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Abstract
Let 𝑛 ≥ 2 and L = −div(𝐴∇·) be an elliptic operator on R𝑛. Given an exterior Lipschitz domain Ω, let L𝐷 be
the elliptic operator L on Ω subject to the Dirichlet boundary condition. Previously, it was known that the Riesz
transform ∇L−1/2

𝐷 is not bounded for 𝑝 > 2 and 𝑝 ≥ 𝑛, even if L = Δ is the Laplace operator and Ω is a domain
outside a ball. Suppose that A are CMO coefficients or VMO coefficients satisfying certain perturbation property,
and 𝜕Ω is 𝐶1. We prove that for 𝑝 > 2 and 𝑝 ∈ [𝑛,∞), it holds that

inf
𝜙∈K𝑝 (L1/2

𝐷 )
‖∇( 𝑓 − 𝜙)‖𝐿𝑝 (Ω) ∼

���L1/2
𝐷 𝑓

���
𝐿𝑝 (Ω)

for 𝑓 ∈ 𝑊̊1, 𝑝 (Ω). Here, K𝑝 (L1/2
𝐷 ) is the kernel of L1/2

𝐷 in 𝑊̊1, 𝑝 (Ω), which coincides with Ã𝑝
0 (Ω) := { 𝑓 ∈

𝑊̊1, 𝑝 (Ω) : L𝐷 𝑓 = 0} and is a one-dimensional subspace. As an application, we provide a substitution of 𝐿𝑝-
boundedness of

√
𝑡∇𝑒−𝑡L𝐷 which is uniform in t for 𝑝 ≥ 𝑛 and 𝑝 > 2.
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1. Introduction and main results

In this paper, motivated by the recent works [10, 16, 20] on the Riesz transform on exterior Lipschitz
domains, we continue to study the boundedness of the Riesz transform, associated with second-order
divergence form elliptic operators on the exterior Lipschitz domain Ω having the Dirichlet boundary
condition, on 𝐿 𝑝 (Ω) with 𝑝 ∈ (2,∞).

Let 𝑛 ≥ 2 and Ω ⊂ R𝑛 be an exterior Lipschitz domain; that is, R𝑛 \Ω is a bounded Lipschitz domain
of R𝑛, where Ω denotes the closure of Ω in R𝑛. Recall that a bounded domain O is Lipschitz provided
for each point x in the boundary 𝜕𝑂, there is 𝑟 > 0, such that 𝐵(𝑥, 𝑟) ∩𝜕𝑂 is a rotated graph of Lipschitz
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function. Furthermore, assume that 𝐴 ∈ 𝐿∞(R𝑛) is a real-valued and symmetric matrix that satisfies
the uniformly elliptic condition; that is, there exists a constant 𝜇0 ∈ (0, 1] such that, for any 𝜉 ∈ R𝑛 and
𝑥 ∈ R𝑛,

𝜇0 |𝜉 |2 ≤ (𝐴(𝑥)𝜉, 𝜉) ≤ 𝜇−1
0 |𝜉 |2,

where (·, ·) denotes the inner product in R𝑛.
Denote by L the operator −div(𝐴∇·) on R𝑛, and by L𝐷 the operator −div(𝐴∇·) on Ω subject to

the Dirichlet boundary condition (see, for instance, [24, Section 4.1] for the detailed definitions of L,
L𝐷). When 𝐴 := 𝐼𝑛×𝑛 (the unit matrix), we simply denote these operators respectively by Δ and Δ𝐷 .
Moreover, let 𝑂 ⊂ R𝑛 be a bounded Lipschitz domain. Denote by L𝐷,𝑂 the operator −div(𝐴∇·) on O
subject to the Dirichlet boundary condition.

Let U be a domain inR𝑛 or𝑈 = R𝑛. Denote byD(𝑈) the space of all infinitely differentiable functions
with compact support in U endowed with the inductive topology, and by D′(𝑈) the topological dual of
D(𝑈) with the weak-∗ topology which is called the space of distributions on U. Let 𝑝 ∈ (1,∞). For any
𝑥 ∈ R𝑛, let 𝜌(|𝑥 |) := (1 + |𝑥 |2)1/2 and lg(|𝑥 |) := ln(2 + |𝑥 |2).

We define the weighted Sobolev space 𝑊1, 𝑝 (R𝑛) by

𝑊1, 𝑝 (R𝑛) :=

{
𝑢 ∈ D′(R𝑛) : ‖𝑢‖𝑊 1, 𝑝 (R𝑛) :=

���� 𝑢

𝜌(|𝑥 |)

����
𝐿𝑝 (R𝑛)

+ ‖ |∇𝑢 | ‖𝐿𝑝 (R𝑛) < ∞
}

when 𝑝 ≠ 𝑛, and

𝑊1,𝑛 (R𝑛) :=

{
𝑢 ∈ D′(R𝑛) : ‖𝑢‖𝑊 1,𝑛 (R𝑛) :=

���� 𝑢

𝜌(|𝑥 |) lg(|𝑥 |)

����
𝐿𝑝 (R𝑛)

+ ‖ |∇𝑢 | ‖𝐿𝑝 (R𝑛) < ∞
}
,

where ∇𝑢 denotes the distributional gradient of u; see [1, 2], for instance. Moreover, for the exterior
domain Ω, the weighted Sobolev space 𝑊1, 𝑝 (Ω) is defined via replacing D′(R𝑛) and 𝐿 𝑝 (R𝑛) in the
definition of 𝑊1, 𝑝 (R𝑛), respectively, by D′(Ω) and 𝐿 𝑝 (Ω), and the weighted Sobolev space 𝑊̊1, 𝑝 (Ω)
is defined as the completion of D(Ω) under the norm ‖ · ‖𝑊 1, 𝑝 (Ω) . Moreover, for any 𝑞 ∈ (1,∞), denote
by 𝑊−1,𝑞 (R𝑛), 𝑊−1,𝑞 (Ω), and 𝑊̊−1,𝑞 (Ω), respectively, the dual spaces of 𝑊1,𝑞′ (R𝑛), 𝑊1,𝑞′ (Ω), and
𝑊̊1,𝑞′ (Ω), where 𝑞′ := 𝑞/(𝑞 − 1).

We also recall some useful properties for the Sobolev spaces 𝑊1, 𝑝 (R𝑛), 𝑊1, 𝑝 (Ω), and 𝑊̊1, 𝑝 (Ω)
established in [1, 2] as following.

Remark 1.1. Let 𝑛 ≥ 2, Ω ⊂ R𝑛 be an exterior Lipschitz domain, and 𝑝 ∈ (1,∞).

(i) D(R𝑛) is dense in 𝑊1, 𝑝 (R𝑛) and D(Ω) is dense in 𝑊1, 𝑝 (Ω). Here, D(Ω) denotes the space of
all infinitely differentiable functions with compact support in Ω. Furthermore, constants belong to
𝑊1, 𝑝 (R𝑛) or 𝑊1, 𝑝 (Ω) when 𝑝 ∈ [𝑛,∞), but constants do not belong to 𝑊1, 𝑝 (R𝑛) and 𝑊1, 𝑝 (Ω)
when 𝑝 ∈ (1, 𝑛).

