 8 is a solution of a monic polynomial of degree Kz. We denote this polynomial
by
B =B =BT = =B — iy = 0.

Then

M+t + M+ Mgt = Eet + &+ + &g + 1 (7.3)
Lemma 7.7 [13, Lemma 4.8]. The following diagram is commutative:

My

ZKs ZKs

Ko(Ay,) Ko(Ay,)

| |

ZOPLS - - OB%Z —>Z@BLS - - ®L%Z
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where Ag. is the endomorphism of Ko(Ag) induced from the map Ag @ Ary, — HApyi
(= Ap) defined by
N-1

A(@)= ) SiaS, forae Ay

a=0
and T is an endomorphism of Z® BZ & - - - ® B4 Z defined by
T(mo,my, ... ,my,—1,0) = (0,mo,my, ..., mg,—1), m; €Z,
T(0$ e 90, 1) = (nklﬁ-l’ nk/f’ ceey n2$ n])

Define the (kg + 1) X (kg + 1) matrix

kg +1
1 Yl
LB = . .’8
1 m

where the blanks denote zeros. The matrix Lg acts from the left-hand side

of the transpose (mo,ml,...,mkﬁ)’ of (mo,my,...,my), so that it represents the
homomorphism 7. The characteristic polynomial of Ly is

det(t — Lg) = 1%+ — iyt =™ — - — it — i

and the number £ is one of the eigenvalues of the transpose of Lg with eigenvector
[1,8,/%,...,8%]. Hence, we have the following corollary.

Cororrary 7.8. det(1 — Bg) =det(1 —Lg) =1 —n1 —m2 — - — My — Migge1 < 0.

Proposition 7.9. There exists an isomorphism @ from the Cuntz—Krieger algebra Op,
onto the Cuntz algebra O§,+.A.+§kﬁ+,+1 such that ®(Dp,) = Dy, gt Therefore, their
topological full groups I'p, and F§1+.‘.+§kﬁ+l+1 are isomorphic.

Proor. We have already shown that Og is isomorphic to O, +...4¢, ., +1 by [13]. By the
B

preceding lemma, we know that O = Op, and Dy = Dj,, so that Op, is isomorphic to

O{fl+"'+§kp+l+l' By the preceding lemma with (7.3),

det(1 —Bg)=1—m —m =+ =Ny — Migg1
=1—=(m+- -+ & + D).

Hence, the topological Markov shift (Xp,, o) is continuously orbit equivalent to the
full shift (Xg]+l+‘..+gkﬁ+l+1, o) by [17] (see [20]). Thus, their topological full groups I'p,
and Uittty +1 ATC isomorphic. ]

Tueorem 7.10. Suppose that (Xg, o) is sofic such that the 3-expansion of 1 is

d(1,p) =& "'flém "'é;:k+1'
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Then there exists an isomorphism ® from Op to Og,, s...t5,+1 Such that ®(Dp) =
D, ++iea+1- Therefore, their topological full groups T'g and Ty, 4..z,,41 are
isomorphic. This implies that the group T'g is isomorphic to the Higman—Thompson

group V§z+|+“'+§k+l+1'
3. Nonsofic case:

Tueorem 7.11. If 1 < B € R is not ultimately periodic, then the group I'g is not
isomorphic to any of the Higman—Thompson groups V,,1 <n € N,

Proor. By Proposition 3.4, the groupoid Gg is an essentially principal, purely infinite,
minimal groupoid. Suppose that I’z is isomorphic to one of the Higman—-Thompson
groups V,, for some n € N. Since V, is isomorphic to the topological full group I,
of the groupoid G, for the full n-shift, by Matui [24], the groupoid G is isomorphic
to G,. By Renault [28, Theorem 4.11], there exists an isomorphism @ from C;(Gg)
to C;(G,). The C*-algebra C;(Gp) is isomorphic to Og, and C;(G,) is isomorphic to
the Cuntz algebra O,. Since £ is not ultimately periodic, we know that Ko(Og) = Z by
[13, Theorem 4.12], which is a contradiction to the fact that Ky(O,) = Z/(1 —n)Z. O
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