
Integer triangles with integer circumradii
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Introduction
When studying properties of the circumcircle of an integer triangle, it

quickly becomes evident that the radius of such a circle (circumradius) need
not itself be an integer. When it is not an integer, the circumradius can still
be rational but it can also be irrational, as exemplified in the following
examples. It is left to the reader to verify that the triangle with sides 10, 24,
26 has circumradius 13, and that the corresponding values for the triangles
with sides 13, 14, 15 and 1, 1, 1 are 65/8 and  respectively. It is shown
in Theorem 1 below that a necessary condition for the circumradius to be an
integer is that the area of the triangle is itself an integer (Heronian triangle)
but this condition is not in itself sufficient. A simple counterexample is
given by the 13, 14, 15 triangle above which has area 84. However, as a
consequence of Theorem 1, we can restrict ourselves to considering
Heronian triangles, and relevant properties of such triangles, proved in [1],
are given in Theorems 2 and 3 below. We also need to quote some well-
known results involving the sums of two squares (see e.g. [2]) and these are
listed in Lemma 3. In all that follows, we will use the convention that if  is
a triangle with sides  and , then  will denote the triangle,
similar to , with sides .

3 / 3

T
a, b, c z > 0 zT

T za, zb, zc
Some results, similar to ones proved here but enunciated in terms of the

circumdiameter appear in [3]. Our main results are given in Theorems 4, 5,
6 and 7. In Theorem 4, we show that within each equivalence class of
similar Heronian triangles, there exists a minimal triangle  which is such
that every triangle in this class with integer circumradius is of the form ,
for some positive integer . Furthermore, the circumradius of  is an odd
number which is the product of primes of the form . Finally, in
Theorems 5, 6 and 7, we show how to construct such a mimimal triangle
having a given circumradius.

M
qM

q M
4n + 1

Preliminary results on Heronian triangles
Lemma 1
Let the triangle  with sides , ,  have area  and circumradius . Then

.

T a b c � R

� =
abc
4R

Proof:
This is a well-known result whose proof is straightforward and left to

the reader.
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Lemma 2
Any integer triangle whose area is known to be rational is in fact a

Heronian triangle.

Proof:
This possibly unexpected result, a proof of which may be found in

Lemma 3 of [3], is a well-known property of Heronian triangles.

Theorem 1
Let  be an integer triangle whose circumradius is also an integer. Then

 must be a Heronian triangle.
T

T

Proof:
We see from Lemma 1 that the area of  must be rational. The result

now follows from Lemma 2.
T

Theorem 2
Let ,  be rationals such that  and . Write , ,

where  are positive integers such that . Let
,  and .

β δ 0 < β < 1 0 < δ < 1 β = β1 /β2 δ = δ1 / δ2
β1, β2, δ1, δ2 gcd(β1, β2) = gcd (δ1, δ2) = 1

h = gcd(β1β2, δ1δ2) k = gcd (β2δ2 − β1δ1, β1δ2 + β2δ1) d = hk
(a) The triangle , with sides , ,

 is a Heronian triangle.
T{β,δ} a = β1β2 (δ2

1 + δ2
2) b = δ1δ2 (β2

1 + β2
2)

c = (β2δ2 − β1δ1) (β1δ2 + β2δ1)
(b)  has area .T{β,δ} β1β2δ1δ2 (β2δ2 − β1δ1) (β1δ2 + β2δ1)
(c)  is a primitive Heronian triangle (in the sense that the

gcd of its sides is 1).
P{β,δ} = 1

dT{β,δ}

(d) All primitive Heronian triangles are of the form  for some choice of
rational   such that  and .

P{β,δ}
β, δ 0 < β < 1 0 < δ < 1

(e)  (and hence ) is right-angled if, and only if, .P{β,δ} T{β,δ} β2δ2 − β1δ1 = β1δ2 + β2δ1

Proof:
All these results are either proved in [1] or are immediate consequences

of results proved therein.