(ii) Let 𝑈 = R𝑛 or 𝑈 = Ω. For any 𝑢 ∈ 𝑊1, 𝑝 (𝑈), define the semi-norm [𝑢]𝑊 1, 𝑝 (𝑈 ) := ‖ |∇𝑢 | ‖𝐿𝑝 (𝑈 ) .
When 𝑝 ∈ (1, 𝑛), the semi-norm [·]𝑊 1, 𝑝 (𝑈 ) is a norm on 𝑊1, 𝑝 (𝑈) equivalent to the full norm
‖ · ‖𝑊 1, 𝑝 (𝑈 ) ; when 𝑝 ∈ [𝑛,∞), the semi-norm [·]𝑊 1, 𝑝 (𝑈 ) defines on the quotient space 𝑊1, 𝑝 (𝑈)/𝐶
a norm which is equivalent to the quotient norm (see [2, Proposition 9.3] and [1, Theorem 1.1]).
Moreover, the semi-norm [·]𝑊 1, 𝑝 (Ω) is a norm on 𝑊̊1, 𝑝 (Ω) that is equivalent to the full norm
‖ · ‖𝑊 1, 𝑝 (Ω) for all 1 < 𝑝 < ∞ (see [1, Theorem 1.2]).

For a bounded Lipschitz domain 𝑂 ⊂ R𝑛 and 1 < 𝑝 < ∞, the Sobolev space 𝑊1, 𝑝 (𝑂) is defined as
usual – that is, 𝑓 ∈ D′(𝑂) with

‖ 𝑓 ‖𝑊 1, 𝑝 (𝑂) := ‖ 𝑓 ‖𝐿𝑝 (𝑂) + ‖ |∇ 𝑓 | ‖𝐿𝑝 (𝑂) < ∞.
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Furthermore, 𝑊̊1, 𝑝 (𝑂) is defined to be the closure of D(𝑂) in 𝑊1, 𝑝 (𝑂), and 𝑊−1, 𝑝 (𝑂) and 𝑊̊−1, 𝑝 (𝑂)
are defined as the dual spaces of 𝑊1, 𝑝′ (𝑂) and 𝑊̊1, 𝑝′ (𝑂), respectively.

It is well known that the boundedness of the Riesz transform associated with some differential oper-
ators on various function spaces has important applications in harmonic analysis and partial differential
equations and has aroused great interests in recent years (see, for instance, [3, 4, 7, 8, 10, 15, 17, 20,
25, 28]). In particular, let O be a bounded Lipschitz domain of R𝑛. The sharp boundedness of the Riesz
transform ∇L−1/2

𝐷,𝑂 associated with the operator L𝐷,𝑂 having the Dirichlet boundary condition on the
Lebesgue space 𝐿 𝑝 (𝑂) was established by Shen [25].

Compared with the boundedness of the Riesz transform associated with differential operators on
bounded Lipschitz domains, there are relatively few literatures for the Riesz transform associated with
differential operators on exterior Lipschitz domains. Since the heat kernel generated by L𝐷 satisfies the
Gaussian upper bound estimate, it follows from the results of Sikora [27] (see also [7]) that the Riesz
transform ∇L−1/2

𝐷 is always bounded on 𝐿 𝑝 (Ω) for 𝑝 ∈ (1, 2]. By studying weighted operators in the
one dimension, Hassell and Sikora [10] discovered that the Riesz transform ∇Δ−1/2

𝐷 on the exterior of the
unit ball is not bounded on 𝐿𝑝 for 𝑝 ∈ (2,∞) if 𝑛 = 2, and 𝑝 ∈ [𝑛,∞) if 𝑛 ≥ 3; see also [22] for the case
𝑛 = 3. Moreover, Killip, Visan and Zhang [20] proved that the Riesz transform ∇Δ−1/2

𝐷 on the exterior
of a smooth convex obstacle in R𝑛 (𝑛 ≥ 3) is bounded for 𝑝 ∈ (1, 𝑛). Very recently, characterizations
for the boundedness of the Riesz transform ∇L−1/2

𝐷 on 𝐿 𝑝 (Ω) with 𝑝 ∈ (2, 𝑛) was obtained in [16].
Let

𝑝(L) := sup{𝑝 > 2 : ∇L−1/2 is bounded on 𝐿 𝑝 (R𝑛)}.

Furthermore, denote by 𝐿1
loc (R

𝑛) the set of all locally integrable functions on R𝑛. Recall that the space
BMO(R𝑛) is defined as the set of all 𝑓 ∈ 𝐿1

loc(R
𝑛) satisfying

‖ 𝑓 ‖BMO(R𝑛) := sup
𝐵⊂R𝑛

1
|𝐵 |

∫
𝐵

���� 𝑓 (𝑥) − 1
|𝐵 |

∫
𝐵

𝑓 (𝑦) 𝑑𝑦
���� 𝑑𝑥 < ∞,

where the supremum is taken over all balls B of R𝑛 (see, for instance, [19, 29]). Moreover, the space
CMO(R𝑛) is defined as the completion of D(R𝑛) in the space BMO(R𝑛) (see, for instance, [6]). The
space VMO(R𝑛) is defined as the set of 𝑓 ∈ BMO(R𝑛) satisfying

lim
𝑟→0

sup
𝑥∈R𝑛

1
|𝐵(𝑥, 𝑟) |

∫
𝐵 (𝑥,𝑟 )

���� 𝑓 (𝑦) − 1
|𝐵(𝑥, 𝑟) |

∫
𝐵 (𝑥,𝑟 )

𝑓 (𝑧) 𝑑𝑧
���� 𝑑𝑦 = 0.

Note that CMO(R𝑛) � VMO(R𝑛) � BMO(R𝑛). Let us recall some results proved in [16, Theorems
1.3 and 1.4].

Theorem 1.2 [16]. Let Ω ⊂ R𝑛 be an exterior Lipschitz domain, 𝑛 ≥ 2.
(i) For all 𝑝 ∈ (1,∞), it holds for all 𝑓 ∈ 𝑊̊1, 𝑝 (Ω) that���L1/2

𝐷 𝑓
���
𝐿𝑝 (Ω)

≤ 𝐶‖∇ 𝑓 ‖𝐿𝑝 (Ω) . (1.1)

(ii) Suppose that 𝐴 ∈ VMO(R𝑛) and 𝑛 ≥ 3. There exist 𝜖 > 0 and 𝐶 > 1 such that, for all
𝑓 ∈ 𝑊̊1, 𝑝 (Ω), it holds that

𝐶−1‖∇ 𝑓 ‖𝐿𝑝 (Ω) ≤
���L1/2

𝐷 𝑓
���
𝐿𝑝 (Ω)

≤ 𝐶‖∇ 𝑓 ‖𝐿𝑝 (Ω) , (1.2)

where 1 < 𝑝 < min{𝑛, 𝑝(L), 3 + 𝜖}. If Ω is 𝐶1, then (1.2) holds for all 1 < 𝑝 < min{𝑛, 𝑝(L)}.
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Remark 1.3. The version of (1.1) for Neumann boundary operators L𝑁 has been recently proved in [9]
on complete manifolds with ends. Although the results in [9] were presented in smooth manifolds setting,
their proofs extend to exterior Lipschitz domains almost identically and show that, for all 𝑝 ∈ (1,∞),���L1/2

𝑁 𝑓
���
𝐿𝑝 (Ω)

≤ 𝐶‖∇ 𝑓 ‖𝐿𝑝 (Ω) .

