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The principal substrates for colonic bacterial growth are dietary carbohydrates which have 
escaped digestion in the upper gastrointestinal tract. These may be starches, dietary fibres, 
other non-absorbable sugars, sugar alcohols and oligosaccharides. In the large intestine, 
saccharolytic bacteria are able to metabolize carbohydrates for increased energy and 
growth with short-chain fatty acids (SCFA) and a variety of other metabolites, such as the 
electron-sink products lactate, pyruvate, ethanol, H, and succinate, being produced. The 
majority of human large intestinal micro-organisms, have a strictly anaerobic metabolism, 
whilst numbers of facultative anaerobes are many orders of magnitude lower than those of 
the obligate anaerobes. Of the culturable flora, numerically predominant anaerobes are 
Gram-negative rods belonging to the genus Bacteroides. Other groups which have hitherto 
been identified as quantitatively significant include bifidobacteria, clostridia, eubacteria, 
lactobacilli, Gram-positive cocci, coliforms, methanogens and dissimilatory sulphate- 
reducing bacteria. Generally, the various components of the large intestinal microbiota may 
be considered as exerting either pathogenic effects or they may have potential health- 
promoting values. Bifidobacteria and lactobacilli are considered to belong to the latter 
group. Bacteria in the colon respond largely to the available fermentable substrate, and 
there is currently some interest in the use of diet to specifically increase groups perceived 
as health promoting. Non-digestible oligosaccharides seem to have this (prebiotic) 
potential. In particular, those that contain fructose are well fermented by bifidobacteria 
such that their numbers become predominant in the faeces of volunteers fed on the 
oligosaccharides. Whilst dietary modification of the microflora composition is therefore 
possible, it remains to be determined whether such effects have any positive health 
attributes. New molecular-based methodologies for the improved detection of gut bacteria, 
including species that are non-culturable by conventional methodology, will give increased 
precision for understanding the effects of diet on the colonic microbiota composition. 

GROWTH AND ACTIVITIES O F  T H E  MICROFLORA O F  T H E  HUMAN 
GASTROINTESTINAL TRACT 

In comparison with the colon, the stomach and upper small intestine are regarded as 
essentially sterile environments. The presence of gastric acid ensures that the stomach 
provides a hostile environment for bacterial growth, with most bacteria not being able to 
survive an environment with a pH below 4.0 (Giannella et al. 1972). Usually, the total 
bacterial count is below 103/g contents. Whilst food intake probably offers some buffering 
capacity that allows the passage of micro-organisms through to the small intestine, those 
that inhabit the human stomach for any significant period of time require specialized 
defence mechanisms to do so. For example, Helicobacter pylori primarily colonizes the 
mucosal layer that overlies the gastric epithelium (Hazel1 et al. 1986; Rathbone & Heatley, 
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1992). To do so, it has been hypothesized that the intense urease (EC 3.5.1.5) activity 
associated with this micro-organism breaks down the urea in gastric juice to result in the 
generation of a microenvironment containing NH, that surrounds the bacterium and offers 
increased protection (Goodwin et al. 1986). Moreover, the bacterium is highly motile, with 
six to eight polar flagellae at the terminal end of the cell. It is thought that H. pylori uses 
its motility to invade the mucus layer of the stomach and thereafter adheres to epithelial 
cells (Lee & Hazell, 1988; Marshall, 1994). 

In the human small intestine, bacterial counts increase from about lo4 per ml contents 
to about 106/107 at the ileo-caecal region (Gorbach et al. 1967). The transit time of gut 
contents in the small bowel as well as intestinal secretions and physicochemical variables 
such as pH and Eh, all contribute towards the type of microflora that develops (Macfarlane 
et al. 1995). The upper small gut is dominated by facultatively anaerobic and aerotolerant 
bacteria such as streptococci, staphylococci and lactobacilli, with bacterial numbers 
showing a progressive increase both in terms of numbers and degree of anaerobiosis (Hill, 
1990). Although lactobacilli and streptococci tend to predominate in the terminal regions 
of the small intestine, there is a relatively high proportion of bacteroides and enterobacteria. 

