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Abstract

General three-point quadrature formulas for the approximate evaluation of an integral
of a function f over [0, 1], through the values f (x), f (1/2), f (1 − x), f ′(0) and f ′(1),
are derived via the extended Euler formula. Such quadratures are sometimes called
“corrected” or “quadratures with end corrections” and have a higher accuracy than the
adjoint classical formulas, which only include the values f (x), f (1/2) and f (1 − x). The
Gauss three-point, corrected Simpson, corrected dual Simpson, corrected Maclaurin
and corrected Gauss two-point formulas are recaptured as special cases. Finally, sharp
estimates of error are given for this type of quadrature formula.
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1. Introduction

The objects of interest in this paper are quadratures of the form∫ 1

0
f (t) dt ≈ w(x) f (x) + (1 − 2w(x)) f (1/2) + w(x) f (1 − x).

Some of the most famous quadrature rules belong to this group: the Simpson rule, the
dual Simpson rule, the Maclaurin rule and even the Gauss two-point formula (the case
where w(x) = 1/2). These formulas are accurate for all polynomials of order at most
three and have been studied previously by the authors [5].

This paper is a continuation and simultaneously a generalization of our previous
results. The aim is to derive three-point quadrature formulas which are accurate for
all polynomials of order at most five. What might be considered as a downside is
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that these formulas will contain values of the first derivative at the end points of the
interval. Such quadratures are sometimes called “corrected” or “quadratures with end
corrections” [8, 11].

The main tool used here is the extended Euler formula, obtained by Dedić et al. [2]:
if f : [a, b]→ R is such that f (n−1) is continuous and of bounded variation on [a, b] for
some n ≥ 1, then, for every y ∈ [a, b],

1
b − a

∫ b

a
f (t) dt = f (y) −

n−1∑
k=1

(b − a)k−1

k!
Bk

( y − a
b − a

)
[ f (k−1)(b) − f (k−1)(a)]

+
(b − a)n−1

n!

∫ b

a

[
B∗n

( y − t
b − a

)
− Bn

( y − a
b − a

)]
d f (n−1)(t),

(1.1)

where Bk(t) is the kth Bernoulli polynomial and B∗k(t) = Bk(t − btc), t ∈ R.
We recall some basic properties of Bernoulli polynomials. Bernoulli polynomials

Bk(t) are uniquely determined by

B′k(t) = kBk−1(t); Bk(t + 1) − Bk(t) = ktk−1, k ≥ 0; B0(t) = 1.

For the kth Bernoulli polynomial, we have

Bk(1 − t) = (−1)kBk(t), t ∈ R, k ≥ 1. (1.2)

The kth Bernoulli number Bk is defined by Bk = Bk(0). From (1.2), it follows that
for k ≥ 2, Bk(1) = Bk(0) = Bk. Note that B2k−1 = 0, k ≥ 2, and B1(1) = −B1(0) = 1/2.

The B∗k(t) are periodic functions of period 1 and are related to the Bernoulli
polynomials by B∗k(t) = Bk(t), 0 ≤ t < 1. The function B∗0(t) is a constant equal to 1,
while B∗1(t) is a discontinuous function with a jump of −1 at each integer. For k ≥ 2,
B∗k(t) is a continuous function. Further details of the Bernoulli polynomials are given
by Abramowitz and Stegun [1] and Krylov [7].

2. Main results

Let x ∈ [0, 1/2) and let f : [0, 1]→ R be such that f (n−1) is continuous and of
bounded variation on [0, 1] for some n ≥ 1. Take y = x, y = 1/2, y = 1 − x in (1.1),
multiply by w(x), 1 − 2w(x), w(x), respectively, and add. We obtain∫ 1

0
f (t) dt = w(x) f (x) + (1 − 2w(x)) f (1/2) + w(x) f (1 − x) − Tn−1(x)

+
1
n!

∫ 1

0
Fn(x, t) d f (n−1)(t),

(2.1)

where, for t ∈ R,

Tn−1(x) =

n−1∑
k=1

Gk(x, 0)
k!

[ f (k−1)(1) − f (k−1)(0)],

Gn(x, t) = w(x)[B∗n(x − t) + B∗n(1 − x − t)] + (1 − 2w(x))B∗n(1/2 − t),

Fn(x, t) = Gn(x, t) −Gn(x, 0).
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The functions Gn have the following properties:

Gn(x, 1 − t) = (−1)nGn(x, t), t ∈ [0, 1], (2.2)
∂Gn(x, t)

∂t
= −nGn−1(x, t). (2.3)

Further, we have G2k−1(x, 0) = 0 for k ≥ 1, and so F2k−1(x, t) = G2k−1(x, t). Note that
this is independent of the weight w(x). On the other hand, in general G2k(x, 0) , 0.