Note that the heat kernel satisfies two side Gaussian bounds; see [16, Proof of Theorem 1.2].

For the case L = Δ being the Laplacian operator and Ω being 𝐶1, 𝑝(L) = ∞ and 𝜖 = ∞. In this case,
it follows from the above results that ∇Δ−1/2

𝐷 is bounded on 𝐿 𝑝 (Ω) for 1 < 𝑝 < 𝑛. By the unboundedness
results on the Riesz transform ∇Δ−1/2

𝐷 established in [10], the range (1, min{𝑛, 3 + 𝜀}) of p for (1.2) is
sharp; see also [16, 20].

The main purpose of this paper is to further investigate the case 𝑝 ≥ 𝑛. Note that from Theorem 1.2,
the boundedness of the Riesz transform ∇L−1/2

𝐷 depends on 𝑛, 𝑝(L), and the geometry of the boundary
𝜕Ω. All the dependences are essential; see the characterizations obtained by [16, Theorem 1.1], the
regularity dependence of the boundary by [18], and the counterexamples provided in [10, 20, 16].
However, for operator with nice coefficients and domain with nice boundary (𝐶1 or small Lipschitz
constant) such that 𝑝(L), 3 + 𝜖 ≥ 𝑛, we can find a suitable substitution of 𝑊̊1, 𝑝 (Ω) space for the
inequality (1.2) as following.

Let us assume that the matrix A in the operator L is in the space VMO(R𝑛) and satisfies the
perturbation

⨏
𝐵 (𝑥0 ,𝑟 )

|𝐴 − 𝐼𝑛×𝑛 | 𝑑𝑥 ≤ 𝐶

𝑟 𝛿
(GD)

for some 𝛿 > 0, all 𝑟 > 1, and all 𝑥0 ∈ R𝑛. Or we assume that 𝐴 ∈ CMO(R𝑛). In both cases, from [17]
and [14, Theorem 1], respectively, it is known that

𝑝(L) = ∞.

We have the following replacement for the Riesz inequality for 𝑝 ≥ 𝑛 and 𝑝 > 2.

Theorem 1.4. Let 𝑛 ≥ 2 and Ω ⊂ R𝑛 be an exterior 𝐶1 domain. Assume that 𝐴 ∈ VMO(R𝑛) satisfies
(𝐺𝐷) or 𝐴 ∈ CMO(R𝑛). Let 𝑝 > 2 and 𝑝 ∈ [𝑛,∞).

(i) The kernel space K𝑝 (L1/2
𝐷 ) of L1/2

𝐷 in 𝑊̊1, 𝑝 (Ω) coincides with Ã𝑝
0 (Ω) := {𝜙 ∈ 𝑊̊1, 𝑝 (Ω) :

L𝐷 𝑓 = 0}. Moreover, when 𝑛 ≥ 3, Ã𝑝
0 (Ω) = A𝑝

0 (Ω) := {𝑐(𝑢0 − 1) : 𝑐 ∈ R}, where 𝑢0 is the unique
solution in 𝑊1,2(Ω) ∩𝑊1, 𝑝 (Ω) of the problem{

−div(𝐴∇𝑢0) = 0 in Ω,
𝑢0 = 1 on 𝜕Ω;

when 𝑛 = 2, Ã𝑝
0 (Ω) = A𝑝

0 (Ω) := {𝑐(𝑢0 − 𝑢1) : 𝑐 ∈ R}, where 𝑢0 is the unique solution in
𝑊1,2 (Ω) ∩𝑊1, 𝑝 (Ω) of the problem {

−div(𝐴∇𝑢0) = 0 in Ω,
𝑢0 = 𝑢1 on 𝜕Ω,

and 𝑢1 ∈ 𝑊1, 𝑝 (R2) is a solution of the problem L𝑢 = 1
𝜎 (𝜕Ω) 𝛿𝜕Ω in R2. Here and thereafter, 𝜎(𝜕Ω)

denotes the surface measure of 𝜕Ω, and 𝛿𝜕Ω is the distribution on D(R2) as

〈𝛿𝜕Ω, 𝜑〉 :=
∫
𝜕Ω

𝜑 𝑑𝜎, ∀ 𝜑 ∈ D(R2).
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(ii) It holds for all 𝑓 ∈ 𝑊̊1, 𝑝 (Ω) that

inf
𝜙∈K𝑝 (L1/2

𝐷 )
‖∇ 𝑓 − ∇𝜙‖𝐿𝑝 (Ω) ≤ 𝐶

���L1/2
𝐷 𝑓

���
𝐿𝑝 (Ω)

, (1.3)

and consequently, it holds that

inf
𝜙∈K𝑝 (L1/2

𝐷 )
‖∇( 𝑓 − 𝜙)‖𝐿𝑝 (Ω) ∼

���L1/2
𝐷 𝑓

���
𝐿𝑝 (Ω)

.

The symbol 𝑓 ∼ 𝑔 means 𝑓 � 𝑔 and 𝑔 � 𝑓 , which stands for 𝑓 ≤ 𝐶𝑔 and 𝑔 ≤ 𝐶ℎ. The main new
ingredient that appeared in Theorem 1.4 is identifying the kernel K𝑝 (L1/2

𝐷 ) of L1/2
𝐷 in 𝑊̊1, 𝑝 (Ω) as the

space A𝑝
0 (Ω), which is motivated by the work of Amrouche, Girault and Giroire [1]. We can actually

establish a more general version of Theorem 1.4, provided that 𝑝(L) ≥ 𝑛 and the boundary 𝜕Ω is 𝐶1 or
with small Lipschitz constant; see Theorem 2.4 below.

Let us remark that we can have an explicit description in the exterior setting due to the boundedness
of the Riesz transform in R𝑛 for 1 < 𝑝 < ∞ and the special geometry of exterior domains. From
previous results of Riesz transforms from [3, 8, 17], we know in case of 𝑝 ∈ (2,∞), both local and
global geometry can destroy the boundedness of the Riesz transform. In particular, a local perturbation
of A may result in huge difference of behavior of the Riesz transform for 𝑝 > 2; see [17], for instance. So
generally speaking, it is hard (at least to us) to have an explicit description of the kernel space. For the
case of exterior domains, under the assumption of 𝑝(L) = ∞, we see that the kernel space that breaks
down the boundedness of the Riesz transform for 𝑝 ≥ 𝑛 and 𝑝 > 2 is actually only one-dimensional
subspace of 𝑊̊1, 𝑝 (Ω).

Finally, let us apply Theorem 1.4 to the mapping property of the gradient of heat semigroup, which
plays important roles in the study of of Schrödinger equations; see [11, 12, 13, 21, 22], for instance.
For the operator

√
𝑡∇𝑒−𝑡L𝐷 , it was known that there are no uniform 𝐿𝑝-bounds in t for 𝑝 > 𝑛; see [20,

Proposition 8.1]. As an application of (1.3) of Theorem 1.4, we have the following substitution.