In comparison to other regions of the gastrointestinal tract, the human large intestine is 
an extremely complex microbial ecosystem. Transit time slows markedly in the colon and 
can range from 12-70 h (Cummings, 1978). Moreover, pH is more neutral and appropriate 
for bacterial growth. Bacterial numbers in the human large intestine are in the region of 
1011/1012 for every gram of gut contents. A number of different bacterial groups have been 
described as comprising the endogenous flora of the large intestine; these include 
bacteroides, bifidobacteria, clostridia, eubacteria, lactobacilli, fusobacteria, ruminococci, 
peptococci, peptostreptococci, streptococci, coliforms, methanogens and dissimilatory 
sulphate-reducing bacteria (Macfarlane & Cummings, 1991). The principal substrates for 
bacterial growth are dietary carbohydrates which have escaped digestion in the upper 
gastrointestinal tract, although there is also a contribution from proteins and amino acids, 
as well as endogenously produced carbohydrates and glycoproteins. 

Fig. 1 gives a breakdown of available substrates for the colonic microbiota. Resistant 
starch is often thought of as that fraction of the total starch present in diet which is not 
hydrolysed by pancreatic amylases. However, this starch can be metabolized by bacterially 
produced enzymes. Studies in vitro with faeces have demonstrated that colonic bacteria can 
ferment starch to form various end products, e.g. SCFA, with butyrate being suggested as 
clinically significant, and gases. The major starch degraders in the colon are the 
bacteroides, bifidobacteria and eubacteria (Englyst & Macfarlane, 1986). 

Non-starch polysaccharides (NSP) constitute a significant proportion of the standard 
Western diet. Current estimates indicate that up to 18 g NSPld may be available for 
fermentation (Bingham et al. 1990). NSP consists of plant-cell-wall materials such as 
celluloses, hemicelluloses, pectins and gums. The degree of their fermentability by colonic 
bacteria depends on the chemical form of NSP. For example, lignified celluloses and bran 
are relatively inaccessible, whilst pectins and guar gum are readily fermented (Gibson et al. 
1990). 

Many simple sugars such as lactose, raffinose and stachyose are able to reach the colon 
(Cummings & Macfarlane, 1991). In addition some food additives and sugar alcohols, for 
example sorbitol and xylitol, are not digested (Calloway & Murphy, 1968; Tadesse et al. 
1980). The disaccharide lactulose which is used therapeutically, can serve as an efficient C 
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and energy source for the growth of colonic bacteria (Cummings & Macfarlane, 1991). 
Currently, a range of synthetic carbohydrates are also appearing in the typical Western diet. 
These include methylcellulose, carboxymethylcellulose, ethylcellulose and polydextrose. 
Such compounds can be variably fermented (Figdor & Bianchine, 1983; Fritz et al. 1985). 

As well as growth substrates provided by the diet, the host is itself capable of producing 
fermentable materials. These include glycoproteins (e.g. mucins) and other polysaccharides 
(e.g. chondroitin sulphate). Studies from in v i m  incubations have indicated that the gut 
microflora is able to rapidly metabolize endogenously produced substances. The important 
genera in this respect are thought to be bifidobacteria, clostridia, ruminococci and some 
bacteroides (Hoskins & Boulding, 1981; Tsai el al. 1992; Quigley & Kelly, 1995). 

A wide variety of proteinaceous materials enter the colon and are utilized by proteolytic 
species of gut bacteria (Macfarlane & Macfarlane, 1995). These include elastin, collagen 
and albumins as well as bacterial protein released following lysis. Pancreatic enzymes are 
another source of N. Bacteroides and clostridia are among the main protease-producing 
genera in the colon. 

The cumulative utilization of various substrates by anaerobic bacteria in the large 
intestine is the process of fermentation. Because of the diversity and metabolic capabilities 
of the microflora, gut fermentation is a complicated process. In most cases, the metabolic 
end products excreted by one individual species serve as a growth substrate for another. The 
most numerous, as well as the most versatile, polysaccharide utilizers in the colon belong 
to the Bacteroides genus. Other bacteria able to grow on carbohydrates are saccharolytic 
species belonging to genera BiJidobacterium, Ruminococcus, Eubacterium, Lactobacillus 
and Clostridium (Hudson & Marsh, 1995). 

The principal end products of fermentation are the SCFA acetate, propionate and 
butyrate (Cummings, 1981, 1995). A number of gases are also produced, which include H,, 
H2S, CO, and CH, (Levitt et al. 1995). Fermentation intermediates produced in the colon 
include ethanol, lactate, succinate and pyruvate and may be further fermented to SCFA. In 
addition to the major products which arise from fermentation, bacteria are also able to 
obtain energy for growth and the maintenance of cellular function (Fig. 1). 