In order to obtain from (2.1) the highest accuracy quadrature formula which at the
same time does not include derivatives in the quadrature, the condition G2(x, 0) = 0 has
to be imposed. This condition, and an appropriate choice of the node x, produce the
Simpson, dual Simpson, Maclaurin and Gauss two-point formulas as special cases [5].

Now, if we assume G2k(x, 0) = 0 for some k ≥ 2, the accuracy will increase but the
quadrature formulas thus obtained will include values of derivatives of order up to
2k − 3 at the end points of the interval. When those values are easy to calculate, this
is not an obstacle. Furthermore, when f (2k−1)(1) = f (2k−1)(0) for k ≥ 1, we obtain a
formula of even higher accuracy.

Thus, suppose G4(x, 0) = 0, that is, let the values of the first derivative be included
in the quadrature. The weight produced after imposing this condition is

wc(x) = −
B4(1/2)

2(B4(x) − B4(1/2))
=

7
30(1 − 2x)2(1 + 4x − 4x2)

. (2.4)

The quadrature now takes the form

Qc(x, 1/2, 1 − x) = wc(x) f (x) + (1 − 2wc(x)) f (1/2) + wc(x) f (1 − x)

=
7 f (x) − (480x4 − 960x3 + 480x2 − 16) f (1/2) + 7 f (1 − x)

30(1 − 2x)2(1 + 4x − 4x2)
.

The functions Gn and Fn with the weight wc(x) are denoted by Gc
n and Fc

n and,
furthermore, the corresponding function Tn−1 is denoted by T c

n−1 and satisfies

T c
n−1(x) =

b(n−1)/2c∑
k=1

1
(2k)!

Gc
2k(x, 0)[ f (2k−1)(1) − f (2k−1)(0)]

=
10x2 − 10x + 1

60(1 + 4x − 4x2)
[ f ′(1) − f ′(0)]

+

b(n−1)/2c∑
k=3

Gc
2k(x, 0)

(2k)!
[ f (2k−1)(1) − f (2k−1)(0)].

To illustrate the effectiveness of these rules, we now give a few examples.
First we recall the classical Simpson, dual Simpson and Maclaurin rules,
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T 1. Approximate values of
∫ 1

0
sin t dt ≈ 0.4596976941 and

∫ 1

0
et dt ≈ 1.718281828.∫ 1

0
sin t dt

∫ 1

0
et dt

Simpson 0.4598621899 1.718861152
Dual Simpson 0.4595533000 1.717776532
Maclaurin 0.4596337544 1.718056432
Corrected Simpson 0.4596984786 1.718279074
Corrected dual Simpson 0.4596969336 1.718284495
Corrected Maclaurin 0.4596975257 1.718282423

respectively [6, 7]: ∫ 1

0
f (t) dt ≈

1
6

f (0) +
2
3

f (1/2) +
1
6

f (1),∫ 1

0
f (t) dt ≈

2
3

f (1/4) −
1
3

f (1/2) +
2
3

f (3/4),∫ 1

0
f (t) dt ≈

3
8

f (1/6) +
1
4

f (1/2) +
3
8

f (5/6).

Taking x = 0, x = 1/4 and x = 1/6 in (2.1) with the weight wc(x) given by (2.4), we
obtain the corrected Simpson, corrected dual Simpson and corrected Maclaurin rules,
respectively:∫ 1

0
f (t) dt ≈

7
30

f (0) +
8
15

f (1/2) +
7

30
f (1) −

1
60

[ f ′(1) − f ′(0)],∫ 1

0
f (t) dt ≈

8
15

f (1/4) −
1
15

f (1/2) +
8
15

f (3/4) +
1

120
[ f ′(1) − f ′(0)],∫ 1

0
f (t) dt ≈

27
80

f (1/6) +
13
40

f (1/2) +
27
80

f (5/6) +
1

240
[ f ′(1) − f ′(0)].

