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Abstract

We introduce a family of infinite nonamenable discrete groups as an interpolation of the Higman–
Thompson groups by using the topological full groups of the groupoids defined by β-expansions of
real numbers. They are regarded as full groups of certain interpolated Cuntz algebras, and realized as
groups of piecewise-linear functions on the unit interval in the real line if the β-expansion of 1 is finite or
ultimately periodic. We also classify them by a number-theoretical property of β.
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1. Introduction

The class of finitely presented infinite groups is one of the most interesting and
important classes of infinite groups from the viewpoints of not only group theory but
also geometry and topology. The study of finitely presented simple infinite groups has
begun with Richard J. Thompson in the 1960s. He [32] discovered the first two such
groups. They are now known as the groups V2 and T2. Higman [12] and Brown [3]
generalized Thompson’s examples to an infinite family of finitely presented infinite
groups. One of such family is the groups written Vn, 1 < n ∈ N, which are called
the Higman–Thompson groups. They are all finitely presented and their commutator
subgroups are all simple. Their abelianizations are trivial if n is even, and Z2 if n is
odd. The Higman–Thompson group Vn is represented as the group of right-continuous
piecewise-linear (PL) functions f : [0, 1) −→ [0, 1) having finitely many singularities
such that all singularities of f are in Z[1/n], the derivative of f at any nonsingular
point is nk for some k ∈ Z and f (Z[1/n] ∩ [0, 1)) = Z[1/n] ∩ [0, 1) [32] (see [4, 5, 26]).
Nekrashevych [25] showed that the Higman–Thompson group Vn appears as a certain
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subgroup of the unitary group of the Cuntz algebra On of order n. The subgroup of
the unitary group of On is the continuous full group Γn of On, which is also called the
topological full group of the associated groupoid (see also [24, Remark 6.3]). Recently,
the authors have independently studied full groups of the Cuntz–Krieger algebras and
full groups of the groupoids coming from shifts of finite type. The first-named author
has studied the normalizer groups of the Cuntz–Krieger algebras [9], which are called
the continuous full groups from the viewpoints of orbit equivalence of topological
Markov shifts and classification of C∗-algebras (see [16–18] etc.). He [19] proved that
the continuous full groups are complete invariants for the continuous orbit equivalence
classes of the underlying topological Markov shifts. The second-named author has
studied the continuous full groups of more general étale groupoids (see [21–24] etc.).
He has called them the topological full groups of étale groupoids. He [24] proved
that if an étale groupoid is minimal, the topological full group of the groupoid is a
complete invariant for the isomorphism class of the groupoid. He also showed that if
a groupoid comes from a shift of finite type, the topological full group is of type F∞
and in particular finitely presented. He furthermore obtained that the topological full
group for a shift of finite type is simple if and only if the homology group H0(G) of
the groupoid G is 2-divisible. Hence, we know an infinite family of finitely presented
infinite simple groups coming from symbolic dynamics. Nekrashevych’s paper [25]
says that the Higman–Thompson groups appear as the topological full groups of the
groupoids of the full shifts and as the continuous full groups of the Cuntz algebras.
In [13], a family of C∗-algebras Oβ, 1 < β ∈ R has been introduced. It arises from a
family of certain subshifts called the β-shifts, which are the symbolic dynamics defined
by the β-transformations on the unit interval [0, 1]. The family of the β-shifts is an
interpolation of the full shifts. Hence, the C∗-algebras Oβ, 1 < β ∈ R are considered as
an interpolation of the Cuntz algebras ON , 1 < N ∈ N.

In the present paper, we introduce a family Γβ, 1 < β ∈ R of infinite discrete
groups as an interpolation of the Higman–Thompson groups Vn, 1 < n ∈ N such that
Γn = Vn, 1 < n ∈ N. The groups Γβ, 1 < β ∈ R are defined as the continuous full groups
of the C∗-algebras Oβ, 1 < β ∈ R. They are also considered as the topological full
groups of the étale groupoids Gβ for the β-shifts. We will first study the groupoid Gβ

and show that the groupoid Gβ for each 1 < β ∈ R is an essentially principal, purely
infinite, minimal étale groupoid. The homology groups Hi(Gβ) are computed as

Hi(Gβ) �

Ki(Oβ) if i = 0, 1,
0 if i ≥ 2.

We will show the following theorem.

Theorem 1.1 (Theorem 3.7). Let 1 < β ∈ R be a real number. Then the group Γβ is
a countably infinite discrete nonamenable group such that its commutator subgroup
D(Γβ) is simple.
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For a real number β > 1, let us denote by d(1, β) = ξ1ξ2ξ3 . . . the β-adic expansion
of 1, which means ξi ∈ Z, 0 ≤ ξi ≤ [β] and

1 =
ξ1

β
+
ξ2

β2 +
ξ3

β3 + · · · .

The expansion d(1, β) is said to be finite if there exists k ∈ N such that ξm = 0 for all
m > k. If there exists l ≤ k such that

d(1, β) = ξ1 . . . ξlξl+1 . . . ξk+1ξl+1 . . . ξk+1ξl+1 . . . ξk+1 . . . ,

the expansion d(1, β) is said to be ultimately periodic and written d(1, β) =

ξ1 · · · ξlξ̇l+1 · · · ξ̇k+1. It is well known that the Higman–Thompson group Vn, n ∈ N is
represented as the group of right-continuous PL functions f : [0, 1) −→ [0, 1) having
finitely many singularities such that all singularities of f are in Z[1/n], the derivative of
f at any nonsingular point is nk for some k ∈ Z and f (Z[1/n] ∩ [0,1)) = Z[1/n] ∩ [0,1).
We introduce a notion of β-adic PL functions on the interval [0, 1] and show the
following theorem.

Theorem 1.2 (Theorems 5.10 and 6.13). Let 1 < β ∈ R be a real number such that the
β-expansion d(1, β) of 1 is finite or ultimately periodic. Then the group Γβ is realized
as the group of β-adic PL functions on the interval [0, 1].

It is well known that d(1, β) is finite if and only if the β-shift (Xβ, σ) is a shift of finite
type, and d(1, β) is ultimately periodic if and only if the β-shift (Xβ, σ) is a sofic shift
(see [2, 11]). If β = (1 +

√
5)/2, the number is the positive solution of the quadratic

equation β2 = β + 1, so that the β-expansion is finite: d(1, β) = 110000 · · · . We will
classify the interpolated Higman–Thompson groups Γβ, 1 < β ∈ R by the number-
theoretical property of β in the following way.

Theorem 1.3 (Theorems 7.2, 7.10 and 7.11). Let 1 < β ∈ R be a real number and
d(1, β) = ξ1ξ2ξ3 . . . be the β-expansion of 1.

(i) If d(1, β) is finite, that is, d(1, β) = ξ1ξ2 . . . ξk00 . . . , then the group Γβ is
isomorphic to the Higman–Thompson group Vξ1+···+ξk+1 of order ξ1 + · · · + ξk + 1.

(ii) If d(1, β) is ultimately periodic, that is, d(1, β) = ξ1 · · · ξlξ̇l+1 · · · ξ̇k+1, then the
group Γβ is isomorphic to the Higman–Thompson group Vξl+1+···+ξk+1 of order
ξl+1 + · · · + ξk+1.

(iii) If 1 < β ∈ R is not ultimately periodic, then the group Γβ is not isomorphic to any
of the Higman–Thompson groups Vn, 1 < n ∈ N.

2. Preliminaries of the C∗-algebra Oβ

Throughout the paper, we denote by N the set of positive integers and by Z+

the set of nonnegative integers, respectively. We fix an arbitrary real number β > 1
unless we specify otherwise. Take a natural number N with N − 1 < β ≤ N. Put
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Σ = {0, 1, . . . , N − 1}. For a nonnegative real number t, we denote by [t] the integer
part of t. Let fβ : [0, 1]→ [0, 1] be the function defined by

fβ(x) = βx − [βx], x ∈ [0, 1].

The β-expansion of x ∈ [0, 1] is a sequence {dn(x, β)}n∈N of integers of Σ determined
by (see [27, 30])

dn(x, β) = [β f n−1
β (x)], n ∈ N.

The numbers dn(x, β) will be denoted by dn(x) for simplicity. We then obtain the
β-expansion of x:

x =

∞∑
n=1

dn(x)
βn .

We endow the infinite product ΣN with the product topology and the lexicographical
order. The lexicographical order in ΣN means that for x = (xn)n∈N, y = (yn)n∈N ∈ ΣN,
the inequality x < y holds if

x1 = y1, . . . , xk = yk and xk+1 < yk+1 for some k.

We denote by σ the shift on ΣN defined by σ((xn)n∈N) = (xn+1)n∈N. Let ξβ =

(ξn)n∈N ∈ ΣN be the supremum element of {(dn(x))n∈N | x ∈ [0, 1)} with respect to the
lexicographical order in ΣN, which is defined by

ξβ = sup
x∈[0,1)

(dn(x))n∈N.

Define the σ-invariant compact subset Xβ of ΣN by

Xβ = {ω ∈ ΣN | σm(ω) ≤ ξβ,m = 0, 1, 2, . . . }.

Definition 2.1 (see [27, 30]). The subshift (Xβ, σ) is called the β-shift.

Example 2.2. β = N ∈ N with N > 1. As ξβ = (N − 1)(N − 1) . . . , the subshift

XN = {(xn)n∈N ∈ {0, 1, . . . ,N − 1}N | xn = 0, 1, . . . ,N − 1}

is the full N-shift.

Example 2.3. β = (1 +
√

5)/2. As N = 2 and d(1, β) = 1100 . . . , ξβ = 10101010 . . . ,

X(1+
√

5)/2 = {(xn)n∈N ∈ {0, 1}N | ‘11’ does not appear in (xn)n∈N}.

This is a shift of finite type XA determined by the matrix A =
[1 1
1 0

]
.

Example 2.4. β = 2 +
√

3. As N = 4 and d(1, β) = ξβ = 32̇,

X2+
√

3 = {(xn)n∈N ∈ {0, 1, 2, 3}N | (xn+m)n∈N ≤ 32̇ for all m = 0, 1, 2, . . . }.

This is a sofic shift but not a shift of finite type.
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Example 2.5. β = 3
2 . As N = 2 and ξβ = 101000001 . . . ,

X3/2 = {(xn)n∈N ∈ {0, 1}N | (xn+m)n∈N ≤ 101000001 . . . ,m = 0, 1, 2, . . . }.

This is not a sofic shift (and hence not a shift of finite type).
A finite sequence µ = (µ1, . . . , µk) of elements µ j ∈ Σ is called a block or a word.

We denote by |µ| the length k of µ. Set, for k ∈ N,

Bk(Xβ) = {µ | a block with length k appearing in some x ∈ Xβ}

and B∗(Xβ) =
⋃∞

k=0 Bk(Xβ), where B0(Xβ) denotes the empty word ∅.
In [13], a family Oβ, 1 < β ∈ R of simple purely infinite C∗-algebras has been

introduced as the C∗-algebras associated with β-shifts (Xβ, σ). We will review the
construction of the C∗-algebra Oβ for a fixed 1 < β ∈ R. Let {e0, . . . , eN−1} be an
orthonormal basis of the N-dimensional Hilbert space CN . We put

H0
β = CΩ (Ω : vacuum vector),

Hk
β = the Hilbert space spanned by the vectors eµ = eµ1 ⊗ · · · ⊗ eµk ,

µ = (µ1, . . . , µk) ∈ Bk(Xβ).