Theorem 1.5. Let 𝑛 ≥ 2 and Ω ⊂ R𝑛 be an exterior 𝐶1 domain. Assume that 𝐴 ∈ VMO(R𝑛) satisfies
(𝐺𝐷) or 𝐴 ∈ CMO(R𝑛). Let 𝑝 > 2 and 𝑝 ∈ [𝑛,∞). Then it holds that

inf
𝜙∈K𝑝 (L1/2

𝐷 )

���√𝑡∇𝑒−𝑡L𝐷 𝑓 − ∇𝜙
���
𝐿𝑝 (Ω)

≤ 𝐶‖ 𝑓 ‖𝐿𝑝 (Ω) , ∀ 𝑡 > 0.

The proof is straightforward by using (1.3) and the analyticity of the heat semigroup, as

inf
𝜙∈K𝑝 (L1/2

𝐷 )

���√𝑡∇𝑒−𝑡L𝐷 𝑓 − ∇𝜙
���
𝐿𝑝 (Ω)

≤ 𝐶
���√𝑡L1/2

𝐷 𝑒−𝑡L𝐷 𝑓
���
𝐿𝑝 (Ω)

≤ 𝐶‖ 𝑓 ‖𝐿𝑝 (Ω) , ∀ 𝑡 > 0.

Moreover, noting that, for all 𝜙 ∈ K𝑝 (L1/2
𝐷 ),

𝜕𝑡𝑒
−𝑡L𝐷𝜙 = −L𝐷𝑒−𝑡L𝐷𝜙 = −𝑒−𝑡L𝐷L𝐷𝜙 = 0,

we find that 𝑒−𝑡L𝐷𝜙 = 𝜙 for all 𝑡 > 0.
In the particular case L := Δ and Ω := R𝑛 \ 𝐵(0, 1), it is clear that the kernel space is exactly as

K𝑝 (Δ1/2
𝐷 ) = Ã𝑝

0 (Ω) =
{
{𝑐(1 − |𝑥 |2−𝑛) : |𝑥 | > 1, 𝑐 ∈ R}, 𝑛 ≥ 3,
{𝑐 log |𝑥 | : |𝑥 | > 1, 𝑐 ∈ R}, 𝑛 = 2,

(1.4)

where 𝑝 ≥ 𝑛 and 𝑝 > 2. We therefore have the following corollary.
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Corollary 1.6. Let 𝑛 ≥ 2 and Ω := R𝑛 \ 𝐵(0, 1). Let 𝑝 > 2 and 𝑝 ∈ [𝑛,∞). Then it holds that

inf
𝑐∈R

����√𝑡∇𝑒−𝑡Δ𝐷 𝑓 − 𝑐𝑥

|𝑥 |𝑛

����
𝐿𝑝 (Ω)

≤ 𝐶‖ 𝑓 ‖𝐿𝑝 (Ω) , ∀ 𝑡 > 0.

It is clear from [20, Proposition 8.1] that in the LHS of the last inequality, the infimum for large time
t is not attained at 𝑐 = 0. Moreover, since for 𝑓 ∈ 𝐿 𝑝 (Ω),

√
𝑡∇𝑒−𝑡L𝐷 𝑓 does belong to 𝐿 𝑝 (Ω) (without

uniform bound in t), the infimum shall be attained at the finite c which depends on f and t.
We shall first prove an intermediate version of Theorem 1.4 in Section 2. We shall then show the

equivalence of the spaces A𝑝
0 (Ω), Ã

𝑝
0 (Ω) and 𝐾𝑝 (L1/2

𝐷 ) and complete the proof of Theorem 1.4 in
Section 3.

Throughout the whole paper, we always denote by C or c a positive constant which is independent
of the main parameters, but it may vary from line to line. Furthermore, for any 𝑞 ∈ [1,∞], we denote
by 𝑞′ its conjugate exponent – namely, 1/𝑞 + 1/𝑞′ = 1. Finally, for any measurable set 𝐸 ⊂ R𝑛 and
(vector-valued or matrix-valued) function 𝑓 ∈ 𝐿1 (𝐸), we denote the integral

∫
𝐸
| 𝑓 (𝑥) | 𝑑𝑥 simply by∫

𝐸
| 𝑓 | 𝑑𝑥 and, when |𝐸 | < ∞, we use the notation

( 𝑓 )𝐸 :=
⨏

𝐸
𝑓 (𝑥) 𝑑𝑥 :=

1
|𝐸 |

∫
𝐸

𝑓 (𝑥) 𝑑𝑥.

2. On boundedness of the Riesz transform

In this section, we prove the following more general version Theorem 2.4 of Theorem 1.4(ii) with
K𝑝 (L1/2

𝐷 ) replaced by Ã𝑝
0 (Ω), which is defined as

Ã𝑝
0 (Ω) =

{
𝑤 ∈ 𝑊̊1, 𝑝 (Ω) : L𝐷𝑤 = 0

}
.

Let us begin with some necessary notations.

Definition 2.1. Let L := −div(𝐴∇·) be a second-order divergence form elliptic operator on R𝑛. Denote
by (𝑞(L)′, 𝑞(L)) the interior of the maximal interval of exponents 𝑞 ∈ [1,∞] such that the operator
∇L−1div is bounded on 𝐿𝑞 (R𝑛).

Furthermore, let O be a bounded Lipschitz domain of R𝑛 and let L𝐷,𝑂 := −div(𝐴∇·) be a second-
order divergence form elliptic operator on O subject to the Dirichlet boundary condition. Similarly,
denote by (𝑞(L𝐷,𝑂)′, 𝑞(L𝐷,𝑂)) the interior of the maximal interval of exponents 𝑞 ∈ [1,∞] such that
∇L−1

𝐷,𝑂div is bounded on 𝐿𝑞 (𝑂).
Remark 2.2. It is well known that there exists a constant 𝜀0 ∈ (0,∞) depending on the matrix A
and n such that (2 − 𝜀0, 2 + 𝜀0) ⊂ (𝑞(L)′, 𝑞(L)) (see, for instance, [14]). Similarly, there exists a
constant 𝜀1 ∈ (0,∞) depending on A, n, and the Lipschitz constant of O such that (2 − 𝜀1, 2 + 𝜀1) ⊂
(𝑞(L𝐷,𝑂)′, 𝑞(L𝐷,𝑂)).
Remark 2.3. Note that 𝑞(L) = 𝑝(L). In fact, since for 1 < 𝑝 < ∞ it holds that���L1/2 𝑓

���
𝐿𝑝 (R𝑛)

≤ 𝐶‖∇ 𝑓 ‖𝐿𝑝 (R𝑛)

(see [4]), one further has���L−1/2div
���
𝑝→𝑝

=
���L1/2L−1div

���
𝑝→𝑝

≤ 𝐶
��∇L−1div

��
𝑝→𝑝

,

which by duality implies that the 𝐿𝑝-boundedness of ∇L−1div implies 𝐿 𝑝′-boundedness of ∇L−1/2.
However, note that for 𝑝 ∈ (1, 𝑝(L)), ∇L−1/2 is bounded on 𝐿 𝑝 (R𝑛). Therefore, for 𝑝 ∈ (𝑝(L)′, 𝑝(L)),
we have that
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��∇L−1div
��
𝑝→𝑝

=
���∇L−1/2

(
L−1/2div

)���
𝑝→𝑝

≤
���∇L−1/2

���
𝑝→𝑝

���∇L−1/2
���
𝑝′→𝑝′

< ∞.