Table 1 gives approximate values of the integrals
∫ 1

0
sin t dt and

∫ 1

0
et dt using the

above six quadrature rules.
Lemma 2.1 below is the key step for obtaining the rest of the results in this

paper. It concerns the sign of the functions Gc
2k−1(x, t) in the variable t on (0, 1/2)

for k ≥ 3. It suffices to consider these functions for t ∈ (0, 1/2) because of (2.2). Also,
routine calculation reveals that Gc

1(x, t) and Gc
3(x, t) do not have constant sign in t on

(0, 1/2). The proof of Lemma 2.1 is by induction, and the basis is that the function
Gc

5(x, t) has constant sign in t for x ∈ [0, 1/2 −
√

15/10] ∪ [1/6, 1/2); note here that
1/2 −

√
15/10 ≈ 0.11270. That is, for x ∈ (1/2 −

√
15/10, 1/6), the function Gc

5(x, t)
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has at least one zero in t on (0, 1/2). We now give a short proof of this fact. We have

Gc
5(x, 0) =

∂Gc
5

∂t
(x, 0) =

∂2Gc
5

∂t2
(x, 0) = Gc

5(x, 1/2) = 0, (2.5)

and after some calculation we see that

x ∈ (1/2 −
√

15/10, 1/6) if and only if
∂3Gc

5

∂t3
(x, 0) > 0 and

∂Gc
5

∂t
(x, 1/2) > 0.

From ∂Gc
5/∂t(x, 1/2) > 0, we conclude that ∂Gc

5/∂t(x, t) > 0 for t sufficiently close
to t = 1/2 and with t < 1/2, and then from Gc

5(x, 1/2) = 0 in (2.5) it follows that
Gc

5(x, t) < 0 for those values of t. On the other hand, from ∂3Gc
5/∂t3(x, 0) > 0 we

conclude that ∂3Gc
5/∂t3(x, t) > 0 for t sufficiently close to t = 0 and with t > 0. Then,

similarly, using (2.5) we conclude that Gc
5(x, t) > 0 for those values of t. It follows that

for x ∈ (1/2 −
√

15/10, 1/6), Gc
5(x, t) has at least one zero in t on (0, 1/2).

We now proceed to the lemma.

L 2.1. For x ∈ [0, 1/2 −
√

15/10] ∪ [1/6, 1/2) and k ≥ 3, the function Gc
2k−1(x, t)

has no zeros in the variable t on (0, 1/2). The sign of Gc
2k−1(x, t) is determined by

(−1)kGc
2k−1(x, t) > 0 for x ∈ [0, 1/2 −

√
15/10],

(−1)k+1Gc
2k−1(x, t) > 0 for x ∈ [1/6, 1/2).

P. First, we claim that Gc
5(x, t) has constant sign for x ∈ [0, 1/2 −

√
15/10] ∪

[1/6, 1/2). We show that it is increasing in x for x ∈ [0, 1/2) and, after considering
its behaviour at the end points, the claim follows. For 0 ≤ t ≤ x < 1/2,

∂Gc
5

∂x
(x, t) =

t3

3
·

14(1 − 2x)
(4x2 − 4x − 1)2

> 0.

So Gc
5(x, t) is increasing in x for 0 ≤ t ≤ x < 1/2. For 0 ≤ x ≤ t ≤ 1/2,

∂Gc
5

∂x
(x, t) =

14x(1 − 2t)
3(1 − 2x)3(4x2 − 4x − 1)2

· g(x, t),

where

g(x, t) = 4t3(x − 1) + t2(−8x3 + 4x2 + 3) + tx(8x2 − 4x − 3) + x2 + 2x3 − 4x4.

The zeros of ∂g/∂t(x, t) are t1 = 1/2 and t2 = (8x3 − 4x2 − 3x)/(6(x − 1)), and t2 < x.
Also, a simple calculation shows that g(x, 0) > 0 and g(x, 1/2) > 0, so g(x, t) > 0.
Thus, it follows that Gc

5(x, t) is increasing in x.

Since Gc
5(1/2 −

√
15/10, t) < 0 [5] and Gc

5(1/6, t) > 0 [3] for t ∈ (0, 1/2), we have
Gc

5(x, t) < 0 for x ∈ [0, 1/2 −
√

15/10] and Gc
5(x, t) > 0 for x ∈ [1/6, 1/2). So Gc

5(x, t)
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has constant sign for x ∈ [0, 1/2 −
√

15/10] and x ∈ [1/6, 1/2), and our statement is
therefore valid for k = 3. For k ≥ 4, the statement follows by induction.