Let us denote by Hβ the Hilbert space of the direct sum ⊕∞k=0H
k
β . We denote by

Tν, ν ∈ B∗(Xβ) the creation operator onHβ of eν, which is a partial isometry defined by

TνΩ = eν and Tνeµ =

eν ⊗ eµ if νµ ∈ B∗(Xβ),
0 otherwise.

We put T∅ = 1 for the empty word ∅. Let P0 be the rank-one projection ofHβ onto the
vacuum vector Ω. It immediately follows that

∑N−1
i=0 TiT ∗i + P0 = 1. For µ, ν ∈ B∗(Xβ),

the operator TµP0T ∗ν is the rank-one partial isometry from the vector eν to eµ, so that
the C∗-algebra generated by the elements of the form TµP0T ∗ν , µ, ν ∈ B∗(Xβ) is nothing
but the C∗-algebra K(Hβ) of all compact operators on Hβ. Let Tβ be the C∗-algebra
onHβ generated by the elements Tν, ν ∈ B∗(Xβ).

Definition 2.6 [13]. The C∗-algebra Oβ associated with the β-shift is defined as the
quotient C∗-algebra Tβ/K(Hβ) of Tβ by K(Hβ).

We denote by S i, i = 0, 1, . . . ,N − 1 and S µ, µ ∈ B∗(Xβ) the quotient images of the
operators Ti and Tµ, respectively. Since S µ = S µ1 · · · S µl for µ = (µ1, . . . , µl) ∈ Bl(Xβ),
the C∗-algebra Oβ is generated by N − 1 isometries S 0, . . . , S N−2 and one partial
isometry S N−1 with the relation

∑N−1
i=0 S iS ∗i = 1. For β = N ∈ N, the C∗-algebra is

isomorphic to the Cuntz algebra ON . Hence, the family Oβ, 1 < β ∈ R is regarded
as an interpolation of the Cuntz algebras ON , 1 < N ∈ N.

We put aµ = S ∗µS µ for µ ∈ B∗(Xβ) and define C∗-subalgebras of Oβ:

Al = the C∗-subalgebra of Oβ generated by S ∗µS µ, µ ∈ Bl(Xβ),

Aβ = the C∗-subalgebra of Oβ generated by S ∗µS µ, µ ∈ B∗(Xβ),

Dβ = the C∗-subalgebra of Oβ generated by S µaS ∗µ, µ ∈ B∗(Xβ), a ∈ Aβ,

Fβ = the C∗-subalgebra of Oβ generated by S µaS ∗ν, µ, ν ∈ Bk(Xβ), k ∈ Z+, a ∈ Aβ.
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As S ∗µS µ = S ∗µS ∗0S 0S µ, the algebra Al is naturally embedded into Al+1. It is
commutative and finite dimensional so that the algebras Aβ, Dβ and Fβ are all
AF (approximately finite dimensional)-algebras; in particular, Aβ and Dβ are both
commutative. Put ρ j(x) = S ∗j xS j for x ∈ Aβ, j = 0, 1, . . . ,N − 1. Then the C∗-algebra
Oβ has a universal property subject to the relations (see [15])

N−1∑
j=0

S jS ∗j = 1, ρ j(x) = S ∗j xS j for x ∈ Aβ, j = 0, 1, . . . ,N − 1.

For t ∈ R/Z = T, the correspondence S j −→ e2π
√
−1tS j, j = 0, 1, . . . , N − 1 yields an

automorphism of Oβ, which gives rise to an action on Oβ of T called the gauge action
written ρ̂. The gauge action has a unique KMS state denoted by ϕ on Oβ at inverse
temperature log β. For the projections aξ1···ξn = S ∗ξ1···ξn

S ξ1···ξn ∈ Aβ, n = 1, 2, . . . , the
values ϕ(aξ1···ξn ) are computed as

ϕ(aξ1···ξn ) = βn − ξ1β
n−1 − · · · − ξn−1β − ξn =

∞∑
i=1

ξi+n

βi , n = 1, 2, . . . ([13]).

Let m(l) denote the dimension dimAl ofAl. Denote by El
1, . . . ,E

l
m(l) the set of minimal

projections of Al. As in [13, Lemma 3.3], the projection El
i, i = 1, . . . ,m(l) is of the

form El
i = aξ1···ξpi

− aξ1···ξqi
for some pi, qi = 0, 1, . . . . The projections aξ1···ξn , n ∈ Z+

are totally ordered by the value ϕ(aξ1···ξn ). We order El
1, . . . , E

l
m(l) following the order

ϕ(aξ1···ξp1
) < · · · < ϕ(aξ1···ξpm(l)

) in R.
Some basic subclasses of β-shifts are characterized in terms of the β-expansion

d(1, β) of 1 and the projections aξ1···ξn in the following way.

Lemma 2.7 ([27], see [13, Proposition 3.8]). The following are equivalent:

(i) (Xβ, σ) is a shift of finite type;
(ii) d(1, β) is finite, that is, d(1, β) = ξ1ξ2 · · · ξk000 · · · for some k;
(iii) aξ1···ξk = 1 for some k.

We call (Xβ, σ) an SFT β-shift if (Xβ, σ) is a shift of finite type.

Lemma 2.8 ([1], see [13, Proposition 3.8]). The following are equivalent:

(i) (Xβ, σ) is a sofic shift;
(ii) d(1, β) is ultimately periodic, that is, d(1, β) = ξ1 · · · ξlξ̇l+1 · · · ξ̇k+1 for some l ≤ k;
(iii) aξ1···ξl = aξ1···ξk+1 for some l ≤ k.

We call (Xβ, σ) a sofic β-shift if (Xβ, σ) is a sofic shift.
The K-groups of the C∗-algebra Oβ have been computed in the following way.

Lemma 2.9 [13].

K0(Oβ) =


Z/(ξ1 + ξ2 + · · · + ξk − 1)Z if d(1, β) = ξ1ξ2 · · · ξk000 . . . ,
Z/(ξl+1 + · · · + ξk+1)Z if d(1, β) = ξ1 · · · ξlξ̇l+1 · · · ξ̇k+1,

Z otherwise.
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The position [1] of the unit of Oβ in K0(Oβ) corresponds to the class [1] of 1 ∈ Z in the
first two cases, and to 1 ∈ Z in the third case, and

K1(Oβ) = 0 for any β > 1.

3. Topological full groups of the groupoid Gβ

The C∗-algebra Oβ, 1 < β ∈ R has been originally constructed as the C∗-algebra
associated with the subshift (Xβ, σ), 1 < β ∈ R. It is regarded as the C∗-algebra
C∗r (Gβ) of a certain essentially principal étale groupoid Gβ as in [15, Section 2]. We
will review the construction of the groupoid Gβ in the following way. We denote
by Ωl = {vl

1, . . . , v
l
m(l)} the finite set with its discrete topology corresponding to the

set of the minimal projections El
1, . . . , E

l
m(l) of the commutative algebra Al, so that

Al = C(Ωl). If El+1
j ≤ El

i, we write ιl,l+1(vl+1
j ) = vl

i. We define an edge e labeled
α ∈ {0, 1, . . . , N − 1} from vl

i to vl+1
j if S ∗αEl

iS α ≥ El+1
j . Denote by El,l+1 such labeled

edges. Let Ωβ be the compact Hausdorff space of the projective limit of the system
ιl,l+1 : Ωl+1 −→ Ωl, l ∈ Z+:

Ωβ =

{
(vl)l∈Z+

∈
∏
l∈Z+

Ωl

∣∣∣∣∣ ιl,l+1(vl+1) = vl, l ∈ Z+

}
.

Let Gβ be the set of triplets (u, α, v) ∈ Ωβ × {0, 1, . . . , N − 1} × Ωβ such that for each
l ∈ Z+ there exists el,l+1 ∈ El,l+1 whose source is ul, terminal is vl+1 and label is α, where
u = (ul)l∈Z+

and v = (vl)l∈Z+
. Then Gβ becomes a zero-dimensional continuous graph in

the sense of Deaconu [10]. Consider the set G(0)
β of one-sided paths of the graph Gβ:

G(0)
β =

{
(αi, ui)∞i=1 ∈

∞∏
i=1

({0, 1, . . . ,N − 1} ×Ωβ)
∣∣∣∣∣

(ui, αi+1, ui+1) ∈ Gβ for all i ∈ N and (u0, α1, u1) ∈ Gβ for some u0 ∈ Ωβ

}
.

The set G(0)
β has the relative topology from the infinite product topology of

{0, 1, . . . , N − 1} × Ωβ. It is a zero-dimensional compact Hausdorff space such that
the C∗-algebra C(G(0)

β ) of complex-valued continuous functions on G(0)
β is canonically

isomorphic to the C∗-subalgebra Dβ of Oβ, which is called the canonical Cartan
subalgebra of Oβ. The shift map σβ : (αi, ui)∞i=1 ∈ G(0)

β → (αi+1, ui+1)∞i=1 ∈ G(0)
β is a

surjective local homeomorphism.

Definition 3.1. The groupoid Gβ with unit space G(0)
β is defined by the étale groupoid

associated with the surjective local homeomorphism σβ on G(0)
β in the following way:

Gβ = {(x, k − l, y) ∈ G(0)
β × Z ×G(0)

β | σ
k
β(x) = σl

β(y) for some k, l ∈ Z+}.
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For an étale groupoid G, we let G(0) denote the unit space of G and let s and r denote
the source map and the range map, respectively. For x ∈ G(0), the set G(x) = r(Gx) is
called the G-orbit of x. If every G-orbit is dense in G(0), G is said to be minimal
[24, 28].

Lemma 3.2. For 1 < β ∈ R, the groupoid Gβ is an essentially principal, minimal
groupoid.

Proof. The C∗-subalgebra Fβ of Oβ is the C∗-algebra C∗r (Hβ) of an AF-subgroupoid
Hβ of Gβ, which is defined by

Hβ = {(x, 0, y) ∈ G(0)
β × Z ×G(0)

β | σ
k
β(x) = σk

β(y) for some k ∈ Z+}.

As the algebra Fβ is simple [13, Proposition 3.5], the groupoid Hβ is minimal, so that
Gβ is minimal. �

A subset U ⊂ G is called a G-set if r|U , s|U are injective. The homeomorphism
r ◦ (s|U)−1 from s(U) to r(U) is denoted by πU . Following [24], G is said to be purely
infinite if for every clopen set A ⊂ G(0) there exist clopen G-sets U,V ⊂ G such that
s(U) = s(V) = A, r(U) ∪ r(V) ⊂ A, r(U) ∩ r(V) = ∅.

Lemma 3.3. For 1 < β ∈ R, the groupoid Gβ is purely infinite.

Proof. As the C∗-algebra Dβ is isomorphic to the algebra C(G(0)
β ) of continuous

functions on G(0)
β , we may identify the projections of Dβ with the clopen sets of

G(0)
β . Hence, a clopen set of G(0)

β may be considered as a finite sum of the form
P = S µEl

iS
∗
µ for some µ ∈ Bk(Xβ) with k ≤ l such that S ∗µS µ ≥ El

i. It is enough to
consider P = S µEl

iS
∗
µ for simplicity. The minimal projection El

i ∈ Al is of the form
El

i = aξ1···ξpi
− aξ1···ξqi

for some 1 ≤ pi, qi ≤ l with aξ1···ξpi
> aξ1···ξqi

. Note that

S ∗µS µ ≥ aξ1···ξpi
. (3.1)

There exists γ = (γ1, . . . , γr) ∈ B∗(Xβ) such that

(ξ1, . . . , ξpi , γ1, . . . , γr) ∈ B∗(Xβ), (ξ1, . . . , ξqi , γ1, . . . , γr) < B∗(Xβ).