Thus, we have 𝑞(L) = 𝑝(L).
In what follows, for any 𝑥 ∈ R𝑛 and 𝑟 ∈ (0,∞), we always let 𝐵(𝑥, 𝑟) := {𝑦 ∈ R𝑛 : |𝑦 − 𝑥 | < 𝑟}.

Note that on R𝑛, the maximal interval for the 𝐿 𝑝-boundedness of the Riesz transform is open (see, for
instance, [8]), so we may assume that 𝑝(L) = 𝑞(L) > 𝑛.

Theorem 2.4. Let 𝑛 ≥ 2 and Ω ⊂ R𝑛 be an exterior Lipschitz domain. Take a large 𝑅 ∈ (0,∞) such
that Ω𝑐 ⊂ 𝐵(0, 𝑅). Let Ω𝑅 := Ω ∩ 𝐵(0, 𝑅). Assume that min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )} > 𝑛 and 2 < 𝑝 ∈
[𝑛, min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )}). Then there exists a positive constant C such that, for any 𝑓 ∈ 𝑊̊1, 𝑝 (Ω),

inf
𝜙∈Ã𝑝

0 (Ω)
‖∇ 𝑓 − ∇𝜙‖𝐿𝑝 (Ω) ≤ 𝐶

���L1/2
𝐷 𝑓

���
𝐿𝑝 (Ω)

,

where Ã𝑝
0 (Ω) = {𝜙 ∈ 𝑊̊1, 𝑝 (Ω) : L𝐷 𝑓 = 0}.

To prove Theorem 2.4, let us first begin with the following several lemmas.
Let X be a Banach space and Y a closed subspace of X. Denote by 𝑋∗ the dual space of X. Let

𝑋∗⊥𝑌 := { 𝑓 ∈ 𝑋∗ : for all 𝑥 ∈ 𝑌, 〈 𝑓 , 𝑥〉} = 0,

where 〈·, ·〉 denotes the duality pairing between 𝑋∗ and X. That is, 𝑋∗⊥𝑌 denotes the subspace of 𝑋∗

orthogonal to Y.
Meanwhile, for any given 𝑚 ∈ N ∪ {0}, we denote by P𝑚 the space of polynomials on R𝑛 of degree

less than or equal to m; if m is a strictly negative integer, we set by convention P𝑚 = {0}. Moreover, for
any 𝑠 ∈ R, denote by �𝑠� the maximal integer not more than s.

Then we have the following conclusion on the isomorphism property of the divergence operator div
which was obtained in [2, Propositions 4.1 and 9.2].

Lemma 2.5. Let 𝑛 ≥ 2, 𝑝 ∈ (1,∞) and 𝑝′ ∈ (1,∞) be given by 1/𝑝 + 1/𝑝′ = 1. Then
the divergence operator div is an isomorphism from 𝐿𝑝 (R𝑛)/𝐻𝑝 to 𝑊−1, 𝑝 (R𝑛)⊥P �1−𝑛/𝑝′ � , where
𝐻𝑝 := {𝑣 ∈ 𝐿 𝑝 (R𝑛) : div(𝑣) = 0 in the sense of distributions}.

Lemma 2.6. Let 𝑝 ∈ (2,∞) and 𝑓 ∈ 𝑊−1, 𝑝 (R𝑛) with compact support. Then 𝑓 ∈ 𝑊−1,2 (R𝑛), and
there exists a positive constant C, depending only on p and the support of f, such that

‖ 𝑓 ‖𝑊 −1,2 (R𝑛) ≤ 𝐶‖ 𝑓 ‖𝑊 −1, 𝑝 (R𝑛) .

Lemma 2.6 is just [1, Lemma 2.1].

Lemma 2.7. Let 𝑛 ≥ 2 and 𝑝 ∈ (2, 𝑞(L)). Assume that 𝑓 ∈ 𝑊−1, 𝑝 (R𝑛) has compact support. When
𝑛 ≥ 3, the problem

L𝑢 = 𝑓 in R𝑛 (2.1)

has a unique solution u in 𝑊1,2 (R𝑛) ∩𝑊1, 𝑝 (R𝑛).
When 𝑛 = 2, if f further satisfies the compatibility condition 〈 𝑓 , 1〉 = 0, then the problem (2.1) has a

unique solution u in 𝑊1,2(R2) ∩𝑊1, 𝑝 (R2) up to constants.

Proof. When 𝑛 ≥ 3, by the assumption that 𝑓 ∈ 𝑊−1, 𝑝 (R𝑛) has compact support and Lemma 2.6, we
conclude that 𝑓 ∈ 𝑊−1,2(R𝑛). From Lemma 2.5, there exists 𝐹 ∈ 𝐿 𝑝 (R𝑛) ∩𝐿2(R𝑛) such that 𝑓 = div 𝐹.
From this, the definition of the interval (𝑞(L)′, 𝑞(L)), and the assumption 𝑝 ∈ (2, 𝑞(L)), it follows that
the equation (2.1) has a unique solution 𝑢 ∈ 𝑊1,2(R𝑛) ∩𝑊1, 𝑝 (R𝑛).

When 𝑛 = 2, by the assumption that 𝑓 ∈ 𝑊−1, 𝑝 (R𝑛) has compact support and Lemma 2.6, we
conclude that 𝑓 ∈ 𝑊−1,2 (R𝑛). From this together with the compatibility condition 〈 𝑓 , 1〉 = 0, we
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deduce from Lemma 2.5 that there exists 𝐹 ∈ 𝐿 𝑝 (R𝑛) ∩ 𝐿2 (R𝑛) such that 𝑓 = div 𝐹. Using this
and the assumption 𝑝 ∈ (2, 𝑞(L)) again, we conclude that the problem (2.1) has a unique solution
𝑢 ∈ 𝑊1,2(R2) ∩𝑊1, 𝑝 (R2) up to constants. This finishes the proof of Lemma 2.7. �

Lemma 2.8. Let 𝑛 ≥ 2 and Ω ⊂ R𝑛 be an exterior Lipschitz domain. Take a large 𝑅 ∈ (0,∞)
such that Ω𝑐 ⊂ 𝐵(0, 𝑅) and let Ω𝑅 := Ω ∩ 𝐵(0, 𝑅). Let 𝑝 ∈ (2, min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )}). Assume that
𝑓 ∈ 𝑊̊−1, 𝑝 (Ω) has compact support and its support is contained in 𝐵(0, 𝑅). Then the Dirichlet problem{

−div(𝐴∇𝑢) = 𝑓 in Ω,
𝑢 = 0 on 𝜕Ω

(2.2)

has a unique solution u in 𝑊̊1,2 (Ω) ∩ 𝑊̊1, 𝑝 (Ω).
Let 𝑠 ∈ (0, 1) and 𝑝 ∈ (1,∞). For the exterior Lipschitz domain (or the bounded Lipschitz domain)