Theorem 3
Using the same notation as in Theorem 2,

(a) ,gcd (h, β2
1 + β2

2) = gcd (h, δ2
1 + δ2

2) = 1

(b) , where  denotes the circumradius of .RP =
(β2

1 + β2
2)(δ2

1 + δ2
2)

4hk
RP P|β,δ}

Proof:
(a) Let  be a prime factor of . Then  divides either  or  but not both

and thus  does not divide . It follows that
and in the same way .

p h p β1 β2

p β2
1 + β2

2 gcd (h, β2
1 + β2

2) = 1
gcd (h, δ2

1 + δ2
2) = 1
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(b) Let  denote the circumradius of . If we now substitute in Lemma
1 the expressions for  and  given in Theorem 2(a), we see that

.

RT T{β,δ}
a, b, c �

RT = 1
4 (β2

1 + β2
2)(δ2

1 + δ2
2)

Since , it follows that .P{β,δ} = 1
dT{β,δ} RP =

(β2
1 + β2

2)(δ2
1 + δ2

2)
4hk

Minimal Heronian triangles
In order to be able to prove our main results, we need two further

lemmas, each of which involves properties of positive integers.

Lemma 3
(a)  Let ,  be positive integers such that . Then  is

not divisible by any prime of the form .
u v gcd (u, v) = 1 u2 + v2

4n + 3
(b) Let  be the product of odd primes each of the form . ThenN 4n + 1

(i) there exist positive integers , with  and
such that ,

u, v u < v gcd (u, v) = 1
u2 + v2 = N

(ii) the number of different expressions for  of the above form is ,
where  is the number of distinct primes in the decomposition of .

N 2t − 1

t N

Proof:
Both are immediate consequences of the result given in Theorem 3.22 of [2].

Lemma 4
Let  be positive integers such that ,  and

. Let . Then
u, v, x, y u < v x < y

gcd (u, v) = gcd (x, y) = 1 w = gcd (vy − ux, uy + vx)
(a) ,gcd (w, u) = gcd (w, v) = gcd (w, x) = gcd (w, y) = 1
(b)  and .w | u2 + v2 w | x2 + y2

Proof:
(a) Let . Then  and  and, since , we

must have  and . The fact that  now implies that
. In the same way, .

z = gcd (w, y) z | ux z | vx gcd (x, y) = 1
z | u z | v gcd (u, v) = 1

gcd (w, y) = z = 1 gcd (w, u) = gcd(w, v) = gcd (w, x) = 1
(b)  and thus . But by (a),

 and thus . In the same way .
w | v (vy − ux) + u (uy + vx) w | y (u2 + v2)
gcd (w, y) = 1 w | u2 + v2 w | x2 + y2

Theorem 4
Let the notation be as above with ,  as in Theorem 2. Then there

exists a Heronian triangle  having the following properties.
β δ

M{β,δ}

(a) The circumradius  of  is an odd integer.RM M{β,δ}

(b) If  is a Heronian triangle with integer circumradius  and  is similar
to  then  for some positive integer .

H R H
P{β,δ} H = qM{β,δ} q

(c) .RM ≥ 5
(d)  is the product of odd primes of the form .RM 4n + 1
We shall call such a triangle  a minimal Heronian triangle.M{β,δ}
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Proof:
In order to prove our results, we need to consider three different possibilities.

Type 1: one of  is even, the other three odd,β1, β2, δ1, δ2

Type 2:  all four of  are odd,β1, β2, δ1, δ2

Type 3: one of  is even, one odd, one of  is even, one odd.β1, β2 δ1, δ2

First of all, assume that  are of Type 1 and, without loss of
generality, that one of  is even and one is odd.

β1, β2, δ1, δ2
β1, β2

(a) We note that  satisfy the conditions of Lemma 4. It follows
that  and thus  must be odd. Also
(mod 4).  Let  Then  must be an odd integer.

β1, β2, δ1, δ2
k | (β2

1 + β2
2) k (β2

1 + β2
2)(δ2

1 + δ2
2) ≡ 2

A = 1
2k (β2

1 + β2
2)(δ2

1 + δ2
2) A

Furthermore, Theorem 3 tells us that  and also
that . It follows that  is a
fraction in its lowest terms. Now define  to be . Then

, an odd integer.