Define the words

ζ1(m) = (

m︷  ︸︸  ︷
0, . . . , 0), ζ2(m) = (

m︷      ︸︸      ︷
0, . . . , 0, 1).

By [13, Corollary 3.2], there exists m ∈ N such that

aξ1···ξpiγζ1(m) = aξ1···ξpiγζ2(m) = 1. (3.2)

Put ζ1 = ζ1(m), ζ2 = ζ2(m). By (3.1) and (3.2),

aµγζ1 ≥ S ∗γζ1
aξ1···ξpi

S γζ1 = aξ1···ξpiγζ1 = 1,
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so that aµγζ1 = 1 and similarly aµγζ2 = 1. We set

U = S µγζ1 El
iS
∗
µ, V = S µγζ2 El

iS
∗
µ,

which correspond to certain clopen G-sets in Gβ. It then follows that

U∗U = S µEl
iaµγζ1 El

iS
∗
µ = S µEl

iS
∗
µ = P and similarly V∗V = P,

so that
UU∗ + VV∗ = S µγζ1 El

iS
∗
µγζ1

+ S µγζ2 El
iS
∗
µγζ2

.

As

S ∗γζ1
El

iS γζ1 = S ∗ζ1
S ∗γ(aξ1···ξpi

− aξ1···ξqi
)S γS ζ1 = S ∗ζ1

aξ1···ξpiγ
S ζ1 = 1,

PSµγζ1 El
iS
∗
µγζ1

= SµEl
iSγζ1 El

iS
∗
µγζ1

= Sµγζ1 S ∗γζ1
El

iSγζ1 El
iS
∗
µγζ1

,

so that PS µγζ1 El
iS
∗
µγζ1

= S µγζ1 El
iS
∗
µγζ1

. This implies UU∗ ≤ P and similarly VV∗ ≤ P.
Since S µγζ1 El

iS
∗
µγζ1
· S µγζ2 El

iS
∗
µγζ2

= 0, we have UU∗ + VV∗ ≤ P. �

Therefore, we have the following proposition.

Proposition 3.4. For 1 < β ∈ R, the groupoid Gβ is an essentially principal, purely
infinite, minimal, étale groupoid.

We will next compute the homology groups Hi(Gβ) for the étale groupoid Gβ. The
homology theory for étale groupoids has been studied in [6]. In [22], the homology
groups Hi for the groupoids coming from shifts of finite type have been computed such
that the groups Hi are isomorphic to the K-groups Ki of the associated Cuntz–Krieger
algebra for i = 0, 1, and Hi = 0 for i ≥ 2. By following the argument of the proof of
[22, Theorem 4.14], we have the following proposition.

Proposition 3.5. For each 1 < β ∈ R, the homology groups Hi(Gβ) are computed as

Hi(Gβ) �

Ki(Oβ) if i = 0, 1,
0 if i ≥ 2.

(3.3)

Proof. For each 1 < β ∈ R, the map ρβ : (x,n, y) ∈Gβ −→ n ∈ Z gives rise to a groupoid
homomorphism such that the skew product Gβ ×ρβ Z is homologically similar to
the AF-groupoid Hβ (see [22, Lemma 4.13]). We know that the groupoid C∗-
algebra C∗r (Gβ ×ρβ Z) is stably isomorphic to the crossed product Oβ ×ρ̂ T of Oβ
by the gauge action, which is stably isomorphic to the AF-algebra C∗r (Hβ). Since
the Z-module structure on H0(Gβ ×ρβ Z) is given by the induced action ˆ̂ρ∗ on
K0(Oβ ×ρ̂ T) of the bidual action ˆ̂ρ on Oβ ×ρ̂ T, we get (3.3) by the same argument as
[22, Theorem 4.14]. �

In [22], the notion of topological full groups for étale groupoids has been
introduced. We will study the topological full groups of the groupoid Gβ for
the β-shift (Xβ, σ).
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Definition 3.6 [22, Definition 2.3]. The topological full group [[Gβ]] of the groupoid
Gβ is defined by the group of all homeomorphisms α of G(0)

β such that α = πU for some
compact open Gβ-set U.

In what follows, we denote the topological full group [[Gβ]] by Γβ. By [22,
Proposition 5.6], there exists a short exact sequence

1 −→ U(C(G(0)
β )) −→ N(C(G(0)

β ),C∗r (Gβ)) −→ Γβ −→ 1,

where U(C(G(0)
β )) denotes the group of unitaries in C(G(0)

β ) and N(C(G(0)
β ),C∗r (Gβ))

denotes the group of unitaries in C∗r (Gβ) which normalize C(G(0)
β ).

Consider the full n-shift (Xn, σ) and its groupoid Gn (see [24, 28]). The groupoid
C∗-algebra C∗r (Gn) is isomorphic to the Cuntz algebra On of order n. Nekrashevych
[25] has shown that the Higman–Thompson group Vn is identified with a certain
subgroup of the unitary group of On. The identification gives rise to an isomorphism
between the Higman–Thompson group Vn and the topological full group Γn (see also
[24, Remark 6.3]). Hence, our groups Γβ, 1 < β ∈ R are considered as an interpolation
of the Higman–Thompson groups Vn, 1 < n ∈ N. It is well known that the groups
Vn, 1 < n ∈ N are nonamenable and their commutator subgroups D(Vn) are all simple.
Proposition 3.4 says that the groupoid Gβ is an essentially principal, purely infinite,
minimal groupoid for every 1 < β ∈ R. By [24, Proposition 4.10 and Theorem 4.16],
we have the following generalization of the above fact for Vn, 1 < n ∈ N.

Theorem 3.7. Let 1 < β ∈ R be a real number. Then the group Γβ is a countably infinite,
discrete, nonamenable group such that its commutator subgroup D(Γβ) is simple.

4. Realization of Oβ on L2([0, 1])
The Higman–Thompson group Vn, 1 < n ∈ N is represented as the group of right-

continuous PL bijective functions f : [0,1) −→ [0,1) having finitely many singularities
such that all singularities of f are in Z[1/n], the derivative of f at any nonsingular point
is nk for some k ∈ Z and f (Z[1/n] ∩ [0, 1)) = Z[1/n] ∩ [0, 1). In order to represent our
group Γβ as a group of PL functions on [0, 1), we will represent the algebra Oβ on
L2([0, 1]) in the following way.

We denote by H the Hilbert space L2([0, 1]) of the square-integrable functions on
[0, 1] with respect to the Lebesgue measure. The essentially bounded measurable
functions L∞([0, 1]) act on H by multiplication. We define the sequence

βn = βn − ξ1β
n−1 − · · · − ξn−1β − ξn =

∞∑
i=1

ξi+n

βi , n = 1, 2, . . . .

Consider the functions g0, g1, . . . , gN−1 defined by

gi(x) =
1
β

(x + i) for i = 0, 1, . . . ,N − 2, x ∈ [0, 1],

gN−1(x) =
1
β

(x + N − 1) for x ∈ [0, β1].
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They satisfy the following equalities:

N−2⋃
i=0

gi([0, 1]) ∪ gN−1([0, β1]) = [0, 1],

fβ(gi(x)) = x for i = 0, 1, . . . ,N − 2, x ∈ [0, 1],
fβ(gN−1(x)) = x for x ∈ [0, β1].

For a measurable subset U of [0, 1], denote by χU the multiplication operator on
H of the characteristic function of U. Define the bounded linear operators T fβ ,
Tgi , i = 0, 1, . . . ,N − 2 on H by

(T fβξ)(x) = ξ( fβ(x)) for ξ ∈ H, x ∈ [0, 1],
(Tgiξ)(x) = ξ(gi(x)) for ξ ∈ H, x ∈ [0, 1], i = 0, 1, . . . ,N − 2.

For the function gN−1 on [0, β1], define the operator TgN−1 by

(TgN−1ξ)(x) =

ξ(gN−1(x)) for x ∈ [0, β1],
0 for x ∈ (β1, 1].

The following lemma is straightforward.

Lemma 4.1. Keep the above notation. We have

(i) T ∗fβ = (1/β)
∑N−1

i=0 Tgi .

(ii) T ∗fβT fβ = (N − 1)/β + (1/β)χ[0, β1].

(iii) T ∗gi
Tgi =

βχ[i/β,(i+1)/β) for i = 0, 1, . . . ,N − 2,
βχ[(N−1)/β,1) for i = N − 1.

(iv) Tgi T
∗
gi

=

β1 for i = 0, 1, . . . ,N − 2,
βχ[0, β1] for i = N − 1.

We define the operators si, i = 0, . . . ,N − 1 on H by setting

si =
1
√
β

T ∗gi
, i = 0, 1, . . . ,N − 1.

By the above lemma, we have the following proposition.

Proposition 4.2. The operators si, i = 0, . . . ,N − 1 are partial isometries such that

s∗i si =

1 for i = 0, 1, . . . ,N − 2,
χ[0, β1] for i = N − 1,

sis∗i =

χ[i/β,(i+1)/β) for i = 0, 1, . . . ,N − 2,
χ[(N−1)/β,1) for i = N − 1

and hence
N−1∑
i=0

sis∗i = 1.
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The natural ordering of Σ = {0, 1, . . . , N − 1} induces the lexicographical order on
B∗(Xβ), which means that for µ = (µ1, . . . , µn) ∈ Bn(Xβ) and ν = (ν1, . . . , νm) ∈ Bm(Xβ),
the order µ ≺ ν is defined if µ1 < ν1 or µi = νi for i = 1, . . . , k − 1 for some k ≤ m, n and
µk < νk. For a word µ = (µ1, . . . , µn) ∈ Bn(Xβ), denote by µ̃ = (µ̃1, . . . , µ̃n) ∈ Bn(Xβ)
the least word in Bn(Xβ) satisfying (µ1, . . . , µn) ≺ (µ̃1, . . . , µ̃n). If µ = (µ1, . . . , µn)
is maximal in Bn(Xβ), we set µ̃ = ∅. We will use the following notation for µ =

(µ1, . . . , µn) ∈ Bn(Xβ):

l(µ) :=
µ1

β
+
µ2

β2 + · · · +
µn

βn , r(µ) :=
µ̃1

β
+
µ̃2

β2 + · · · +
µ̃n

βn .

If µ̃ = ∅, we set r(µ) = 1. For µ = (µ1, . . . , µn) ∈ Bn(Xβ), we set sµ = sµ1 · · · sµn .

Lemma 4.3. For µ = (µ1, . . . , µn) ∈ Bn(Xβ),

sµs∗µ = χ[l(µ),r(µ)). (4.1)

Proof. For n = 1, the equality (4.1) holds by the above proposition. Suppose that the
equality (4.1) holds for a fixed n = k. It then follows that for j = 0, . . . , N − 1 and
ξ, η ∈ H,

〈s jsµ1 · · · sµk s∗µk
· · · s∗µ1

s∗jξ | η〉 =
1
β

∫ 1

0
χ[l(µ),r(µ))ξ(g j(x))η(g j(x)) dx. (4.2)

For j = 0, 1, . . . ,N − 2, put y = g j(x) ∈ [ j/β, ( j + 1)/β], so that x = fβ(y) = βy − j. The
above equation (4.2) becomes∫ 1

0
χ[ j/β,( j+1)/β)(y)χ[l(µ),r(µ))( fβ(y))ξ(y)η(y) dy = 〈χ[ j/β,( j+1)/β)∩ f −1

β ([l(µ),r(µ)))ξ | η〉.

