
AN EXTREMAL PROBLEM FOR POLYGONS 
INSCRIBED IN A CONVEX CURVE 

BÊLA BOLLOBÂS 

A. Zirakzadeh (1) has determined for n = 3 the minimal value of the 
perimeter length of a polygon AiA2. . . An, where Ai, A2, . . . , An_i, and An 

divide the perimeter of a convex curve C, of perimeter length /, into n parts 
of equal length; further he has stated a conjecture concerning the general 
case. In the following a simpler proof for the case n = 3 is given; the minimum 
for even values of n, which confirms the conjecture of A. Zirakzadeh, is deter
mined; and a fairly precise estimation for odd values of n, which refutes the 
conjecture of A. Zirakzadeh, is given. For n = 3 we have the following theorem. 

THEOREM 1. If the points P, Q, R divide the perimeter of a convex curve C, of 
perimeter length /, into three parts of equal length, then the perimeter length of the 
triangle PQR is at least \l. Equality holds if and only if C is an equilateral triangle 
and P, Q, R are the mid-points of the three sides. 

Two lemmas are needed for the proof of Theorem 1. 

LEMMA 1. Let the angles of a triangle XOY at the vertices X, Y, and 0 be 
(j), \f/, and 2a; let d > 0 be a small distance, and X' be a point on the side OX, 
and Y' be a point on the half-line OY beyond F, satisfying XX' = YYf = d. 
Then X'Y' - XY = (cos ^ - cos <r)d + o(d) (Figure 1). 

The very simple proof of this lemma is omitted here. 

FIGURE 1 
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A well-known corollary is that if X'O + Y'O = c is constant, and X', Y' 
move on the half-lines OX and 0 F, then X' Y' assumes its minimal value at 
the position OX' = OY'. So the minimal length of X'Y' is c sin a. 

For the sake of simplicity the following notation is introduced: x £ [y, z] 
means that either 3 > < x < 3 o r z < x < 3 > holds. 

LEMMA 2. The points P, Q, and R are on the sides a = BC, b = CA, and 
c = AB, respectively, of the triangle ABC. Let 

t = ±(a + b + c), a* = i(6 + c), b* = J(c + a), c* = J (a + 6), 

£ = (M + i4i?, q = RB + BP, and r = P C + CÇ. 

J / £ € [*, a*], g 6 [*, 6*], and r 6 [*, c*], then PQ + QR + RP > J (a + 6 + c), 
and equality holds if and only if the points P, Q, and R are the mid-points of the 
sides of the triangle ABC. 

From the continuity of the perimeter length, it follows that there are three 
points P , Q, R, satisfying the conditions of the lemma, for which 

PQ + QR + RP 

is minimal. In the following P , Q, and R will mean an extremal position, and 
it will be shown that P , Q, and R are the mid-points of the sides. We introduce 
the notations of Figure 2. 

R 

FIGURE 2 

Lemma 1 implies that 

(1) cos OL\ + cos 01 + cos Yi = cos a2 + cos 02 + cos y2, 

since otherwise the perimeter length of the triangle would decrease by moving 
the points in a suitable direction. 
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Let K, L, and M denote the mid-points of the sides BC, CA, and AB re
spectively. After a suitable change in the notation, one of the following two 
statements is always valid: 

(i) P is on the segment BK, Q on CL, and R on AM (Figure 3) ; 
(ii) P is on the segment KC, Q on CL, and R on MB, and at most one of 

these points is the end point of the corresponding segment (Figure 4). 

FIGURE 4 

These two cases are examined separately, 
(i) From Figure 3 the following inequalities are immediate: 

Oil < P < 72, 01 < 7 < « 2 , 7 l < OL < 0 2 . 
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By ( l) , equalities must hold everywhere. Naturally this is true if and only if 
P = K, Q = L, and M = P . 

(ii) The position of the points implies that a* < p and r < c*, so that 
c < a, i.e. 7 < a. I t follows from the conditions on the points P,Q, R (see 
Figure 4) that a2 < y < a < 71. Consequently, fti < (32; for otherwise fix < p2 

implies tha t a i = T — (32 — y > * — Pi — a = y2} and from this it follows that 
«i > 72, jSi > ĵ 2, and 7i > a2, contradicting (1). 

Since a* < p and r < c*, Q can be moved towards /I into a point Q* so that 
the points P , Q*, and R still satisfy the conditions of the lemma, and so that 
the inequality /.PQ*C > ARQ*A holds. But then PQ* + PQ* < PC + QR 
holds trivially, contradicting the extremal property of P , Q, and P . 

FIGURE 5 

Proof of Theorem 1. As in (1), the Blaschke Selection Theorem may be used 
to ensure that there is a set S (either a segment or a convex curve) of perimeter 
length /, and three points on its perimeter, P , Q, and P , such that the perimeter 
length of PQR is the least possible. I t will be proved that 5 is a triangle. In 
the following, 5 will denote one of the extremal curves and P , Q, and R the 
corresponding points. 

The mid-points of the sides of an equilateral triangle with sides of length JZ 
divide the perimeter into parts of length \l, and the perimeter length of the 
triangle formed by the mid-points is \l. This implies that the perimeter length 
of the triangle PQR is at most §/. Hence 5 cannot be a line segment, since in that 
case the perimeter length of the (degenerate) triangle PQR is f/. 