RP = 1
4hk (β2

1 + β2
2)(δ2

1 + δ2
2)

gcd (h, (β2
1 + β2

2) (δ2
1 + δ2

2)) = 1 RP = A
2h

M{β,δ} 2hP{β,δ}
RM = A

(b) Since  is similar to , there exists an integer  such that
 and thus . Since  is an integer and

, there exists an integer  such that .
Consequently  and thus .

H P{β,δ} z
H = zP{β,δ} R = zRP = z A

2h R
gcd (A,2h) = 1 q z = 2hq

H = 2hqP{β,δ} H = qM{β,δ}

(c) . As in part (a), we note that , and,
as  is odd and  even, we see that . Thus

 and as one of  is even and the other odd, we must
have .

RM = 1
2k (β2

1 + β2
2)(δ2

1 + δ2
2) k | (δ2

1 + δ2
2)

k (δ2
1 + δ2

2) 2k | (δ2
1 + δ2

2)
RM ≥ (β2

1 + β2
2) β1, β2

RM ≥ 5
(d) From Lemma 3(a), we know that  cannot be divisible by

any prime of the form  and thus neither can . The result now
follows, since  is odd and cannot equal 1 since it must be  by part (c).

(β2
1 + β2

2)(δ2
1 + δ2

2)
4n + 3 RM

RM ≥ 5
The proof is now complete when ,  are of Type 1. The proofs for ,  of
Types 2 and 3 although not identical follow similar lines and are left as an
exercise for the reader. The important details are given in the table below.

β δ β δ

Type 1 Type 2 Type 3

β1, β2, δ1, δ2 3 odd, 1 even 4 odd 2 odd, 2 even

(β2
1 + β2

2)(δ2
1 + δ2

2) ≡ 2 (mod 4) ≡ 4 (mod 8) odd

k odd ≡ 2 (mod 4) odd

A =
(β2

1 + β2
2)(δ2

1 + δ2
2)

2k
 odd integerA  odd integerA  odd integer2A

 in its lowest termsRP
A
2h

A
2h

(2A)
4h

M{β,δ} 2hP{β,δ} (= 2
kT{β,δ}) 2hP{β,δ} (= 2

kT{β,δ}) 4hP{β,δ} (= 4
kT{β,δ})

RM A A 2A
RM ≥ 5 ≥ 5 ≥ 5

TABLE 1
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Corollary 1
(a) No primitive integer triangle can have an integer circumradius.
(b) If the integer  is the circumradius of the integer triangle , then  must

be divisible by some odd prime of the form . In particular, no
prime of the form  can be the value of the circumradius of any
integer triangle.

R H R
4n + 1

4n + 3

Proof:
(a) Note that each of the expressions for  given in Table 1 above has an

odd numerator and an even denominator and thus  can never be an
integer.

RP
RP

(b)  for some , , where  is an integer, and thus .
But, by part (d),  is the product of odd primes of the form  and
thus some such prime must divide .

H = qM{β,δ} β δ q R = qRM
RM 4n + 1

R

Theorem 5
Let  be an odd integer which is the product of primes of the form .N 4n + 1

(a) There exists a minimal right-angled triangle  such that .M{β,δ} RM = N
(b) The number of distinct such right-angled triangles ,

where  is the number of distinct primes in the decomposition of .
M{β,δ} = 2t − 1

t N

Proof:
(a) By Lemma 3(b)(i), there exist positive integers ,  with  and

 such that . Since  is odd, one of ,  must
be even and the other odd. Put , , , .
We note that  and it may easily be verified that