As [ j
β
,

j + 1
β

)
∩ f −1

β ([l(µ), r(µ)))

=

[ j
β

+
µ1

β2 +
µ2

β3 + · · · +
µk

βk+1 ,
j
β

+
µ̃1

β2 +
µ̃2

β3 + · · · +
µ̃k

βk+1

)
,

s jsµ1 · · · sµk s∗µk
· · · s∗µ1

s∗j = χ[ j/β+µ1/β2+µ2/β3+···+µk/βk+1, j/β+µ̃1/β2+µ̃2/β3+···+µ̃k/βk+1).

Since ( j, µ̃1, . . . , µ̃k) is minimal in Bk+1(Xβ) satisfying ( j, µ1, . . . , µk) ≺ ( j, µ̃1, . . . , µ̃k),
the desired equality holds for k + 1 and j = 0, . . . , N − 2. For j = N − 1, we may
similarly show the equality (4.1). �

The following lemma is straightforward.

Lemma 4.4. For a measurable subset F ⊂ [0, 1], we have s∗jχF s j = χg−1
j (F) for

j = 0, 1, . . . ,N − 1.

We then have the following lemmas.
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Lemma 4.5. For the maximal element ξβ = (ξ1, ξ2, . . . ) ∈ Xβ,

s∗ξ1ξ2···ξn
sξ1ξ2···ξn = χ[0, βn], n ∈ N. (4.3)

Proof. The equality (4.3) holds for n = 1. Suppose that the equality (4.3) holds for
n = k. It then follows that

s∗ξ1ξ2···ξk+1
sξ1ξ2···ξk+1 = s∗ξk+1

χ[0, βk]sξk+1 = χg−1
ξk+1

([0, βk]).

Since

g−1
ξk+1

([0, βk]) =

{
x ∈ [0, 1]

∣∣∣∣∣ 1
β

x +
ξk+1

β
≤ βk − ξ1β

k−1 − · · · − ξk

}
= [0, βk+1],

the equality (4.3) holds for n = k + 1. �

Lemma 4.6. For n ∈ N and j = 0, 1, . . . ,N − 1,

s∗ξ1ξ2···ξn jsξ1ξ2···ξn j =


0 for j > ξn+1,

χ[0, βn+1] for j = ξn+1,

1 for j < ξn+1.

Proof. We have
s∗ξ1ξ2···ξn jsξ1ξ2···ξn j = s∗ξ j

χ[0, βn]sξ j = χg−1
j ([0, βn])

and
g−1

j ([0, βn]) =

{
x ∈ [0, 1]

∣∣∣∣∣ 1
β

x +
j
β
≤ βn

}
= [0, ββn − j].

Since ββn − j = βn+1 + ξn+1 − j,

s∗ξ1ξ2···ξn jsξ1ξ2···ξn j = χ[0, βn+1+ξn+1− j].

If ξn+1 = j, the equality s∗ξ1ξ2···ξn jsξ1ξ2···ξn j = χ[0, βn+1] holds. If ξn+1 < j, we have ξn+1 − j
≤ −1 and hence βn+1 + ξn+1 − j ≤ 0, so that [0, βn+1 + ξn+1 − j] = {0} or ∅, which shows
that s∗ξ1ξ2···ξn jsξ1ξ2···ξn j = 0. If ξn+1 > j, we have ξn+1 − j≥1 and hence βn+1 + ξn+1 − j ≥ 1,
so that [0, βn+1 + ξn+1 − j] = [0, 1], which shows that s∗ξ1ξ2···ξn jsξ1ξ2···ξn j = χ[0,1] = 1. �

Therefore, we have the following theorem.

Theorem 4.7. The correspondence S j −→ s j for j = 0, 1, . . . , N − 1 gives rise to an
isomorphism from Oβ to the C∗-algebra C∗(s0, s1, . . . , sN−1) on L2([0, 1]) generated by
the partial isometries s0, s1, . . . , sN−1.

Proof. Let us denote by A[0,1],l the C∗-algebra on L2([0, 1]) generated by the
projections s∗µsµ, µ ∈ Bl(Xβ), and A[0,1],β the C∗-algebra generated by

⋃
l∈NA[0,1],l.

By the previous lemma and [13, Corollary 3.2], the C∗-algebra A[0,1],l is isomorphic
to the C∗-subalgebra Al of Oβ, so that A[0,1],β is isomorphic to Aβ through the
correspondence S ∗µS µ ←→ s∗µsµ for µ ∈ B∗(Xβ). The isomorphism from Aβ to A[0,1],β
is denoted by π. Put ρ j(x) = S ∗j xS j for x ∈ Aβ, j = 0, 1, . . . ,N − 1. Then the relations

π(ρ j(x)) = s∗jπ(x)s j, x ∈ Aβ, j = 0, 1, . . . ,N − 1 (4.4)
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hold by the previous lemma. Since the C∗-algebraOβ has the universal property subject
to the relation (4.4) (see [15]), there exists a surjective ∗-homomorphism π̃ from Oβ
to C∗(s0, s1, . . . , sN−1) such that π̃(S j) = s j, j = 0, 1, . . . ,N − 1 and π̃(x) = π(x), x ∈ Aβ.
As the C∗-algebra Oβ is simple, the ∗-homomorphism π̃ is actually an isomorphism. �

In what follows, we may identify the C∗-algebra Oβ with the C∗-algebra
C∗(s0, s1, . . . , sN−1) through the identification of the generating partial isometries S j

and s j, j = 0, 1, . . . ,N − 1.

5. PL functions for SFT β-shifts

In this section, we will realize the group Γβ for an SFT β-shift as PL functions on
[0, 1). For a word µ = (µ1, . . . , µn) ∈ Bn(Xβ), denote by Uµ ⊂ Xβ the cylinder set

Uµ = {(xi)i∈N ∈ Xβ | x1 = µ1, . . . , xn = µn}.

We put
Γ+(µ) = {(xi)i∈N ∈ Xβ | (µ1, . . . , µn, x1, x2, . . . ) ∈ Xβ}

for the set of followers of µ. Recall that ϕ stands for the unique KMS state for the
gauge action on the C∗-algebra Oβ. We note that the value ϕ(aµ1···µn ) is computed
inductively in the following way. For n = 1,

ϕ(aµ1 ) =


1 if µ1 < ξ1,

β − ξ1 if µ1 = ξ1,

0 if µ1 > ξ1.

Suppose that the value ϕ(aµ1···µk ) is computed for all µ = (µ1, . . . , µk) ∈ Bk(Xβ) with
k < n. If (µ1, . . . , µn) is the maximal element (ξ1, . . . , ξn) in Bn(Xβ), then

ϕ(aµ1···µn ) = βn − ξ1β
n−1 − · · · − ξn−1β − ξn. (5.1)

If (µ1, . . . , µn) , (ξ1, . . . , ξn), then there exists k ≤ n such that µk < ξk. If k = n, then
ϕ(aµ1···µn ) = 1. If k < n, we see that aµ1···µk = 1, so that

aµ1···µn = S ∗µn
· · · S ∗µk+1

S µk+1 · · · S µn = aµk+1···µn .

Hence,
ϕ(aµ1···µn ) = ϕ(aµk+1···µn ).

Since |(µk+1, . . . , µn)| < n, the value ϕ(aµk+1···µn ) is computed. Therefore, the value
ϕ(aµ1···µn ) is computed for all (µ1, . . . , µn) ∈ Bn(Xβ). The following lemma is clear from
Lemma 4.5 and (5.1).

Lemma 5.1. Assume that the generating partial isometries S 0, S 1, . . . , S N−1 are
represented on L2([0, 1]). For a word µ ∈ B∗(Xβ), the projection S ∗µS µ is identified
with the characteristic function χ[0,ϕ(aµ)) of the interval [0, ϕ(aµ)).
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Recall that for a word ν = (ν1, . . . , νn) ∈ Bn(Xβ), the notation

l(ν) =
ν1

β
+
ν2

β2 + · · · +
νn

βn , r(ν) =
ν̃1

β
+
ν̃2

β2 + · · · +
ν̃n

βn

is introduced in Section 4, where ν̃ = (ν̃1, . . . , ν̃n) is the smallest word in Bn(Xβ)
satisfying ν ≺ ν̃. If ν is the maximum word in Bn(Xβ), we set r(ν) = 1. The following
two lemmas are crucial.

Lemma 5.2. For µ, ν ∈ B∗(Xβ), we have Γ+(µ) = Γ+(ν) if and only if

r(µ) − l(µ)
r(ν) − l(ν)

= β|ν|−|µ|.

Proof. We note that Γ+(µ) = Γ+(ν) if and only if S ∗µS µ = S ∗νS ν. By the above lemma,
we have Γ+(µ) = Γ+(ν) if and only if ϕ(aµ) = ϕ(aν). Since ϕ(S ∗µS µ) = β|µ|ϕ(S µS ∗µ)
and ϕ(S µS ∗µ) = r(µ) − l(µ), we have ϕ(aµ) = ϕ(aν) if and only if β|µ|(r(µ) − l(µ)) =

β|ν|(r(ν) − l(ν)). �

We note that the above lemma holds for any real number β > 1 even if (Xβ, σ) is not
a shift of finite type.

Lemma 5.3. For τ ∈ Γβ, there exists uτ ∈ N(Dβ,Oβ) such that there exist µ(i), ν(i) ∈
B∗(Xβ), i = 1, 2, . . . ,m satisfying

(1) uτ =
∑m

i=1 S µ(i)S ∗ν(i) such that

(a) S ∗ν(i)S ν(i) = S ∗µ(i)S µ(i), i = 1, 2, . . . ,m,
(b)

∑m
i=1 S ν(i)S ∗ν(i) =

∑m
i=1 S µ(i)S ∗µ(i) = 1.

(2) f ◦ τ−1 = uτ f u∗τ for f ∈ Dβ.

Proof. Since (Xβ, σ) is SFT, there exist continuous functions k, l : Xβ −→ Z+ for τ ∈ Γβ
such that σl(x)(τ(x)) = σk(x)(x), x ∈ Xβ. Hence, there exists a family of cylinder sets
Uν(1), . . . ,Uν(m),Uµ(1), . . . ,Uµ(m) such that

Γ+(ν(i)) = Γ+(µ(i)), i = 1, . . . ,m,

Xβ =

m⊔
i=1

Uν(i) =

m⊔
i=1

Uµ(i)

and
τ(x1, x2, . . . ) = (µ(i)1, . . . , µ(i)li , xki+1, xki+2, . . . ) for (xn)n∈N ∈ Uν(i),

where li = |µ(i)|, ki = |ν(i)| and µ(i) = (µ(i)1, . . . , µ(i)li ). Hence,
m∑

i=1

S ν(i)S ∗ν(i) =

m∑
i=1

S µ(i)S ∗µ(i) = 1, S ∗ν(i)S ν(i) = S ∗µ(i)S µ(i), i = 1, 2, . . . ,m.