Consequently, S is a convex curve. 
Let p, q, and r be three arbitrary support lines of S through the points 

P , Q, and P . First we shall showr that the lines p, q, and r form a triangle and 
5 is exactly this triangle. 

https://doi.org/10.4153/CJM-1967-045-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-045-5


AN EXTREMAL PROBLEM FOR POLYGONS 527 

Suppose this is not true. Then it can be assumed that the arc PQ of 5 (not 
containing R) does not lie entirely on the lines p and q. Let T be the common 
part of the following three closed half-planes: the half-plane determined by 
PQ and not containing R, the half-plane determined by p and containing Q, 
and, lastly, that half-plane determined by q which contains P. T is either a 
triangle or an infinite part of the plane bounded by three lines. If T is a triangle, 
say PQX, then the convexity of S implies that the length of the arc PQ is less 
than PX + XQ, so that there is a point Y in T, not on the lines p and q, 
satisfying PY + YQ = \l. If T is not a triangle, it is obvious that there is a 
point Y with this property. Substitute for the arc PQ of S the segments P Y 
and YQ, and denote by S' the new curve. Naturally S' is also an extremal 
figure. Let us fix the arc PR of S', and rotate the point Q, together with the 
arc QR, around R towards P with a sufficiently small angle. Denote by Q* the 
new position of Q. The perimeter length of the triangle PQ*R is trivially 
smaller than the perimeter length of PQR. Let Y be that point which is 
separated from R by PQ* and for which PY1* = PY and Q*F* = QY. Y was 
neither on the line p nor on q, so, if the rotation angle was sufficiently small, 
the curve S*, constructed from the arcs PR and RQ*, and from the segments 
Q* F* and Y*P, is also convex and of perimeter length /. Its perimeter is divided 
into three parts of equal length by the points P, Q*, and R, and, since 
PQ + QR + RP > PQ* + Q*R + RP, this contradicts the extremal property 
of S. 

So 5 is a triangle formed by the lines p, q, and r, and, as p, q, and r were 
arbitrary support lines, this means that S is a triangle ABC and P, Q, and R 
are interior points of the sides BC, CA, and AB, respectively. Theorem 1 now 
follows from Lemma 2, which yields slightly more than is needed here. 

NowT we deal with the case n > 4. Let hn denote the infimum of the perimeter 
lengths of the polygons Ai A2. . . An. 

THEOREM 2. If n is even, then hn = [(n — 2)/n]l, and the only extremal figure 
is the segment of length \l. If n is odd, then 

[(n - 2)/n]l < hn = ([» - 2 + o{l))/n]l. 

Repeating almost word for word the proof of Theorem 1, it can be shown 
that if C is an extremal figure (which exists by the Blaschke Selection Theorem), 
then C is either a segment or a convex &-gon: B± B2. . . Bk, k < n, where each 
side contains at least one point A if and A t ^ Bù (1 < i < n, 1 < j < k). 

When C is a segment and n is even, hn > [{n — 2)/n]l, and since equality 
can be achieved, hn = [{n — 2)/n]l. If n is odd, it is easily seen that 
hn = [(» - l)/n]l. 

In the case C = BiB2. . . Bk, let An and 4^2 be those points At which 
surround Bj. Then 

hn= YJ
 Ah AH + ([» - *)/»& 

since the perimeter length of BiB2. . . £* is /. If the angle at Bj is ir — 2cj>j1 
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then since AjlBj + BjAj2 = l/n, the corollary of Lemma 1 implies that 
An AH > (l/n) cos <t>j. On the other hand, 

3 < k, 2 2 4>j = *> a n d 0 < <t>j < ir, 
i 

and from this it follows that 
k k 

^ (1 — cos <t>j) < 2, i.e. YJ COS <t>j > k — 2 . 
i i 

This is obvious geometrically (see Figure 6), but it can be also verified by 
simple counting. By means of this inequality, we obtain 

hn > [(k - 2)/n]l + [(n - k)/n]l = [(» - 2)/n]l. 

FIGURE 6 

By comparing the two cases above, we obtain the theorem for even 
n: hn = [(n — 2)/n]l. But if n is odd we have only the inequality 

hn> [(» - 2)/n]l. 

The following example gives a reasonably good upper bound for hn. If 
n = 4m + 1, take the triangle with sides ml/n, \(m + l)/n]l, and (2m/n)l. 
If n = \m — 1, take the isosceles triangle with sides (m/n)l and base 
[(2m — l)/n]l (if n > 11, this gives a better estimate than the construction 
of (1)). It is easily seen that this cannot be the extremal figure, since, by 
decreasing the height of the triangle, a better result can be achieved. I suspect 
that this is the method by which the extremal figure can be obtained. The 
upper bound given by the construction above can be expressed concisely as 
follows: hn < [(n — 2 + o(l))/n]l. (Roughly speaking, Zirakzadeh's conjec
ture was that hn = [(n - 3 + V2 + o(l))/n]l.)) 

This completes the proof of Theorem 2. 
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