Ω of R𝑛, denote by 𝑊 𝑠, 𝑝 (𝜕Ω) the fractional Sobolev space on 𝜕Ω (see, for instance, [23, Section 2.4.3]
for its definition). To show Lemma 2.8, we need the following conclusion.
Lemma 2.9. Let 𝑛 ≥ 2 and 𝑂 ⊂ R𝑛 be a bounded Lipschitz domain. Let 𝑝 ∈ (2, 𝑞(L𝐷,𝑂)). Assume
that 𝑓 ∈ 𝑊̊−1, 𝑝 (𝑂) and 𝑔 ∈ 𝑊1/𝑝′, 𝑝 (𝜕𝑂). Then the Dirichlet problem{

−div(𝐴∇𝑣) = 𝑓 in 𝑂,
𝑣 = 𝑔 on 𝜕𝑂

(2.3)

has a unique solution v in 𝑊1, 𝑝 (𝑂).
Proof. We first prove that there exists a solution 𝑣 ∈ 𝑊1, 𝑝 (𝑂) for the problem (2.3). Indeed, by
𝑔 ∈ 𝑊1/𝑝′, 𝑝 (𝜕𝑂) and the converse trace theorem for Sobolev spaces (see, for instance, [23, Section
2.5.7, Theorem 5.7]), we find that there exists a function 𝑤1 ∈ 𝑊1, 𝑝 (𝑂) such that 𝑤1 = 𝑔 on 𝜕𝑂.
Moreover, it is easy to find that −div(𝐴∇𝑤1) ∈ 𝑊̊−1, 𝑝 (𝑂). Furthermore, from the assumption that
𝑝 ∈ (2, 𝑞(L𝐷,𝑂)), it follows that there exists a unique 𝑤2 ∈ 𝑊̊1, 𝑝 (𝑂) satisfying{

−div(𝐴∇𝑤2) = 𝑓 + div(𝐴∇𝑤1) in 𝑂,
𝑤2 = 0 on 𝜕𝑂.

Thus, 𝑣 := 𝑤1 + 𝑤2 ∈ 𝑊1, 𝑝 (𝑂) is a solution of the problem (2.3).
Now, we show that the solution of (2.3) is unique. Assume that 𝑣1, 𝑣2 ∈ 𝑊1, 𝑝 (𝑂) are solutions of

(2.3). Then div(𝐴∇(𝑣1 − 𝑣2)) = 0 in O and 𝑣1 − 𝑣2 = 0 on 𝜕𝑂. Thus, 𝑣1 = 𝑣2 almost everywhere in O.
This finishes the proof of Lemma 2.9. �

Now, we prove Lemma 2.8 by using Lemmas 2.7 and 2.9.

Proof of Lemma 2.8. Suppose that supp 𝑓 ⊂ 𝐵(0, 𝑅) and take a bump function 𝜓𝑅 such that 𝜓𝑅 = 1
on 𝐵(0, 𝑅), supp𝜓𝑅 ⊂ 𝐵(0, 𝑅 + 1) and |∇𝜓𝑅 | ≤ 1.

For any 𝑔 ∈ D(Ω), by the fact ‖𝑔‖𝑊̊ 1, 𝑝′ (Ω) is equivalent to ‖∇𝑔‖𝐿𝑝′ (Ω) (see Remark 1.1), we have

|〈 𝑓 , 𝑔〉| = |〈 𝑓 , 𝑔𝜓𝑅〉| ≤ ‖ 𝑓 ‖𝑊̊ −1, 𝑝 (Ω) ‖∇(𝑔𝜓𝑅)‖𝐿𝑝′ (Ω) (2.4)

≤ ‖ 𝑓 ‖𝑊̊ −1, 𝑝 (Ω)
[
‖∇𝑔‖𝐿𝑝′ (𝐵 (0,𝑅+1)∩Ω) + 𝐶 (𝑅)‖𝑔‖𝐿𝑝′ (𝐵 (0,𝑅+1)∩Ω)

]
≤ 𝐶 (𝑅)‖ 𝑓 ‖𝑊̊ −1, 𝑝 (Ω)

[
‖∇𝑔‖𝐿2 (Ω) +

(∫
Ω

|𝑔(𝑥) |2

1 + |𝑥 |2
𝑑𝑥

)1/2]
≤ 𝐶 (𝑅)‖ 𝑓 ‖𝑊̊ −1, 𝑝 (Ω) ‖𝑔‖𝑊̊ 1,2 (Ω) ,

for 𝑛 ≥ 3, which implies that 𝑓 ∈ 𝑊̊−1,2 (Ω). For 𝑛 = 2, simply replacing
∫
Ω

|𝑔 (𝑥) |2
1+|𝑥 |2 𝑑𝑥 by∫

Ω
|𝑔 (𝑥) |2

(1+|𝑥 |2) ln2 (2+|𝑥 |2) 𝑑𝑥 gives the same conclusion.
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Thus, 𝑓 ∈ 𝑊̊−1,2 (Ω), which, together with the Lax–Milgram theorem, further implies that the
Dirichlet problem (2.2) has a unique solution 𝑢 ∈ 𝑊̊1,2 (Ω).

Next, we show 𝑢 ∈ 𝑊̊1, 𝑝 (Ω). We first assume that

𝑝 ∈
(
2, min

{
𝑞(L), 𝑞(L𝐷,Ω𝑅 ),

2𝑛
𝑛 − 2

})
when 𝑛 ≥ 3 or 𝑝 ∈ (2, min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )}) when 𝑛 = 2.

Let 𝜑1, 𝜑2 ∈ 𝐶∞(R𝑛) satisfy 0 ≤ 𝜑1, 𝜑2 ≤ 1, supp (𝜑1) ⊂ 𝐵(0, 𝑅 + 1), 𝜑1 ≡ 1 on 𝐵(0, 𝑅), and
𝜑1 + 𝜑2 ≡ 1 in R𝑛. Extend u by zero in Ω𝑐 and let 𝑢 = 𝑢1 + 𝑢2, where 𝑢1 := 𝑢𝜑1 and 𝑢2 := 𝑢𝜑2. Then

div(𝐴∇𝑢2) = div(𝐴∇(𝑢𝜑2)) in R𝑛.

From 𝑢 ∈ 𝑊̊1,2 (Ω) and the assumptions that 𝜑2 ∈ 𝐶∞(R𝑛) and 𝜑2 ≡ 1 on R𝑛\𝐵(0, 𝑅 + 1), we infer
that 𝑢𝜑2 ∈ 𝑊1,2 (Ω ∩ 𝐵(0, 𝑅 + 1)) and hence ∇(𝑢𝜑2) ∈ 𝐿2 (R𝑛), which, together with the assumption
𝐴 ∈ 𝐿∞(R𝑛;R𝑛×𝑛), further implies that 𝐴∇(𝑢𝜑2) ∈ 𝐿2 (R𝑛).