By putting uτ =
∑m

i=1 S µ(i)S ∗ν(i), we see that uτ belongs to N(Dβ,Oβ) and satisfies
χUη
◦ τ−1 = uτS ηS ∗ηu

∗
τ for all η ∈ B∗(Xβ), so that f ◦ τ−1 = uτ f u∗τ for f ∈ Dβ. �
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Following Nekrashevych [25], we will introduce a notation of tables in order to
represent elements of Γβ.

Definition 5.4. A β-adic table for an SFT β-shift is a matrix[
µ(1) µ(2) · · · µ(m)
ν(1) ν(2) · · · ν(m)

]
for ν(i), µ(i) ∈ B∗(Xβ), i = 1, 2, . . . ,m such that

(a) Γ+(ν(i)) = Γ+(µ(i)), i = 1, 2, . . . ,m,
(b) Xβ = tm

i=1Uν(i) = tm
i=1Uµ(i) are disjoint unions.

We may assume that ν(1) ≺ ν(2) ≺ · · · ≺ ν(m). Since the above two conditions (a),
(b) are equivalent to the conditions (a), (b) in Lemma 5.3(1), respectively, we have the
following lemma.

Lemma 5.5. For an element τ ∈ Γβ with its unitary uτ =
∑m

i=1 S µ(i)S ∗ν(i) ∈ N(Dβ,Oβ) as
in Lemma 5.3, the matrix

Tτ =

[
µ(1) µ(2) · · · µ(m)
ν(1) ν(2) · · · ν(m)

]
is a β-adic table for an SFT β-shift.

Definition 5.6.

(i) An interval [x1, x2) in [0, 1] is said to be a β-adic interval for the word ν ∈ B∗(Xβ)
if x1 = l(ν) and x2 = r(ν).

(ii) A rectangle I × J in [0, 1] × [0, 1] is said to be a β-adic rectangle if both I, J
are β-adic intervals for words ν ∈ Bn(Xβ), µ ∈ Bm(Xβ) such that I = [l(ν), r(ν)),
J = [l(µ), r(µ)) and

r(µ) − l(µ)
r(ν) − l(ν)

= βn−m.

(iii) For two partitions 0 = x0 < x1 < · · · < xm−1 < xm = 1 and 0 = y0 < y1 < · · · <
ym−1 < ym = 1 of [0, 1], put Ip = [xp−1, xp), Jp = [yp−1, yp), p = 1, 2, . . . ,m. The
partition Ip × Jq, p, q = 1, 2, . . . ,m of [0, 1) × [0, 1) is said to be a β-adic pattern
of rectangles for an SFT β-shift if there exists a permutation σ on {1, 2, . . . ,m}
such that the rectangles Ip × Jσ(p) are β-adic rectangles for all p = 1, 2, . . . ,m.

For a β-adic pattern of rectangles above, the slopes of diagonals sp =

(yσ(p) − yσ(p)−1)/(xp − xp−1), p = 1, 2, . . . ,m are said to be rectangle slopes. We then
have the following lemma.

Lemma 5.7. For a β-adic table

T =

[
µ(1) µ(2) · · · µ(m)
ν(1) ν(2) · · · ν(m)

]
there exists a β-adic pattern of rectangles whose rectangle slopes are

β|ν(1)|−|µ(1)|, β|ν(2)|−|µ(2)|, . . . , β|ν(m)|−|µ(m)|.

https://doi.org/10.1017/S1446788714000214 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000214


[17] Topological full groups of C∗-algebras arising from β-expansions 273

Proof. We are assuming the ordering such as ν(1) ≺ · · · ≺ ν(m). Since Xβ = tm
j=1Uµ( j)

is a disjoint union, there exists a permutation σ0 on {1, 2, . . . ,m} such that µ(σ0(1)) ≺
µ(σ0(2)) ≺ · · · ≺ µ(σ0(m)). Put

xi = l(ν(i + 1)), yi = l(µ(σ0(i + 1))), i = 0, 1, . . . ,m − 1

and
Ip = [xp−1, xp), Jp = [yp−1, yp), p = 1, 2, . . . ,m.

Define the permutation σ := σ−1
0 on {1, 2, . . . ,m}. We note that r(ν(i)) = l(ν(i + 1)),

r(µ(σ0(i))) = l(µ(σ0(i + 1))) for i = 1, 2, . . . ,m − 1. Then the rectangles Ip × Jσ(p), p =

1, 2, . . . ,m are β-adic rectangles such that
yσ(p) − yσ(p)−1

xp − xp−1
=

r(µ(p)) − l(µ(p))
r(ν(p)) − l(ν(p))

.

Since r(ζ) − l(ζ) = ϕ(S ζS ∗ζ) = 1
β|ζ |
ϕ(S ∗ζS ζ) for ζ ∈ B∗(Xβ),

r(ν(p)) − l(ν(p)) =
1

β|ν(p)|ϕ(S ∗ν(p)S ν(p)),

r(µ(p)) − l(µ(p)) =
1

β|µ(p)|ϕ(S ∗µ(p)S µ(p)).

As the condition Γ+(ν(p)) = Γ+(µ(p)) implies S ∗ν(p)S ν(p) = S ∗µ(p)S µ(p),
yσ(p) − yσ(p)−1

xp − xp−1
= β|ν(p)|−|µ(p)|, p = 1, 2, . . . ,m. �

We define a β-adic version of PL functions on [0, 1) in the following way.

Definition 5.8. A PL function f on [0, 1) is called a β-adic PL function for an SFT
β-shift if f is a right-continuous bijection on [0, 1) such that there exists a β-adic
pattern of rectangles Ip × Jp, p = 1, 2, . . . ,m, where Ip = [xp−1, xp), Jp = [yp−1, yp), p =

1, 2, . . . ,m, with a permutation σ on {1, 2, . . . ,m} such that
f (xp−1) = yσ(p)−1, f−(xp) = yσ(p−1)+1, p = 1, 2, . . . ,m,

where f−(xp) = limh→0+ f (xp − h) and f is linear on [xp−1, xp) with slope
(yσ(p) − yσ(p)−1)/(xp − xp−1) for p = 1, 2, . . . ,m.

The following proposition is immediate from the definition of β-adic PL functions.

Proposition 5.9. A β-adic PL function for an SFT β-shift naturally gives rise to a
β-adic pattern of rectangles for an SFT β-shift.

We may directly construct a β-adic PL function fT from a β-adic table T =[ µ(1) µ(2) ··· µ(m)
ν(1) ν(2) ··· ν(m)

]
as follows. Put xi = l(ν(i + 1)), ŷi = l(µ(i + 1)), i = 0, 1, . . . ,m − 1.

Define fT by fT (xi) = ŷi, i = 0, 1, . . . , m − 1 and fT is linear on [xi−1, xi), i =

1, 2, . . . , m with slope (ŷi − ŷi−1)/(xi − xi−1) = (r(µ(i)) − l(µ(i)))/(r(ν(i)) − l(ν(i))) =

β|ν(i)|−|µ(i)|. Hence, the function fT yields a β-adic PL function.
It is straightforward to see that the composition of two β-adic PL functions is also

a β-adic PL function. Hence, the set of β-adic PL functions forms a group under
compositions. We reach the following theorem.
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Theorem 5.10. The topological full group Γβ for an SFT β-shift (Xβ, σ) is realized as
the group of all β-adic PL functions for an SFT β-shift.

6. PL functions for sofic β-shifts

In this section, we will represent the topological full group Γβ for sofic β-shifts as
PL functions on [0, 1). Throughout this section, we assume that (Xβ, σ) is sofic. By
Lemma 2.7, the algebraAβ is finite dimensional. We set Kβ = dimAβ. Let E1, . . . ,EKβ

be the minimal projections ofAβ so that
∑Kβ

i=1 Ei = 1. Then any minimal projection Ei

is of the form Ei = aξ1···ξpi
− aξ1···ξqi

for some pi,qi ∈ Z+. We order E1, . . . ,EKβ
following

the order ϕ(aξ1···ξp1
) < · · · < ϕ(aξ1···ξpKβ

) in R, where ϕ is the unique KMS state on Oβ
for the gauge action. Recall that ρ̂t ∈ Aut(Oβ), t ∈ R/Z denotes the gauge action on
Oβ and N(Dβ,Oβ) denotes the normalizer group of Dβ ⊂ Oβ. Fix u ∈ N(Dβ,Oβ) for a
while. For m ∈ Z and µ ∈ Bn(Xβ), n ∈ N, put

um =

∫
T

ρ̂t(u)e−2π
√
−1mt dt and uµ = S ∗µun, u−µ = u−nS µ.

It is straightforward to see the following lemma.

Lemma 6.1. The operators uµ, u−µ for µ ∈ Bn(Xβ) and u0 are partial isometries in Fβ
such that u is decomposed as the following finite sum:

u =
∑

n finite

∑
µ∈Bn(Xβ)

S µvµ + u0 +
∑

n finite

∑
µ∈Bn(Xβ)

u−µS ∗µ

such that uµDβu∗µ, u
∗
µDβuµ, u−µDβu∗−µ and u∗−µDβu−µ are contained inDβ.

Define a subalgebra F k
β of Fβ for k ∈ Z+ by

F k
β = C∗(S ξEiS ∗η | ξ, η ∈ Bk(Xβ), i = 1, 2, . . . ,Kβ).

We set

supp+(u) = {µ ∈ B∗(Xβ) | uµ , 0}, supp−(u) = {µ ∈ B∗(Xβ) | u−µ , 0}.

Both of them are finite sets. For µ ∈ supp+(u), there exists k+(µ) ∈ Z+ such that
uµ ∈ F

k+(µ)
β . For µ ∈ supp−(u), there exists k−(µ) ∈ Z+ such that u−µ ∈ F

k−(µ)
β . There

exists k0 ∈ Z+ such that u0 ∈ F
k0
β . We then have the following lemma.

Lemma 6.2. Keep the above notation.

(i) For µ ∈ supp+(u) and η ∈ Bk+(µ)(Xβ), i = 1,2, . . . ,Kβ such that u∗µuµ ≥ S ηEiS ∗η , 0,
there uniquely exists ξ ∈ Bk+(µ)(Xβ) such that uµu∗µ ≥ S ξEiS ∗ξ , 0 and

Ad(uµ)(S ηEiS ∗η) = S ξEiS ∗ξ .
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(ii) For µ ∈ supp−(u) and η ∈ Bk−(µ)(Xβ), i = 1, 2, . . . ,Kβ such that u∗−µu−µ ≥ S ηEiS ∗η
, 0, there uniquely exists ξ ∈ Bk−(µ)(Xβ) such that u−µu∗−µ ≥ S ξEiS ∗ξ , 0 and

Ad(u−µ)(S ηEiS ∗η) = S ξEiS ∗ξ .

(iii) For η ∈ Bk0 (Xβ), i = 1, 2, . . . , Kβ such that u∗0u0 ≥ S ηEiS ∗η , 0, there uniquely
exists ξ ∈ Bk0 (Xβ) such that u0u∗0 ≥ S ξEiS ∗ξ , 0 and

Ad(u0)(S ηEiS ∗η) = S ξEiS ∗ξ .

Proof. (i) As uµ ∈ F
k+(µ)
β , it is written uµ =

∑
ξ,η′∈Bk+(µ)(Xβ) S ξaξ,η′S ∗η′ for some aξ,η′ ∈ Aβ.