. Thus by Theorem 2(e)
is right-angled. Furthermore ,  and we see that
has sides . It is well known that a triangle with
these sides is a primitive right-angled triangle and that every primitive
right-angled triangle is of this form for appropriate values of . Since
only one of  is even (Type 1), it follows that the right-
angled triangle  has sides , ,
and that 

u v u < v
gcd (u, v) = 1 u2 + v2 = N N u v

β1 = u β2 = v δ1 = v − u δ2 = v + u
gcd (δ1, δ2) = 1

β1δ2 + β2δ1 = β2δ2 − β1δ1 = u2 + v2 T{β,δ}
h = 1 k = v2 + u2 P{β,δ}

v2 − u2,  2uv, v2 + u2

u, v
β1, β2, δ1, δ2

M{β,δ} = 2hP{β,δ} 2 (v2 − u2) 4uv 2 (v2 + u2)

RM =
(β2

1 + β2
2)(δ2

1 + δ2
2)

2k
=

(u2 + v2) × 2(u2 + v2)
2 × (u2 + v2) = u2 + v2 = N.

(b) This now follows immediately from Lemma 3(b)(ii).
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Theorem 6
Let the integer triangle  have circumradius , where  is a prime.

Then  is a right-angled triangle.
ABC p p

ABC

Proof:

By Theorem 1,  is Heronian and thus  is an integer.

Consequently  must divide one of  and without loss of generality we
may assume that  divides . Now , the diameter of the circumcircle,
and thus either  or . Let  denote the circumcentre of . If

,  would be an equilateral triangle and angle  would thus be
. However, the cosine rule tells us that this is impossible in an integer

triangle. Thus  and  is a diameter of the circumcircle, which
implies that  must be a right-angled triangle.

ABC � =
abc
4p

p a, b, c
p a a ≤ 2p

a = p a = 2p O ABC
a = p BOC BAC
30°

a = 2p BC
ABC

Theorem 7
Let  be an odd integer which is the product of at least two primes (not

necessarily distinct) of the form . There exists a minimal Heronian
triangle  which is not right-angled such that .

N
4n + 1

M{β,δ} RM = N

Proof:
Assume , where  is a product of primes of the form

 and  is a prime of the form .
N = Qp Q > 1

4n + 1 p 4n = 1
By Lemma 3(b)(i), there exist positive integers  with ,

 and  such that  and
. Since  and  are odd, one of ,  must be even and the other

odd and one of ,  must be even and the other odd.

u, v, x, y u < v
x < y gcd (u, v) = gcd (x, y) = 1 u2 + v2 = Q
x2 + y2 = p Q p u v

x y
Let . By Lemma 4(b),  and

thus  or .
w = gcd (vy − ux, uy + vx) w | (x2 + y2)

w = 1 p
Case 1:  .w = 1

Put , , , .β1 = u β2 = v δ1 = x δ2 = y
Then one of  is even, one is odd, one of  is even, one is odd

and .
β1, β2 δ1, δ2

k = w = 1
Thus, from Table 1 (Type 3), we see that

RM =
(β2

1 + β2
2) (δ2

1 + δ2
2)

k
=

Qp
1

= N.

Case 2:  .w = p
Let , . Then both  and  are odd. Also

and  and thus  satisfy the conditions of Lemma 4.
Let .

f = u + v g = v − u f g g < f
gcd (f , g) = 1 g, f , x, y

z = gcd (f y − gx, gy + f x)
By Lemma 4(b),  and thus  or .z | (x2 + y2) z = 1 p

https://doi.org/10.1017/mag.2023.55 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2023.55


INTEGER TRIANGLES WITH INTEGER CIRCUMRADII 247

If , it follows that  and, after substituting
for , , we see that ,

z = p p | f y − gx + gy + f x
f g p | yv + xu
But since , we also know that  and thus we have

 and .
w = p p | yv − xu

p | xu p | yv
The fact that  and , implies that  and . This

contradicts the fact that  and thus we must have .
x < p y < p p | u p | v

gcd (u, v) = 1 z = 1
Now put , , , .β1 = g = v − u β2 = f = v + u δ1 = x δ2 = y
Then .(β2

1 + β2
2) = (g2 + f 2) = 2 (u2 + v2)

Also, both of  are odd, one of  is even, one is odd and .β1, β2 δ1, δ2 k = z = 1
Therefore, in this case, we see from Table 1 (Type 1) that

RM =
(β2

1 + β2
2) (δ2

1 + δ2
2)

2k
=

2 × Q × p
2 × 1

= Qp = N.