HEALTH A N D  DISEASE ASPECTS OF COLONIC BACTERIOLOGY 

The end products of the colonic fermentation have varying effects on host health. SCFA 
may be absorbed for increased energy gain, whilst certain bacterial species may reduce gas 
distension problems. On the contrary, the accumulation of proteolytic end products such as 
NH,, amines and phenolic compounds may potentially have deleterious effects. Table 1 
gives examples of how the gut microbiota and its functions may be perceived in terms of 
either health-promoting or harmful effects. For obvious reasons, there is some interest in 
modulation of the gut flora such that the former activities become dominant. This is by no 
means a new concept, and had its origin with the early work of Metchnikoff (1907) who 
advocated that the lactic microflora of the gut played an important role in disease 
prevention. Conversely, Metchnikoff (1 907) also recognized the pathological role of certain 
components of the large gut. More recent years have seen an escalation in the use of 
probiotics both as live microbial additives to susceptible food products such as fermented 
milks or as preserved forms, usually freeze-dried (‘over the counter’). 

Probiotics are defined as ‘live microbial feed supplements which beneficially affect the 
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Table 1. Examples of potentially pathogenic and health-promoting consequences of the 
large intestinal fermentation" 

Pathogenic or harmful effects 

Intestinal putrefaction Maintenance of homeostasis 
Tissue invasion Production of vitamins 
Potentially carcinogenic Metabolism of procarcinogens 
Toxin production Stimulation of immunity 
Cytotoxicity Improved energy yield 
Diarrhoea andor constipation Lower gas distension 
Inflammatory bowel disease Production of butyrate 
Site of gut infections Inhibition of invading species 
Liver damage Metabolism of xenobiotic compounds 
Antibiotic-associated disease Reduction of translocation 

Health-promoting or beneficial effects 

* For further reading, see Rowland (1988); Gilliland (1990); Gorbach (1990); Cummings & Macfarlane 
(1991); Macfarlane & Cummings (1991); Fuller (1992); Gibson & Roberfroid (1995); Roberfroid et al. (1995). 

host animal by improving its intestinal microbial balance' (Fuller, 1989). As such, 
probiotics are proposed as suitable additives from both the animal and human perspectives. 
There is a wealth of data on the use and development of probiotics (for examples, see 
Fuller, 1992, 1994; Goldin & Gorbach, 1992; Gibson, 1994; Tannock, 1995). Purported 
beneficial aspects that have been associated with the administration of probiotics are 
summarized in Table 2. Despite these claims, probiotics are viewed with some scepticism 
by certain areas of the scientific and medical communities. Often this is unjustified. 
However, poorly controlled studies, the possibility that they were not done blind and the ad 
hoc choice of probiotic micro-organisms have not helped. One problem is that survival of 
the probiotics, particularly when the colon is the target organ, may be questionable. In 
human subjects, because of their perceived health-promoting status, lactobacilli, 
bifidobacteria and streptococci/enterococci are all commonly used as probiotics. In order 
to target the colon, the bacteria are confronted by a number of physical and chemical 
barriers in the gastrointestinal tract. These include gastric acid and small intestinal 
secretions such as bile acids. Targeting of the large gut may not be a great problem, 
however, as strain selection should be carried out with appropriate resistant properties 
considered. In this regard Pochart et al. (1992) showed that bifidobacteria given in an oral 
feed could be recovered from the ileo-caecal region of the gut. Moreover, these organisms 
can be recovered from faeces after feeding (Bouhnik et al. 1992). 

For optimum effectiveness the probiotic(s) would need to establish and become active in 
the large gut. However, the microbial addition is likely to be in a compromised state, 
because of adverse conditions higher in the gastrointestinal tract (e.g. gastric acidity, bile 
secretions, peristalsis). This would make its effective survival more difficult. Moreover, the 
bacteria would need to compete for nutrients and colonization sites with a previously well- 
established complex microbiota. It may be optimistic to expect dramatically positive 
results, unless the added strain has been selected, or engineered, to overcome these 
difficulties. 