Suppose that u∗µuµ ≥ S ηEiS ∗η , 0. Hence, S ∗ηS η ≥ Ei. It then follows that

Ad(uµ)(S ηEiS ∗η) = uµS ηEiS ∗ηu
∗
µ

=
∑

ξ,ξ′∈Bk+(µ)(Xβ)

S ξaξ,ηS ∗η S ηEiS ∗ηS ηa∗ξ′,ηS
∗
ξ′

=
∑

ξ,ξ′∈Bk+(µ)(Xβ)

S ξaξ,ηEia∗ξ′,ηS
∗
ξ′ .

Since Ad(uµ)(S ηEiS ∗η) belongs toDβ, we have, for ξ , ξ′,

0 = S ξS ∗ξAd(uµ)(S ηEiS ∗η)S ξ′S ∗ξ′ = S ξaξ,ηEia∗ξ′,ηS
∗
ξ′ ,

so that
Ad(uµ)(S ηEiS ∗η) =

∑
ξ∈Bk+(µ)(Xβ)

S ξaξ,ηEia∗ξ,ηS
∗
ξ .

Since uµu∗µ =
∑
ξ,ζ∈Bk+(µ)(Xβ) S ξaξ,ζa∗ξ,ζS

∗
ξ is a projection, the operators aξ,ηa∗ξ,η are

projections inAβ for all ξ ∈ Bk+(µ)(Xβ). As S ∗ξS ξaξ,ηEia∗ξ′,ηS
∗
ξ′S ξ′ = aξ,ηEia∗ξ′,η, we have

aξ,ηa∗ξ,η · aξ′,ηa
∗
ξ′,η = 0 for ξ , ξ′, so that there uniquely exists ξ ∈ Bk+(µ)(Xβ) such that

aξ,ηa∗ξ,ηEi = Ei for the word η and i. By the identity aξ,ηEia∗ξ,η = aξ,ηa∗ξ,ηEi,

Ad(uµ)(S ηEiS ∗η) = S ξEiS ∗ξ .

(ii) and (iii) are similar to (i). �

Proposition 6.3. For a unitary u ∈ N(Dβ,Oβ), there exists a finite family of partial
isometries uµ, u0, u−µ in Fβ such that u is decomposed in the following way:

u =
∑

n f inite

∑
µ∈Bn(Xβ)

S µuµ + u0 +
∑

n f inite

∑
µ∈Bn(Xβ)

u−µS ∗µ

such that

(1) For any η ∈ Bk+(µ)(Xβ) with S ηEiS ∗η ≤ u∗µuµ, the equality

Ad(S µuµ)(S ηEiS ∗η) = S µS ξEiS ∗ξS
∗
µ

holds for some ξ ∈ Bk+(µ)(Xβ).
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(2) For any η ∈ Bk0 (Xβ) with S ηEiS ∗η ≤ u∗0u0, the equality

Ad(u0)(S ηEiS ∗η) = S ξEiS ∗ξ

holds for some ξ ∈ Bk0 (Xβ).
(3) For any η ∈ Bk−(µ)(Xβ) with S ηEiS ∗η ≤ u∗−µu−µ, the equality

Ad(u−µS ∗µ)(S µS ηEiS ∗ηS
∗
µ) = S ξEiS ∗ξ

holds for some ξ ∈ Bk−(µ)(Xβ).

Therefore, we have the following lemma.

Lemma 6.4. For τ ∈ Γβ, there exists uτ ∈ N(Dβ,Oβ) such that there exists a family
S ν( j)Ei j S

∗
ν( j), S µ( j)Ei j S

∗
µ( j), j = 1, 2, . . . ,m of projections satisfying

(1) uτ =
∑m

j=1 S µ( j)Ei j S
∗
ν( j) such that

(a) S ∗ν( j)S ν( j), S ∗µ( j)S µ( j) ≥ Ei j , j = 1, 2, . . . ,m,

(b)
∑m

j=1 S ν( j)Ei j S
∗
ν( j) =

∑m
j=1 S µ( j)Ei j S

∗
µ( j) = 1.

(2) f ◦ τ−1 = uτ f u∗τ for f ∈ Dβ.

For i = 1, 2, . . . ,Kβ, put

Γ−n (i) = {µ ∈ Bn(Xβ) | S ∗µS µ ≥ Ei}, Γ−∗ (i) =

∞⋃
n=0

Γ−n (i).

For ν = (ν1, . . . , νn) ∈ Γ−n (i) and i = 1, 2, . . . ,Kβ, define the projection inDβ by

ν[i] := S νEiS ∗ν

and define

r(ν[i]) = l(ν) +
1
βnϕ(aξ1···ξpi

)

=
ν1

β
+
ν2

β2 + · · · +
νn

βn +
ξpi+1

βn+1 +
ξpi+2

βn+2 + . . . ,

l(ν[i]) = l(ν) +
1
βnϕ(aξ1···ξqi

)

=
ν1

β
+
ν2

β2 + · · · +
νn

βn +
ξqi+1

βn+1 +
ξqi+2

βn+2 + · · · ,

where Ei = aξ1···ξpi
− aξ1···ξqi

. The following lemma is obvious.

Lemma 6.5. Assume that the generating partial isometries S 0, S 1, . . . , S N−1 are
represented on L2([0, 1]). For ν ∈ Γ−n (i), the projection S νEiS ∗ν is identified with the
characteristic function χ[l(ν[i]),r(ν[i])) of the interval [l(ν[i]), r(ν[i])).
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For ν ∈ Γ−∗ (i) and µ ∈ Γ−∗ ( j) with S νEiS ∗ν · S µE jS ∗µ = 0, define

ν[i] < µ[ j] if r(ν[i]) ≤ l(µ[ j]).

Note that under the condition S νEiS ∗ν · S µE jS ∗µ = 0, the intervals [l(ν[i]), r(ν[i])) and
[l(µ[ j]), r(µ[ j])) are disjoint. Hence, the condition ν[i] < µ[ j] implies that the interval
[l(ν[i]), r(ν[i])) is located on the left-hand side of [l(µ[ j]), r(µ[ j])).

Lemma 6.6. Keep the above notation.

(i) For ν ∈ Γ−n (i) and µ ∈ Γ−k ( j), we have S νEiS ∗ν · S µE jS ∗µ = 0 if and only if
[l(ν[i]), r(ν[i])) ∩ [l(µ[ j]), r(µ[ j])) = ∅.

(ii) For ν( j) ∈ Γ−n j
(i j), j = 1, 2, . . . ,m, we have

∑m
j=1 S ν( j)Ei j S

∗
ν( j) = 1 if and only if

[0, 1) = tm
j=1[l(ν( j)[i j]), r(ν( j)[i j])) is a disjoint union.

(iii) For ν( j) ∈ Γ−n j
(i j), j = 1, 2, . . . ,m such that

∑m
j=1 S ν( j)Ei j S

∗
ν( j) = 1 and ν(1)[i1] <

ν(2)[i2] < · · · < ν(m)[im],

r(ν( j)[i j]) = l(ν( j + 1)[i j+1]), j = 1, 2, . . . ,m.

Definition 6.7. A β-adic table for a sofic β-shift is a matrix

T =

[
µ(1)[i1] µ(2)[i2] · · · µ(m)[im]
ν(1)[i1] ν(2)[i2] · · · ν(m)[im]

]
such that

(a) ν( j) ∈ Γ−∗ (i j), µ( j) ∈ Γ−∗ (i j) for j = 1, 2, . . . ,m.
(b) tm

j=1[l(ν( j)[i j]), r(ν( j)[i j])) =
⋃m

j=1[l(µ( j)[i j]), r(µ( j)[i j])) = [0, 1).

We may assume that

ν(1)[i1] < ν(2)[i2] < · · · < ν(m)[im].

Therefore, we have the following lemma.

Lemma 6.8. For an element τ ∈ Γβ with its unitary uτ =
∑m

j=1 S µ( j)Ei j S
∗
ν( j) ∈ N(Dβ,Oβ)

as in Lemma 6.4, the matrix

Tτ =

[
µ(1)[i1] µ(2)[i2] · · · µ(m)[im]
ν(1)[i1] ν(2)[i2] · · · ν(m)[im]

]
is a β-adic table for a sofic β-shift.

Definition 6.9. (i) An interval [x1, x2) in [0, 1] is said to be a β-adic interval for the
word ν[i] if x1 = l(ν[i]) and x2 = r(ν[i]) for some ν ∈ B∗(Xβ) and i = 1, 2, . . . ,Kβ.

(ii) A rectangle I × J in [0, 1] × [0, 1] is said to be a β-adic rectangle if both
I, J are β-adic intervals for words ν[i], µ[i] such that I = [l(ν[i]), r(ν[i])) and J =

[l(µ[i]), r(µ[i])) and
r(µ[i]) − l(µ[i])
r(ν[i]) − l(ν[i])

= β|ν|−|µ|.
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(iii) For two partitions 0 = x0 < x1 < · · · < xm−1 < xm = 1 and 0 = y0 < y1 < · · · <
ym−1 < ym = 1 of [0, 1], put Ip = [xp−1, xp), Jp = [yp−1, yp), p = 1, 2, . . . ,m. The
partition Ip × Jq, p, q = 1, 2, . . . ,m of [0, 1) × [0, 1) is said to be a β-adic pattern
of rectangles for a sofic β-shift if there exists a permutation σ on {1, 2, . . . ,m}
such that the rectangles Ip × Jσ(p) are β-adic rectangles for all p = 1, 2, . . . ,m.

For a β-adic pattern of rectangles above, the slopes of diagonals sp =

(yσ(p) − yσ(p)−1)/(xp − xp−1), p = 1, 2, . . . ,m are said to be rectangle slopes. Similarly
to Lemma 5.7 for an SFT β-shift, we have the following lemma.

Lemma 6.10. For a β-adic table for a sofic β-shift

T =

[
µ(1)[i1] µ(2)[i2] · · · µ(m)[im]
ν(1)[i1] ν(2)[i2] · · · ν(m)[im]

]
,

there exists a β-adic pattern of rectangles for a sofic β-shift whose rectangle slopes are

β|ν(1)|−|µ(1)|, β|ν(2)|−|µ(2)|, . . . , β|ν(m)|−|µ(m)|.

Similarly to the preceding section, we will define a β-adic version of PL functions
on [0, 1) for a sofic β-shift in the following way.

Definition 6.11. A PL function f on [0, 1) is called a β-adic PL function for a sofic
β-shift if f is a right-continuous bijection on [0, 1) such that there exists a β-adic
pattern of rectangles Ip × Jp, p = 1, 2, . . . ,m, where Ip = [xp−1, xp), Jp = [yp−1, yp), p =

1, 2, . . . ,m with a permutation σ on {1, 2, . . . ,m} such that

f (xp−1) = yσ(p)−1, f−(xp) = yσ(p−1)+1, p = 1, 2, . . . ,m,

where f−(xp) = limh→0+ f (xp − h) and f is linear on [xp−1, xp) with slope
(yσ(p) − yσ(p)−1)/(xp − xp−1) for p = 1, 2, . . . ,m.

Similarly to the preceding section, we have the following proposition.

Proposition 6.12. A β-adic PL function for a sofic β-shift naturally gives rise to a
β-adic pattern of rectangles for a sofic β-shift.