Let us now consider the two following examples.

Example 1
Find a minimal non-right-angled Heronian triangle with circumradius

3125. Noting that , we have ,  and thus
. Since , we put

, , , , so that ,  are of Type 3. We also have
 and  and thus, by Theorem 2(c),

has sides 420, 625, 779. Consequently,  has sides 3360,

5000, 6232. Moreover, .

3125 = 625 × 5 Q = 625 p = 5
u = 7, v = 24, x = 1, y = 2 w = gcd (41, 38) = 1
β1 = 7 β2 = 24 δ1 = 1 δ2 = 2 β δ
k = w = 1 h = gcd (168, 2) = 2 P{β,δ}

M{β,δ} = 4hP{β,δ}

RM =
(72 + 242) (12 + 22)

1
=

625 × 5
1

= 3125

Example 2
Find a minimal non-right-angled Heronian triangle with circumradius

2197. Noting that , we have ,  and thus ,
, , . Since , we put ,

, , , so that ,  are of Type 1. We also have
 and  and thus, from

Theorem 2(c),  has sides 1547, 2028, 2035. Consequently
 has sides 3094, 4056, 4070. Moreover,

2197 = 169 × 13 Q = 169 p = 13 u = 5
v = 12 x = 2 y = 3 w = gcd (26, 39) = 13 ≠ 1 β1 = v − u = 7
β2 = u + v = 17 δ1 = 2 δ2 = 3 β δ
k = z = gcd (37, 55) = 1 h = gcd (119, 6) = 1

P{β,δ}
M{β,δ} = 2hP{β,δ}

RM =
(72 + 172) (22 + 32)

2 × 1
=

338 × 13
2 × 1

= 2197.

Particular case
In each of the above examples  is a prime power. The following

alternative method for finding  is valid when the prime decomposition
of  contains at least two distinct primes. In this case we may write

, where ,  and .

N
M{β,δ}

N
N = QL Q > 1 L > 1 gcd (Q, L) = 1
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By Lemma 3(b)(i), there exist integers  with ,  and
 such that  and . Let
.

u, v, x, y u < v x < y
gcd (u, v) = gcd (x, y) = 1 u2 + v2 = Q x2 + y2 = L
w = gcd (vy − ux, uy + vx)

Then by Lemma 4(b),  and  and thus
.

w | (u2 + v2) w | (x2 + y2)
w | gcd (Q, L) = 1

Put , , , . Then one of ,  is even, one is
odd, one of ,  is even, one is odd and . Thus, from Table 1

(Type 3), we see that .

β1 = u β2 = v δ1 = x δ2 = y β1 β2
δ1 δ2 k = w = 1

RM =
(β2

1 + β2
2) (δ2

1 + δ2
2)

k
=

QL
1

= N

We illustrate this alternative approach in the following example.

Example 3
Find a minimal non-right-angled Heronian triangle with circumradius

65. Noting that , we have ,  and thus
. , , , so that ,  are of Type 3. We also have

,  and thus, from Theorem
2(c),  has sides 13, 15, 14. Consequently  has sides

104, 120, 112. Moreover, .

N = 65 = 5 × 13 Q = 5 L = 13
u = 1 v = 2 x = 2 y = 3 β δ
k = w = gcd (4, 7) = 1 h = gcd (2, 6) = 2

P{β,δ} M{β,δ} = 4hP{β,δ}

RM =
(12 + 22) (22 + 32)

1
=

5 × 13
1

= 65

Finally, we note that each of the three above procedures does in fact yield
a triangle which is not right-angled. By Theorem 2(e), , and consequently

, will be right-angled if, and only if, .
P{β,δ}

M{β,δ} β2δ2 − β1δ1 = β1δ2 + β2δ1

Thus  will equal ,
which is greater than 1. But in each of the above constructions , and
thus  cannot be right-angled.

k = gcd (β2δ2 − β1δ1, β1δ2 + β2δ1) β1δ2 + β2δ1
k = 1

M{β,δ}
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