With the consideration that many potentially health-promoting bacteria, such as 
bifidobacteria and lactobacilli, are already resident in the human colon we have introduced 
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Table 2. Purported beneficial aspects associated with pribiotics* 

Type of effect 

Reductinn nf large gut carcinogenesis 
Reduction of cholesterol levels 
Increased lactose digestion 
Relief from constipation 
Stimulation of immune function 
Enhanced phagocytosis 
Improved bowel motility 
Treatment and prevention of traveller’s diarrhoea 
Improved colonization resistance in infants 
Reduction of symptoms associated with rotaviral infections 
Modulation of the host response to infection 

* For further reading, see Gilliland & Speck (1977); Friend et al. (1982); Gilliland & Kim (1982); Graf 
(1983); Reddy et al. (1983); Gilliland et al. (1985); McGroaty et al. (1988); Conway (1989); Fuller (1989, 1992, 
1994); Lin et al. (1989); Halpem etal.  (1991); Huis In’t Veld & Havenaar (1991); Isolauri et al. (1991); Goldin 
& Gorbach (1992); Perdigon & Alvarez (1992); Gibson (1994); Saavedra et at. (1994); Sanders (1994); Tannock 
(1995); Gibson et al. (1996). 

the prebiotic concept (Gibson & Roberfroid, 1995). A prebiotic is a ‘non-digestible food 
ingredient that beneficially affects the host by selectively stimulating the growth andor 
activity of one or a limited number of bacteria in the colon, that can improve the host 
health.’ For a food ingredient to be classified as a prebiotic, it must: 
(1) neither be hydrolysed, nor absorbed in the upper part of the gastrointestinal tract; 
(2) be a selective substrate for one or a limited number of potentially beneficial bacteria 
commensal to the colon, e.g. bifidobacteria, lactobacilli, which are stimulated to grow 
and/or are metabolically activated; 
(3) consequently, be able to alter the colonic microflora towards a healthier composition. 

Any food ingredient that enters the large intestine is a candidate prebiotic. However, to 
be effective, selective fermentation by the colonic microbiota is required. This may occur 
with non-digestible complex carbohydrates, some peptides and proteins, as well as certain 
lipids. Because of their chemical structure, these compounds are not absorbed in the upper 
part of the gastrointestinal tract. However, at present, most promise has been demonstrated 
with non-digestible oligosaccharides. 

NON-DIGESTIBLE OLIGOSACCHARIDES AS PREBIOTICS 

An oligosaccharide is characterized by the number and type of its glycosyl moieties. There 
are usually between two and twenty monomeric units in the chain, which may be either 
linear or branched. The molecular weight is usually below 3500 (Roberfroid et al. 1993). 
Many oligosaccharides are readily soluble, have a slightly sweet taste and occur naturally 
in plants that form a significant part of the typical Western diet (e.g. chicory (Chicoriurn 
intybus), onion, soyabean, Jerusalem artichoke (Helianthus tuberosus), asparagus 
(Asparagus oflcinalis)). Oligosaccharides that are not hydrolysed by digestive enzymes in 
the upper gastrointestinal tract and, therefore, reach the colon intact, are attracting interest 
as prebiotics. The average Westem-style diet contains below 10 g fructo-oligosaccharides/d 
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Fig. 2. Chemical structures of sucrose and various fructo-oligosaccharides. G, glucose; F, fructose. 

(Van Loo et aZ. 1995). Non-digestible oligosaccharides include those that contain fructose, 
xylose, soyabean, galactose and maltose (Rumney & Rowland, 1995; for a review of the 
physiological functions of mono- and oligosaccharides, see Oku, 1994). 

The feeding of 50 g galacto-oligosaccharidesfl to rats with a human-type microflora has 
been shown to significantly increase populations of bifidobacteria and lactobacilli, while 
decreasing enterobacteria (Rowland & Tanaka, 1993), indicating their prebiotic potential. 
An important adjunct to this research was that certain biomarkers associated with colon 
cancer risk were reduced on administration of the oligosaccharides. The feeding of fructo- 
oligosaccharides in conjunction with tyrosine and tryptophan, to rats, showed a similar 
potential in that concentrations of p-cresol, a purported tumour promoter, were reduced 
(Hidaka et al. 1986). Preferred growth of bifidobacteria, during the fermentation of 
transgalactosylated oligosaccharides has been confirmed by Tanaka et al. (1983). 

Oligosaccharides that contain fructose have been the subject of a recent investigation 
that confirms their classification as prebiotics. Chemically, fructo-oligosaccharides are 
short- and medium-length chains of p-D-fructans in which fructosyl units are bound by a 
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p-(2-1) glycosidic linkage (Fig. 2). Their synthesis in plant cells starts by the transfer of a 
fructosyl moiety between two sucrose molecules (Edelman & Dickerson, 1966), some of 
these molecules have a glucose unit as the initial moiety. The p-(2-1) glycosidic bond of 
fructo-oligosaccharides, including the first glucose-fructose bond, is not hydrolysed by 
mammalian digestive enzymes (Rumessen et al. 1990). However, they are fermented by 
bacteria in the colon. 