We may directly construct a β-adic PL function fT for a sofic β-shift from a
β-adic table for a sofic β-shift T =

[ ν(1)[i1] ν(2)[i2] ... ν(m)[im]

µ(1)[i1] µ(2)[i2] ... µ(m)[im]

]
as follows. Put x j =

l(ν( j + 1)[i j]), ŷ j = l(µ( j + 1)[i j]), j = 0, 1, . . . , m − 1. Define fT by fT (x j) = ŷ j,
j = 0, 1, . . . , m − 1 and fT is linear on [x j−1, x j), j = 1, 2, . . . , m with slope
(r(µ( j)) − l(µ( j)))/(r(ν( j)) − l(ν( j))) = β|ν( j)|−|µ( j)|. The function fT yields a β-adic PL
function for a sofic β-shift.

It is straightforward to see that the composition of two β-adic PL functions for a
sofic β-shift is also a β-adic PL function for a sofic β-shift. Hence, the set of β-adic PL
functions for a sofic β-shift forms a group under compositions. We reach the following
theorem.

Theorem 6.13. The topological full group Γβ for a sofic β-shift (Xβ, σ) is realized as
the group of all β-adic PL functions for a sofic β-shift.
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7. Classification of the topological full groups Γβ

In this section, we will classify the groups Γβ for SFT β-shifts and sofic β-shifts.
We will first classify Γβ for SFT β-shifts.

1. SFT case:

Proposition 7.1. Suppose that the β-shift (Xβ, σ) is a shift of finite type such that the
β-expansion of 1 is 1 = η1/β + η2/β

2 + · · · + ηn/β
n. Set

Ti = S i−1 for i = 1, . . . , η1,

Tη1+i = Sη1 S i−1 for i = 1, . . . , η2,

Tη1+η2+i = Sη1 Sη2 S i−1 for i = 1, . . . , η3,

...

Tη1+η2+···+ηn−1+i = Sη1 Sη2 · · · Sηn−1 S i−1 for i = 1, . . . , ηn.

Define the C∗-subalgebras Ôβ, D̂β of Oβ by

Ôβ = C∗(Ti; i = 1, 2, . . . , η1 + η2 + · · · + ηn),

D̂β = C∗(TµT ∗µ; µ = (µ1, . . . , µm), µi = 1, 2, . . . , η1 + η2 + · · · + ηn).

Then the C∗-algebras Ôβ and D̂β coincide with Oβ and Dβ, respectively, and are
isomorphic to the Cuntz algebra Oη1+η2+···+ηn and the canonical Cartan subalgebra
Dη1+η2+···+ηn , respectively, that is,

Ôβ = Oβ = Oη1+η2+···+ηn , D̂β =Dβ =Dη1+η2+···+ηn .

Proof. It is direct to see that the operators T1, T2, . . . , Tη1+η2+···+ηn are all isometries.
Then

η1∑
i=1

TiT ∗i =

η1−1∑
j=0

S jS ∗j = 1 − Sη1 S ∗η1
,

η1+η2∑
i=η1+1

TiT ∗i =

η2−1∑
j=0

Sη1 S jS ∗j S ∗η1
= Sη1 (1 − Sη2 S ∗η2

)S ∗η1
,

...

η1+η2+···+ηn∑
i=η1+η2+···+ηn−1+1

TiT ∗i =

ηn−1∑
j=0

Sη1 Sη2 · · · Sηn−1 S jS ∗j S ∗ηn−1
S ∗η1
· · · S ∗η2

S ∗η1

= Sη1 Sη2 · · · Sηn−1 (1 − Sηn S ∗ηn
)S ∗ηn−1

· · · S ∗η2
S ∗η1

= Sη1 Sη2 · · · Sηn−1 S ∗ηn−1
· · · S ∗η2

S ∗η1
.
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It follows that
η1+η2+···+ηn∑

i=1

TiT ∗i

=

η1∑
i=1

TiT ∗i +

η1+η2∑
i=η1+1

TiT ∗i + · · · +

η1+η2+···+ηn∑
i=η1+η2+···+ηn−1+1

TiT ∗i

= 1 − Sη1 S ∗η1
+ Sη1 (1 − Sη2 S ∗η2

)S ∗η1
+ · · · + Sη1 Sη2 · · · Sηn−1 S ∗ηn−1

· · · S ∗η2
S ∗η1

= 1.

Hence, the C∗-algebra Ôβ is isomorphic to the Cuntz algebra Oη1+η2+···+ηn . The
inclusion relation Ôβ ⊂ Oβ is clear. To show the converse inclusion relation Oβ ⊂ Ôβ, it
suffices to prove that the partial isometry Sη1 belongs to the algebra Ôβ. By the equality

ϕ(S ∗η1
Sη1 ) = β − η1 =

η2

β
+
η3

β2 + · · · +
ηn

βn−1 ,

S ∗η1
Sη1 =

η2−1∑
j=0

S jS ∗j +

η3−1∑
j=0

Sη2 S jS ∗j S ∗η2
+ · · ·

+

ηn−1∑
j=0

Sη2 Sη3 · · · Sηn−1 S jS ∗j S ∗ηn−1 · · · S
∗
η3

S ∗η2
,

so that

Sη1 = Sη1 S ∗η1
Sη1

=

η2−1∑
j=0

Tη1+ j+1S ∗j +

η3−1∑
j=0

Tη1+η2+ j+1(Sη2 S j)∗ + · · ·

+

ηn−1∑
j=0

Tη1+η2+···+ηn−1+ j+1(Sη2 Sη3 · · · Sηn−1 S j)∗.

Denote by η0 the empty word. The following set Wβ of the words

Wβ = {(η2, η3, . . . , ηm−1, i) | i = 0, 1, . . . , ηm − 1,m = 1, 2, . . . , n}

are all admissible words of Xβ. By cutting a word in the subwords beginning with η1,
one easily sees that any admissible word of Xβ is decomposed into a product of some
of the words of the following set:

Cβ = {(η1, η2, . . . , ηm−1, j) | j = 0, 1, . . . , ηm − 1,m = 1, 2, . . . , n}.

Hence, any word of Wβ is a product of some of the words of Cβ. This implies that the
operators

Sη2 Sη3 · · · Sηm−1 S j, j = 0, 1, . . . , ηm − 1,m = 1, 2, . . . , n

are products of some of T1,T2, . . . ,Tη1+η2+···+ηn . Therefore, Sη1 is written as a product of
Ti,T ∗i , i = 1, 2, . . . , η1 + η2 + · · · + ηn. This shows that Oβ ⊂ Ôβ. The equalityDβ = D̂β

is direct. �
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The above proposition implies that the SFT β-shift (Xβ, σ) is continuously orbit
equivalent to the full (η1 + η2 + · · · + ηn)-shift (Xη1+η2+···+ηn , σ) [16, 22, 29]. Therefore,
we have the following theorem.

Theorem 7.2. If the β-expansion of 1 is finite such that

1 =
η1

β
+
η2

β2 + · · · +
ηn

βn ,

then the group Γβ is isomorphic to the Higman–Thompson group Vη1+η2+···+ηn .

Corollary 7.3. Let (Xβ, σ) and (Xβ′ , σ) be SFT β-shifts such that their finite β-
expansions of 1 are

1 =
η1

β
+
η2

β2 + · · · +
ηn

βn =
η′1
β′

+
η′2

β′2
+ · · · +

η′n′

β′n
′ ,

respectively. Then the following are equivalent:

(i) the groups Γβ and Γβ′ are isomorphic;
(ii) the Cuntz algebras Oη1+η2+···+ηn and Oη′1+η′2+···+η′n′

are isomorphic;
(iii) η1 + η2 + · · · + ηn = η′1 + η′2 + · · · + η′n′ .

Proof. The implication (iii) implies that (ii) is trivial, and its converse (ii) implies that
(iii) is well known [7, 8]. Assume that the groups Γβ and Γβ′ are isomorphic. By
[19] or more generally [24], the C∗-algebras C∗r (Gβ) and C∗r (Gβ′) of the groupoids Gβ

and Gβ′ associated with their respective shifts (Xβ, σ) and (Xβ′ , σ) of finite type are
isomorphic. Since C∗r (Gβ) = Oβ and C∗r (Gβ′) = Oβ′ , Proposition 7.1 implies (ii), so that
the implication (i) implies that (ii) holds. The implication (iii) implies that (i) is a
direct consequence of the above theorem. �

2. Sofic case:
Assume that the β-shift Xβ is sofic. Put

kβ = min{k ∈ N | Ak =Ak+1}, Kβ = kβ + 1.

Hence, Akβ =Akβ+1 = · · · =Aβ and dimAβ = Kβ. There exists l ∈ N with 0 < l ≤ kβ
such that

aξ1···ξKβ
= aξ1···ξl and hence d(1, β) = ξ1 · · · ξlξ̇l+1 · · · ξ̇Kβ

. (7.1)

Let E1, . . . , EKβ
be the minimal projections ofAβ as in the preceding section, so that

Aβ = CE1 ⊕ · · · ⊕ CEKβ
. (7.2)

Define a labeled graph Gβ over Σ = {0, 1, . . . , N − 1} with vertex set {v1, v2, . . . , vKβ
}

corresponding to the minimal projections E1, . . . , EKβ
in the following way. Define a

labeled edge from vi to v j labeled α ∈ Σ if S ∗αEiS α ≥ E j. We denote by Eβ the edge set
of the labeled graph Gβ with labeling map λ : Eβ −→ Σ. The vertex set {v1, v2, . . . , vKβ

}

is denoted byVβ. LetMβ be the Kβ × Kβ symbolic matrix of Gβ and Mβ the Kβ × Kβ

nonnegative matrix obtained from Mβ by putting all the symbols equal to 1. For an
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edge e ∈ Eβ, denote by λ(e) ∈ Σ and s(e), t(e) ∈ {1, 2, . . . ,Kβ} the letter of the label of
e and the number of the source vertex vs(e) of e and that of the terminal vertex vt(e)
of e, respectively. Define a partial isometry se = Sλ(e)Et(e) for an edge e ∈ Eβ in the
C∗-algebra Oβ. Define the |Eβ| × |Eβ| matrix Bβ = [Bβ(e, f )]e, f∈Eβ with entries in {0, 1}
by

Bβ(e, f ) =

1 if t(e) = s( f ),
0 if t(e) , s( f ).

We have the following lemma (see [31, Section 4]).

Lemma 7.4. The partial isometries se, e ∈ Eβ satisfy the following relations:∑
e∈Eβ

ses∗e = 1, s∗e se =
∑
f∈Eβ

Bβ(e, f )s f s∗f .

Hence, the C∗-algebra C∗(se; e ∈ Eβ) generated by se, e ∈ Eβ is isomorphic to the
Cuntz–Krieger algebra OBβ .

Proof. We see the identities

1 =

Kβ∑
i=1

Ei =

Kβ∑
i=1

N−1∑
α=0

S αS ∗αEiS αS ∗α.

The projection S ∗αEiS α is not zero if and only if there exists e ∈ Eβ such that α = λ(e)
and i = s(e). Hence,

S ∗αEiS α =
∑
e∈Eβ,

α=λ(e), i=s(e)

Et(e),

so that

1 =

Kβ∑
i=1

N−1∑
α=0

∑
e∈Eβ,

α=λ(e), i=s(e)

S αEt(e)S ∗α =
∑
e∈Eβ

ses∗e.