Now, since Gc
5(x, t) > 0 for t ∈ (0, 1/2), it follows from (2.3) that Gc

7(x, t) is convex
in t on (0, 1/2). Since we now know that Gc

7(x, t) has no zeros in t on (0, 1/2), and since
Gc

2k−1(x, 0) = Gc
2k−1(x, 1/2) = 0 for k ≥ 1, we conclude that Gc

7(x, t) < 0 for t ∈ (0, 1/2).
The claim that two successive functions Gc

2k−1(x, t) have opposite signs in t on (0, 1/2)
for a fixed x now follows by induction. �

R 2.2. Lemma 2.1 yields that for k ≥ 3 and x ∈ [0, 1/2 −
√

15/10], the function
(−1)k+1Fc

2k(x, t) is strictly increasing in t on (0, 1/2) and strictly decreasing in t on
(1/2, 1). Since Fc

2k(x, 0) = Fc
2k(x, 1) = 0, the function (−1)k+1Fc

2k(x, t) has constant
sign in t on (0, 1) and attains its maximum at t = 1/2. An analogous statement, but
with the opposite sign, is valid for x ∈ [1/6, 1/2).

Denote

R2k(x, f ) =
1

(2k)!

∫ 1

0
Fc

2k(x, t) d f (2k−1)(t).

T 2.3. Let f : [0, 1]→ R be such that f (2k) is continuous on [0, 1] for some
k ≥ 3 and let x ∈ [0, 1/2 −

√
15/10] ∪ [1/6, 1/2). Then there exists ξ ∈ [0, 1] such that

R2k(x, f ) = −
Gc

2k(x, 0)

(2k)!
· f (2k)(ξ), (2.6)

where

Gc
2k(x, 0) =

7[B2k(x) + (1 − 21−2k)B2k]
15(1 − 2x)2(1 + 4x − 4x2)

− (1 − 21−2k)B2k. (2.7)

If, in addition, f (2k) has constant sign on [0, 1], then there exists θ ∈ [0, 1] such that

R2k(x, f ) =
θ

(2k)!
Fc

2k(x, 1/2)[ f (2k−1)(1) − f (2k−1)(0)], (2.8)

where

Fc
2k(x, 1/2) =

7[B2k(1/2 − x) − B2k(x) − (2 − 21−2k)B2k]
15(1 − 2x)2(1 + 4x − 4x2)

+ (2 − 21−2k)B2k. (2.9)

P. Remark 2.2 shows that Fc
2k(x, t) has constant sign under the assumptions of the

theorem, so (2.6) follows from the mean value theorem for integrals. To prove (2.8),
first suppose f (2k)(t) ≥ 0 and let x ∈ [0, 1/2 −

√
15/10]. Then we have

0 ≤
∫ 1

0
(−1)k+1Fc

2k(x, t) f (2k)(t) dt ≤ (−1)k+1Fc
2k(x, 1/2) ·

∫ 1

0
f (2k)(t) dt,

which implies that there exists θ ∈ [0, 1] such that

(2k)! · R2k(x, f ) = θ · Fc
2k(x, 1/2)[ f (2k−1)(1) − f (2k−1)(0)].

When x ∈ [1/6, 1/2) or f (2k)(t) ≤ 0, the statement follows similarly. �
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When (2.6) is applied for k = 3 to the remainder in (2.1) for n = 6 with the weight
wc(x) from (2.4), the following formula is produced:∫ 1

0
f (t) dt − Qc(x, 1/2, 1 − x) +

10x2 − 10x + 1
60(−4x2 + 4x + 1)

[ f ′(1) − f ′(0)]

=
98x4 − 196x3 + 102x2 − 4x − 1

604800(4x2 − 4x − 1)
· f (6)(ξ).

(2.10)

As mentioned earlier, for x = 0 the formula (2.10) recaptures the corrected Simpson
formula, for x = 1/4 the corrected dual Simpson formula and for x = 1/6 the corrected
Maclaurin formula. All related results from our previous papers on these formulas [3,
4, 9] follow as special cases of the results in this paper. Furthermore, for x =

1/2 −
√

15/10, which is equivalent to 10x2 − 10x + 1 = 0, (2.10) becomes the Gauss
three-point formula and, for x = 1/2 − (225 − 30

√
30)1/2/30, namely wc(x) = 1/2, the

corrected Gauss two-point formula. These formulas were also studied previously [5].
Notice that x = 1/2 −

√
15/10 is the unique solution of the equation Gc

2(x, 0) = 0.
In fact, the nodes and the coefficients of the Gauss three-point formula comprise the
unique solution of the system

Gc
2(x, 0) = Gc

4(x, 0) = 0.