The fermentability of various dietary components has been compared in vitro using 
incubations of mixed faecal bacteria, with predominant groups in faeces enumerated using 
selective growth media (Wang & Gibson, 1993). The enhanced abilities of bifidobacteria to 
grow on fructo-oligosaccharides in comparison with other carbohydrates was 
demonstrated. Generally, the other dietary carbohydrates tested exerted a more general 
effect on overall bacterial growth. Moreover, when bifidobacteria grew on the fructo- 
oligosaccharides, they did so at the expense of potential pathogens such as bacteroides, 
clostridia or coliforms, that were maintained at low levels. Such a high specificity of 
bifidobacteria for these oligosaccharides is likely to be due to the production of appropriate 
enzymes involved in their metabolism. Bifidobacteria are thought to produce relatively 
large amounts of p-fructosidase which is selective for p-( 1-2) glycosidic bonds present in 
these oligosaccharides (De Vries & Stouthamer, 1967). 

These in vitro results have been confirmed using a three-stage continuous-culture model 
of the large intestine (the bifidogenic effect was enhanced during conditions that stimulated 
the proximal colon) and selected pure cultures of gut bacteria (Gibson & Wang, 1994a,b). 

More importantly, a human volunteer trial was instigated to assess the bifidogenic effect 
of fructo-oligosaccharides (Gibson et al. 1995). Healthy volunteers were given a strictly 
controlled diet supplemented with either fructo-oligosaccharides or a placebo (sucrose). At 
a feeding concentration of 15 g/d, a statistically significant increase in bifidobacteria 
occurred, whilst bacteroides, fusobacteria and clostridia all decreased. Other bacteria tested 
(total aerobes, total anaerobes, lactobacilli, coliforms and Gram-positive cocci) remained 
more or less unchanged. A similar effect was recorded when either inulin (average degree 
of polymerization 10) or oligofructose (average degree of polymerization 4) was used as 
the test carbohydrate. Bacteroides was the numerically predominant genus on sucrose, 
whilst on the fructo-oligosaccharides, bifidobacteria became more predominant. A further 
study using 8 g fructo-oligosaccharides/d has given similar results (E. Menne, personal 
communication). 

Clearly, therefore, the potential to manipulate the composition of the human colonic 
microbiota, through dietary prebiotics, is feasible. An unpublished study (X. Wang and G. 
R. Gibson, unpublished results) has shown that the addition of fructo-oligosaccharides to 
the uncontrolled diet of two volunteers also caused a specific increase in bifidobacteria in 
faeces. However, bearing in mind the types of foods that have high fructo-oligosaccharide 
contents (Gibson et al. 1994), it is probably not realistic to advocate increased intake to the 
levels required for effective flora manipulation. It is probably more feasible to add purified 
forms of the oligosaccharides to commonly ingested foods such as dairy products, biscuits 
or breakfast cereals. However, to put these data into perspective, the following research is 
required. 

Detailed and accurate analysis of the identity of gut micro-organisms 

Interesting results on the potential applications of both pro- and prebiosis have arisen. 
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However, these are limited by confines of traditional gut microbiological methodologies 
which are invariably based on phenotypic (e.g. morphological, biochemical) properties of 
the organisms. Phenotypic approaches for bacterial identification are often unreliable (for 
example, due to poor test reproducibility, metabolic plasticity of organisms) and lack 
resolution. Consequently, these approaches are inadequate for the reliable qualitative and 
quantitative monitoring of gut microbial population fluctuations and/or variations. An 
additional problem is that traditional cultivation-based methods may result in 
underestimations of the microbiota diversity. For instance, it is now recognized that 
significant proportions of microbes occurring in most natural habitats (e.g. marine 
sediments, soil, sewage) cannot be cultivated, therefore elude isolation and are inaccessible 
to phenotypic identification procedures. It is likely that this problem also exists in the large- 
gut ecosystem and, therefore, to reliably assess the efficacy of dietary intervention, for 
example using prebiotics, more reliable and high precision approaches are needed to 
monitor induced population variations. A solution to this problem lies in the application of 
modern high-resolution molecular-genetic techniques. In recent years microbial 
characterization has undergone a revolution with the advent of 16s rRNA (or gene) 
sequence analysis (Woese, 1987). This genetic marker is currently the most powerful 
means for determining the interrelationships of micro-organisms and their phylogenetic 
characterization (including identification). In addition, the high specificity and cumulative 
nature of rRNA sequence data is revolutionizing the discovery and recognition of new 
biodiversity (Stahl, 1993). Furthermore, by utilizing nucleic acids derived directly from 
‘natural communities’ combined with polymerase-chain reaction (cloning strategies) even 
non-culturable micro-organisms become accessible to characterization and/or identification 
(Ward et al. 1992; Amann et al. 1995; Snel et al. 1995). There is little doubt that the extent 
of microbial diversity within the human (and animal) gut is currently grossly under- 
estimated. Over the next few years 16s rRNA sequence analysis will greatly advance our 
knowledge of the true genetic diversity of the gut microbiota including organisms which 
evade traditional identification, due to either a lack of taxonomic resolution andlor non- 
culturability. 