For an edge e ∈ Eβ,

s∗e se = Et(e)S ∗λ(e)Sλ(e)Et(e) = Et(e)

=

N−1∑
α=0

S αS ∗αEt(e)S αS ∗α

=

N−1∑
α=0

S α ·
∑
f∈Eβ,

α=λ( f ), t(e)=s( f )

Et( f ) · S ∗α =
∑
f∈Eβ

Bβ(e, f )s f s∗f . �

Denote by DBβ the canonical Cartan subalgebra of OBβ , which is a C∗-subalgebra
of OBβ generated by the projections se1 · · · sen s∗en

· · · s∗e1
, e1, . . . , en ∈ Eβ.
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Lemma 7.5. Oβ = OBβ andDβ =DBβ .

Proof. Since se = Sλ(e)Et(e), e ∈ Eβ, we have se ∈ Oβ, so that the inclusion OBβ ⊂ Oβ is
obvious. For α ∈ Σ = {0, 1, . . . ,N − 1}, i = 1, 2, . . . ,Kβ, we know that S αEi , 0 if and
only if S ∗αS α ≥ Ei, which is equivalent to the condition that there exists an edge e ∈ Eβ
such that α = λ(e), i = t(e). For i = 1, 2, . . . ,Kβ, take e ∈ Eβ such that α = λ(e), i = t(e).
We then have s∗e se = Et(e) = Ei, so that Ei ∈ OBβ . For α ∈ Σ,

S α =

Kβ∑
i=1

S αEi =
∑

e∈Eβ,α=λ(e)

Sλ(e)Et(e) =
∑

e∈Eβ,α=λ(e)

se,

so that S α ∈ OBβ . We thus have the inclusion Oβ ⊂ OBβ and hence Oβ = OBβ .
We will next show that Dβ = DBβ . We have ses∗e = Sλ(e)Et(e)S ∗λ(e) ∈ Dβ. Suppose

that se1 · · · sen s∗en
· · · s∗e1

∈ Dβ. By the equality

se0 se1 · · · sen s∗en
· · · s∗e1

s∗e0
= Sλ(e0)Et(e0)se1 · · · sen s∗en

· · · s∗e1
Et(e0)S ∗λ(e0) ∈ Dβ,

the inclusion relationDBβ ⊂ Dβ holds by induction. Conversely, suppose that S αEiS ∗α
is not zero. Take e ∈ Eβ such that α = λ(e), i = t(e), so that

S αEiS ∗α = Sλ(e)Et(e)S ∗λ(e) = ses∗e

belongs to DBβ . Suppose next that S µ1···µn EiS ∗µ1···µn
belongs to DBβ and

S µ0 S µ1···µn EiS ∗µ1···µn
S ∗µ0

is not zero. The labeled graph Gβ is left-resolving, which means
that there uniquely exists a finite sequence of edges e1, e2, . . . , en ∈ Eβ for the vertex vi

such that

λ(ep) = µp, t(ep) = s(ep+1) for p = 1, 2, . . . , n − 1,
λ(en) = µn, t(en) = i.

Put j = s(e1), so that

E j ≥ S µ1···µn EiS ∗µ1···µn
, E jS µ1···µn EiS ∗µ1···µn

E j = S µ1···µn EiS ∗µ1···µn
.

Take a unique edge e0 ∈ Eβ such that λ(e0) = µ0, t(e0) = j. Hence, S µ0 E j = se0 . It then
follows that

S µ0 S µ1···µn EiS ∗µ1···µn
S ∗µ0

= S µ0 E jS µ1···µn EiS ∗µ1···µn
E jS ∗µ0

= se0 S µ1···µn EiS ∗µ1···µn
s∗e0
.

As S µ1···µn EiS ∗µ1···µn
∈ DBβ , we have se0 S µ1···µn EiS ∗µ1···µn

s∗e0
∈ DBβ . Thus, the element

S µ0 S µ1···µn EiS ∗µ1···µn
S ∗µ0

belongs to DBβ . By induction, we have Dβ ⊂ DBβ and hence
Dβ =DBβ . �

A nonnegative square matrix B is said to be elementary equivalent to a nonnegative
square matrix M if there exist nonnegative rectangular matrices R and S such that
B = RS and M = S R (see [14]).
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Lemma 7.6. The matrix Bβ is elementary equivalent to the matrix Mβ. Hence,

det(1 − Bβ) = det(1 − Mβ).

Proof. Note that dimAβ = |Vβ| = Kβ. Define a |Eβ| × |Vβ| matrix Rβ and a |Vβ| × |Eβ|

matrix S β as follows.

Rβ(e, i) =

1 if t(e) = vi,

0 otherwise,
S β( j, f ) =

1 if s( f ) = v j,

0 otherwise

for e, f ∈ Eβ, vi, v j ∈ Vβ and i, j = 1, 2 . . . ,Kβ. It is direct to see that

Bβ = RβS β, Mβ = S βRβ

and det(1 − Bβ) = det(1 − Mβ). �

Recall that ϕ stands for the unique KMS state on the C∗-algebra Oβ under the gauge
action. It satisfies the identities

ϕ(aξ1···ξ j ) = β j − ξ1β
j−1 − ξ2β

j−2 − · · · − ξ j−1β − ξ j, j = 1, . . . ,Kβ.

By (7.2), the K0-group K0(Akβ) of the algebra Akβ is generated by the classes of
the minimal projections E1, . . . , EKβ

of Akβ(=Aβ), so that K0(Akβ) is isomorphic to
ZKβ . Since a minimal projection Ei is of the form aξ1···ξpi

− aξ1···ξqi
, the following

correspondence:

[1] ∈ K0(Akβ) −→ (1, 0, 0, . . . , 0) ∈ Z ⊕ βZ ⊕ · · · ⊕ βkβZ,

[aξ1 ] ∈ K0(Akβ) −→ (−ξ1, 1, 0, . . . , 0) ∈ Z ⊕ βZ ⊕ · · · ⊕ βkβZ,

[aξ1···ξ j ] ∈ K0(Akβ) −→ (−ξ j,−ξ j−1, . . . ,−ξ2,−ξ1, 1, 0, . . . , 0) ∈ Z ⊕ βZ ⊕ · · · ⊕ βkβZ

for j = 1, . . . , Kβ yields an isomorphism from K0(Akβ) to Z ⊕ βZ ⊕ · · · ⊕ βkβZ as a
group, which we denote by Φ. By (7.1),

βkβ+1 − ξ1β
kβ − ξ2β

kβ−1 − · · · − ξkββ − ξkβ+1

= βl − ξ1β
l−1 − ξ2β

l−2 − · · · − ξl−1β − ξl,

so that β is a solution of a monic polynomial of degree Kβ. We denote this polynomial
by

βkβ+1 − η1β
kβ − η2β

kβ−1 − · · · − ηkββ − ηkβ+1 = 0.

Then
η1 + η2 + · · · + ηkβ + ηkβ+1 = ξl+1 + ξl+2 + · · · + ξkβ+1 + 1. (7.3)

Lemma 7.7 [13, Lemma 4.8]. The following diagram is commutative:

ZKβ
Mβ // ZKβ

K0(Akβ)
λβ∗ //

Φ
��

K0(Akβ)

Φ
��

Z ⊕ βZ ⊕ · · · ⊕ βkβZ
τ // Z ⊕ βZ ⊕ · · · ⊕ βkβZ
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where λβ∗ is the endomorphism of K0(Aβ) induced from the map λβ : Akβ →Akβ+1
(=Aβ) defined by

λβ(a) =

N−1∑
α=0

S ∗αaS α for a ∈ Aβ

and τ is an endomorphism of Z ⊕ βZ ⊕ · · · ⊕ βkβZ defined by

τ(m0,m1, . . . ,mkβ−1, 0) = (0,m0,m1, . . . ,mkβ−1), mi ∈ Z,

τ(0, . . . , 0, 1) = (ηkβ+1, ηkβ , . . . , η2, η1).

Define the (kβ + 1) × (kβ + 1) matrix

Lβ =


ηkβ+1

1 ηkβ
. . .

...
1 η1


where the blanks denote zeros. The matrix Lβ acts from the left-hand side
of the transpose (m0,m1, . . . ,mkβ)

t of (m0,m1, . . . ,mkβ), so that it represents the
homomorphism τ. The characteristic polynomial of Lβ is

det(t − Lβ) = tkβ+1 − η1tkβ − η2tkβ−1 − · · · − ηkβ t − ηkβ+1

and the number β is one of the eigenvalues of the transpose of Lβ with eigenvector
[1, β, β2, . . . , βkβ]. Hence, we have the following corollary.

Corollary 7.8. det(1 − Bβ) = det(1 − Lβ) = 1 − η1 − η2 − · · · − ηkβ − ηkβ+1 < 0.

Proposition 7.9. There exists an isomorphism Φ from the Cuntz–Krieger algebra OBβ
onto the Cuntz algebraOξ1+···+ξkβ+1+1 such thatΦ(DBβ) =Dξ1+···+ξkβ+1+1. Therefore, their
topological full groups ΓBβ and Γξ1+···+ξkβ+1+1 are isomorphic.

Proof. We have already shown that Oβ is isomorphic to Oξ1+···+ξkβ+1+1 by [13]. By the
preceding lemma, we know that Oβ = OBβ andDβ =DBβ , so that OBβ is isomorphic to
Oξ1+···+ξkβ+1+1. By the preceding lemma with (7.3),

det(1 − Bβ) = 1 − η1 − η2 − · · · − ηkβ − ηkβ+1

= 1 − (ξl+1 + · · · + ξkβ+1 + 1).

Hence, the topological Markov shift (XBβ , σ) is continuously orbit equivalent to the
full shift (Xξl+1+···+ξkβ+1+1, σ) by [17] (see [20]). Thus, their topological full groups ΓBβ
and Γξl+1+···+ξkβ+1+1 are isomorphic. �

Theorem 7.10. Suppose that (Xβ, σ) is sofic such that the β-expansion of 1 is

d(1, β) = ξ1 · · · ξl
·

ξl+1 · · ·
·

ξk+1.
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Then there exists an isomorphism Φ from Oβ to Oξl+1+···+ξk+1+1 such that Φ(Dβ) =

Dξl+1+···+ξk+1+1. Therefore, their topological full groups Γβ and Γξl+1+···+ξk+1+1 are
isomorphic. This implies that the group Γβ is isomorphic to the Higman–Thompson
group Vξl+1+···+ξk+1+1.

3. Nonsofic case:

Theorem 7.11. If 1 < β ∈ R is not ultimately periodic, then the group Γβ is not
isomorphic to any of the Higman–Thompson groups Vn, 1 < n ∈ N.

Proof. By Proposition 3.4, the groupoid Gβ is an essentially principal, purely infinite,
minimal groupoid. Suppose that Γβ is isomorphic to one of the Higman–Thompson
groups Vn for some n ∈ N. Since Vn is isomorphic to the topological full group Γn

of the groupoid Gn for the full n-shift, by Matui [24], the groupoid Gβ is isomorphic
to Gn. By Renault [28, Theorem 4.11], there exists an isomorphism Φ from C∗r (Gβ)
to C∗r (Gn). The C∗-algebra C∗r (Gβ) is isomorphic to Oβ, and C∗r (Gn) is isomorphic to
the Cuntz algebra On. Since β is not ultimately periodic, we know that K0(Oβ) = Z by
[13, Theorem 4.12], which is a contradiction to the fact that K0(On) = Z/(1 − n)Z. �
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