Furthermore, it is straight to see that

div(𝐴∇(𝑢𝜑2)) = 𝑓 𝜑2 − 𝐴∇𝑢 · ∇𝜑2 − div(𝑢𝐴∇𝜑2) := 𝑔

in the weak sense. By the assumption 𝑓 ∈ 𝑊̊−1, 𝑝 (Ω), we conclude that 𝑓 𝜑2 ∈ 𝑊̊−1, 𝑝 (Ω). Meanwhile,
from 𝑢 ∈ 𝑊̊1,2(Ω) and the assumptions that 𝜑2 ∈ 𝐶∞(R𝑛), 0 ≤ 𝜑2 ≤ 1, and 𝜑2 ≡ 1 on R𝑛\𝐵(0, 𝑅 + 1),
we deduce that 𝐴∇𝑢 · ∇𝜑2 ∈ 𝐿2 (Ω∩𝐵(0, 𝑅 +1)), which, combined with the Sobolev inequality, further
implies that 𝐴∇𝑢 · ∇𝜑2 ∈ 𝑊−1, 𝑝 (𝐵(0, 𝑅 + 1)). Moreover, by 𝑢 ∈ 𝑊1,2(Ω), we find that 𝑢 ∈ 𝐿 𝑝

loc(Ω),
which, together with the assumptions that 𝜑2 ∈ 𝐶∞(R𝑛) and supp (∇𝜑2) ⊂ 𝐵(0, 𝑅 + 1), further implies
that 𝐴𝑢∇𝜑2 ∈ 𝐿 𝑝 (Ω ∩ 𝐵(0, 𝑅 + 1)) and hence div(𝐴𝑢∇𝜑2) ∈ 𝑊̊−1, 𝑝 (Ω ∩ 𝐵(0, 𝑅 + 1)). Thus, we have
𝑔 ∈ 𝑊̊−1, 𝑝 (Ω ∩ 𝐵(0, 𝑅 + 1)). Extend g by zero in Ω𝑐 . Then 𝑔 ∈ 𝑊−1, 𝑝 (R𝑛). Therefore,

−div(𝐴∇𝑢2) = 𝑔 in R𝑛,

which, combined with Lemma 2.5 and 𝑝 ∈ (2, 𝑞(L)), further implies that 𝑢2 ∈ 𝑊1, 𝑝 (R𝑛).
Furthermore, from 𝑢 = 𝑢2 on 𝜕𝐵(0, 𝑅+1) and the trace theorem for Sobolev spaces (see, for instance,

[23, Section 2.5.4, Theorem 5.5]), it follows that 𝑢 ∈ 𝑊1/𝑝′, 𝑝 (𝜕𝐵(0, 𝑅 + 1)). Meanwhile, we have

⎧⎪⎪⎨⎪⎪⎩
−div(𝐴∇𝑢) = 𝑓 in Ω𝑅+1,
𝑢 = 0 on 𝜕Ω,
𝑢 = 𝑢2 on 𝜕𝐵(0, 𝑅 + 1),

(2.5)

where Ω𝑅+1 := Ω ∩ 𝐵(0, 𝑅 + 1). By the assumption 𝑝 < 𝑞(L𝐷,Ω𝑅+1 ) and Lemma 2.9, we conclude that
the problem (2.5) has a unique solution in 𝑊1, 𝑝 (Ω𝑅+1), which further implies that 𝑢 ∈ 𝑊1, 𝑝 (Ω𝑅+1).
From this, 𝑢 ∈ 𝑊̊1,2(Ω), 𝑢2 ∈ 𝑊1, 𝑝 (R𝑛), and the fact that 𝑢 = 𝑢2 on R𝑛\𝐵(0, 𝑅 + 1), we deduce that
𝑢 ∈ 𝑊1, 𝑝 (Ω) with any given

𝑝 ∈
(
2, min

{
𝑞(L), 𝑞(L𝐷,Ω𝑅+1 ),

2𝑛
𝑛 − 2

})
when 𝑛 ≥ 3 or any given 𝑝 ∈ (2, min{𝑞(L), 𝑞(L𝐷,Ω𝑅+1 )}) when 𝑛 = 2. Then, using a bootstrap argument
(see, for instance, [1, p. 63]), we find that 𝑢 ∈ 𝑊̊1, 𝑝 (Ω) with any given 𝑝 ∈ (2, min{𝑞(L), 𝑞(L𝐷,Ω𝑅+1 )}).
This finishes the proof of Lemma 2.8. �

Lemma 2.10. Let 𝑛 ≥ 2 and Ω ⊂ R𝑛 be an exterior Lipschitz domain. Take a large 𝑅 ∈ (0,∞) such
that Ω𝑐 ⊂ 𝐵(0, 𝑅) and let Ω𝑅 := Ω ∩ 𝐵(0, 𝑅). Assume that min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )} > 𝑛. Let 𝑝 > 2 and
𝑝 ∈ [𝑛, min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )}). Assume further that 𝑓 ∈ 𝑊̊−1, 𝑝 (Ω) and
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Ã𝑝
0 (Ω) =

{
𝑤 ∈ 𝑊̊1, 𝑝 (Ω) : L𝐷𝑤 = 0

}
.

Then the problem {
−div(𝐴∇𝑢) = 𝑓 in Ω,
𝑢 = 0 on 𝜕Ω

(2.6)

has a unique solution u in 𝑊̊1, 𝑝 (Ω)/Ã𝑝
0 (Ω), and there exists a positive constant C independent of f

such that

inf
𝜙∈Ã𝑝

0 (Ω)
‖∇𝑢 − ∇𝜙‖𝐿𝑝 (Ω) ≤ 𝐶‖ 𝑓 ‖𝑊̊ −1, 𝑝 (Ω) .

Remark 2.11. Note that the above lemma is nontrivial only if min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )} ≥ 𝑛 and
min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )} > 2. This is not surprise, since by [16, Theorem 1.1] and a similar proof of
[16, Theorem 1.4] via using the role of 𝑞(L𝐷,Ω𝑅 ) instead of using [25, Theorem B & Theorem C] there,
the Riesz operator ∇L−1/2 is bounded for 𝑝 ∈ (1, 𝑛) ∪ (1, 2]. In this case, the kernel A𝑝

0 (Ω) must be
trivial (i.e., equal zero).
Proof of Lemma 2.10. By the Closed Range Theorem of Banach (see, for instance, [5, Theorem 5.11-
5]), we find that there exists a vector-valued function 𝐹 ∈ 𝐿𝑝 (Ω) such that 𝑓 = div𝐹 in Ω. Extend F by
zero in Ω𝑐 and still denote this extension by F. Let 𝑓̃ := div𝐹. Then 𝑓̃ ∈ 𝑊−1, 𝑝 (R𝑛). From Lemma 2.5,
the assumption that 𝑝 ∈ (2, 𝑞(L)), and the definition of the interval (𝑞(L)′, 𝑞(L)), it follows that there
exists a unique 𝑤 ∈ 𝑊1, 𝑝 (R𝑛) up to constants such that

L𝑤 = 𝑓̃ in R𝑛.

Moreover, consider the Dirichlet problem{
−div(𝐴∇𝑧) = 0 in Ω,
𝑧 = −𝑤 on 𝜕Ω.