A second major benefit of rRNA sequence data is its utility in gene-probe development. 
rRNA gives rise to ‘sequence idiosyncrasies’ or ‘sequence signatures’ which are 
characteristic of different taxa (e.g. from species to generic or suprageneric groups). Such 
sequences can be exploited for the design of characteristic hybridization DNA 
oligonucleotides and/or probes to facilitate identification at different levels within the 
taxonomic hierarchy (Ward et al. 1992; Amann et al. 1995). A variety of probing strategies 
have been developed, such as in situ microscopy-based fluorescent hybridization probing 
or quantitative dot blot hybridizations. These could be applied to the gut microbiota (from 
either ‘natural’ or ‘model systems’) and improve qualitative and quantitative population 
monitoring. Although such probing technologies have been extensively applied to some 
natural ecosystems (for a review of the literature, see Amann et al. 1995), their use in gut 
microbiology to date is limited (Langendijk et al. 1995). Clearly, before such techniques 
are routinely used in gut microbiological applications, the fidelity and efficacy of such 
methods need to be rigorously evaluated. There is little doubt, however, that the potential 
benefits of such technologies in various fields of gut microbiology (including prebiotic 
research) are enormous. 

https://doi.org/10.1079/PNS19960087 Published online by Cambridge University Press

https://doi.org/10.1079/PNS19960087


908 G .  R. GIBSON AND OTHERS 

Table 3 .  Health-promoting properties associated with bijidobacteria * 
Inhibition of the growth of pathogens, either by acid formation or anti-microbial production 
Immunomodulation 
Reduce triacylglycerol and cholesterol levels 
Produce vitamins, mainly of the B group 
Reduce blood NH, concentrations, by protonation to NH4+ 
Prevent translocation 
Restoration of the normal gut flora after anti-microbial therapy 
Produce digestive enzymes, e.g. casein phosphatase and lysozyme (EC 3.2.1.17) 
Reduce antibiotic-associated side effects 
Anti-tumour properties 

* For further reading, see Nishizawa (1960); Liescher (1961); Minagawa (1970); Kohwi et al. (1978); 
Mizutani & Mitsuoka (1980); Kawase (1982); Rasic (1983); Hansen (1985); Korshunov et al. (1985); Sekine 
et al. (1985); Yamazaki et al. (1985); Bezkorovainy & Miller-Catchpole (1989); Hughes & Hoover (1991); 
Gibson & Wang (1994~); Gibson et al. (1995). 

The need to determine whether dietary modulation of the gut microbiota composition has 
a health advantage 

The potentially positive attributes of bifidobacteria (Table 3 )  indicate that they ought to 
benefit health. However, cooperation between bacteriologists, clinicians, dietitians and 
immunologists is required. Possible areas of medical interest include systemic areas in 
which gut flora manipulation may be of significance, such as coronary heart disease, 
vitamin production and the prevention of bacterial translocation. Localized intestinal 
pathologies such as gastrointestinal infections, colon cancer and inflammatory disorders 
may be more appropriately managed using flora manipulation. In this respect, May et al. 
(1995) have reported that the feeding of oligosaccharides (containing fructose and xylose) 
to mice, suppressed the growth of a challenge from Clostridium dificile and provided 
protection from intestinal tissue damage. However, the most promising potential probably 
lies in optimal nutrition of the healthy population, and emphasizes the role that the 
functional food and/or nutraceutical concept has in colonic microbiology. 
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