This is the system one would use to obtain from (2.1) the quadrature formula which is
not corrected (does not include first derivatives) and has the maximum accuracy.

The next theorem gives both sharp and best possible estimates for the error in
these quadrature formulas. Recall that a sharp inequality is obtained when there is
a nontrivial function for which equality holds, while the best possible inequality is
obtained when one can prove that there is no smaller constant for which the inequality
holds.

T 2.4. Let p, q ∈ R satisfy 1 ≤ p, q ≤∞ and 1/p + 1/q = 1. If f : [0, 1]→ R is
such that f (n) ∈ Lp[0, 1] for some n ≥ 1, then∣∣∣∣∣∫ 1

0
f (t) dt − Qc(x, 1/2, 1 − x) + T c

n−1(x)
∣∣∣∣∣ ≤ K(n, q, x) · ‖ f (n)‖p, (2.11)

where

K(n, q, x) =
1
n!

[∫ 1

0
|Fc

n(x, t)|q dt
]1/q

.

This inequality is sharp for 1 < p ≤∞ and the best possible for p = 1.

P. The inequality (2.11) follows immediately after applying the Hölder inequality
to the remainder in (2.1) with weight wc(x). To prove that the inequality is sharp, take

f (n)(t) =

{
sgn(Fc

n(x, t)) · |Fc
n(x, t)|1/(p−1) for 1 < p <∞,

sgn(Fc
n(x, t)) for p =∞

in (2.11). The proof that (2.11) is the best possible for p = 1 is analogous to the
corresponding part of the proof of Theorem 2 of Pečarić et al. [10]. �
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For x ∈ [0, 1/2 −
√

15/10] ∪ [1/6, 1/2), k ≥ 3, using Lemma 2.1 and Remark 2.2,
we calculate the following constants for p = 1 and p =∞ from Theorem 2.4:

K(2k, 1, x) = (−1)k+1 2
(2k)!

∫ 1/2

0
Fc

2k(x, t) dt =
1

(2k)!
|Gc

2k(x, 0)|,

K(2k,∞, x) = sup
t∈[0,1]

1
(2k)!

|Fc
2k(x, t)| =

1
(2k)!

|Fc
2k(x, 1/2)| =

1
2

K(2k − 1, 1, x),

where Gc
2k(x, 0) and Fc

2k(x, 1/2) are as in (2.7) and (2.9). In view of this, let us now
consider the inequality (2.11) for n = 5, 6 and p =∞:∣∣∣∣∣∫ 1

0
f (t) dt − Qc(x, 1/2, 1 − x) +

10x2 − 10x + 1
60(−4x2 + 4x + 1)

[ f ′(1) − f ′(0)]
∣∣∣∣∣

≤ K(n, 1, x) · ‖ f (n)‖∞ for n = 5, 6,

where

K(5, 1, x) =
1

115200

∣∣∣∣∣112x3 − 88x2 + 4x + 1
4x2 − 4x − 1

∣∣∣∣∣,
K(6, 1, x) =

1
604800

∣∣∣∣∣98x4 − 196x3 + 102x2 − 4x − 1
4x2 − 4x − 1

∣∣∣∣∣.
In order to determine the admissible x for which the error estimate (2.11) is smallest,

we have to minimize K(5, 1, x) and K(6, 1, x). It is not difficult to verify that both are
decreasing on [0, 1/2 −

√
15/10] and increasing on [1/6, 1/2) and attain their minimal

values at x = 1/6:

K(5, 1, 1/6) ≈ 1.44676 × 10−6 and K(6, 1, 1/6) ≈ 3.55949 × 10−7.

On the other hand,

sup{K(n, 1, x) : x ∈ [0, 1/2 −
√

15/10] ∪ [1/6, 1/2)} = K(n, 1, 1/2) for n = 5, 6,

where

K(5, 1, 1/2) ≈ 2.17014 × 10−5 and K(6, 1, 1/2) ≈ 3.41022 × 10−6.

The same is valid for n = 6 and p = 1, since K(5, 1, x) = 2K(6,∞, x).
Therefore, the node which provides the smallest error in these three cases is x = 1/6.

This means that the corrected Maclaurin formula is the optimal corrected three-point
quadrature formula, which is a rather interesting fact since it was previously shown [5]
that amongst the three-point quadrature formulas accurate for all polynomials of
degree at most three, the classical Maclaurin formula is the optimal one.

R 2.5. Although only values of x in [0, 1/2) were considered here, results for
x = 1/2 can easily be obtained by considering the limit process x→ 1/2.
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