(2.7)

Then the problem (2.7) has a unique solution 𝑧 ∈ 𝑊1,2(Ω) ∩𝑊1, 𝑝 (Ω). Indeed, take a large 𝑅 ∈ (0,∞)
such that Ω𝑐 ⊂ 𝐵(0, 𝑅) and let Ω𝑅 := Ω ∩ 𝐵(0, 𝑅). By 𝑤 ∈ 𝑊1, 𝑝 (R𝑛), we conclude that 𝑤 ∈
𝑊1/𝑝′, 𝑝 (𝜕Ω). Let 𝑢𝑧 satisfy

⎧⎪⎪⎨⎪⎪⎩
−div(𝐴∇𝑢𝑧) = 0 in Ω𝑅,
𝑢𝑧 = −𝑤 on 𝜕Ω,
𝑢𝑧 = 0 on 𝜕𝐵(0, 𝑅).

(2.8)

Then, from Lemma 2.9, we infer that the problem (2.8) has a unique solution 𝑢𝑧 ∈ 𝑊1, 𝑝 (Ω𝑅). Extend
𝑢𝑧 by zero on R𝑛\𝐵(0, 𝑅). Then 𝑢𝑧 ∈ 𝑊1,2(Ω) ∩𝑊1, 𝑝 (Ω). Let v satisfy{

−div(𝐴∇𝑣) = div(𝐴∇𝑢𝑧) in Ω,
𝑣 = 0 on 𝜕Ω.

(2.9)

By 𝑢𝑧 ∈ 𝑊1, 𝑝 (Ω) and 𝑢𝑧 ≡ 0 on R𝑛\𝐵(0, 𝑅), we conclude that div(𝐴∇𝑢𝑧) ∈ 𝑊̊−1, 𝑝 (Ω) has compact
support. From this and Lemma 2.8, it follows that the problem (2.9) has a unique solution 𝑣 ∈ 𝑊̊1,2(Ω)∩
𝑊̊1, 𝑝 (Ω). Thus, the problem (2.7) has a unique solution 𝑧 = 𝑢𝑧 + 𝑣 ∈ 𝑊1,2(Ω) ∩ 𝑊1, 𝑝 (Ω). Then
𝑢 = 𝑤 + 𝑧 ∈ 𝑊̊1, 𝑝 (Ω) is a solution of the problem (2.6).

Meanwhile, by the definition of the space Ã𝑝
0 (Ω), we find that the problem (2.6) has a unique solution

in 𝑊̊1, 𝑝 (Ω)/Ã𝑝
0 (Ω). Furthermore, a duality argument shows that

‖ 𝑓 ‖𝑊̊ −1, 𝑝 (Ω) = ‖div(𝐴∇𝑢)‖𝑊̊ −1, 𝑝 (Ω) � ‖𝑢‖𝑊̊ 1, 𝑝 (Ω)/Ã𝑝
0 (Ω) ,
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which, together with the Open Mapping Theorem of Banach (see, for instance, [5, Theorem 5.6-2]),
further implies that

‖𝑢‖𝑊̊ 1, 𝑝 (Ω)/Ã𝑝
0 (Ω) � ‖ 𝑓 ‖𝑊̊ −1, 𝑝 (Ω) ,

namely,

inf
𝜙∈Ã𝑝

0 (Ω)
‖∇𝑢 − ∇𝜙‖𝐿𝑝 (Ω) � ‖ 𝑓 ‖𝑊̊ −1, 𝑝 (Ω) .

This finishes the proof of Lemma 2.10. �

Now, we prove Theorem 2.4 by using Lemma 2.10 and Theorem 1.2(i).

Proof of Theorem 2.4. Let 2 < 𝑝 ∈ [𝑛, min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )}). By Theorem 1.2(i) together with a
duality argument, we see that, for any given 𝑞 ∈ (1,∞) and any 𝑔 ∈ 𝐿𝑞 (Ω),���L1/2

𝐷 𝑔
���
𝑊̊ −1,𝑞 (Ω)

� ‖𝑔‖𝐿𝑞 (Ω) .

From this and Lemma 2.10, we infer that

inf
𝜙∈Ã𝑝

0 (Ω)
‖∇ 𝑓 − ∇𝜙‖𝐿𝑝 (Ω) � ‖L𝐷 𝑓 ‖𝑊̊ −1, 𝑝 (Ω) =

���L1/2
𝐷 L1/2

𝐷 𝑓
���
𝑊̊ −1, 𝑝 (Ω)

�
���L1/2

𝐷 𝑓
���
𝐿𝑝 (Ω)

.

This finishes the proof of Theorem 2.4. �

3. On the kernel space and completion of the proof

In this section, we first identify A𝑝
0 (Ω) with Ã𝑝

0 (Ω), and then with K𝑝 (L1/2
𝐷 ), and finally complete the

proof of Theorem 1.4.

Lemma 3.1. Let 𝑛 = 2, Ω ⊂ R2 be an exterior Lipschitz domain, and 𝑝 ∈ (2, 𝑞(L)). Then the problem

L𝑢 =
1

𝜎(𝜕Ω) 𝛿𝜕Ω in R2 (3.1)

has a unique solution 𝑢 ∈ 𝑊1, 𝑝 (R2) up to constants.

Proof. Let 𝑞 ∈ (2,∞) and 𝑡 ∈ (1,∞) be given by 1
𝑡 = 2

𝑞′ − 1. Then, by the Sobolev trace embedding
theorem (see, for instance, [23, Section 2.4.2, Theorem 4.2]), we find that, for any 𝜑 ∈ D(R2),����〈 1

𝜎(𝜕Ω) 𝛿𝜕Ω, 𝜑
〉���� = ���� 1

𝜎(𝜕Ω)

∫
𝜕Ω

𝜑(𝑥) 𝑑𝜎(𝑥)
���� ≤ 1

[𝜎(𝜕Ω)]1/𝑡 ‖𝜑‖𝐿𝑡 (𝜕Ω)

�
1

[𝜎(𝜕Ω)]1/𝑡 ‖𝜑‖𝑊 1,𝑞′ (Ω𝑐 ) �
1

[𝜎(𝜕Ω)]1/𝑡 ‖𝜑‖𝑊 1,𝑞′ (R2) ,

which, together with the fact that D(R2) is dense in 𝑊1,𝑞′ (R2), implies that 1
𝜎 (𝜕Ω) 𝛿𝜕Ω ∈ 𝑊−1,𝑞 (R2)

with any given 𝑞 ∈ (2,∞).
Let 𝑝 ∈ (2, 𝑞(L)). From Lemma 2.5 with 𝑛 = 2, we deduce that there exists 𝑓 ∈ 𝐿 𝑝 (R2) such that

div 𝑓 = 1
𝜎 (𝜕Ω) 𝛿𝜕Ω. By this and the assumption 𝑝 ∈ (2, 𝑞(L)), we further conclude that there exists

𝑢 ∈ 𝑊1, 𝑝 (R2) such that L𝑢 = 1
𝜎 (𝜕Ω) 𝛿𝜕Ω.

Moreover, if there exist 𝑢1, 𝑢2 ∈ 𝑊1, 𝑝 (R2) satisfying L𝑢1 = 1
𝜎 (𝜕Ω) 𝛿𝜕Ω = L𝑢2, then 𝑢1 − 𝑢2 ∈

𝑊1, 𝑝 (R2) and L(𝑢1 −𝑢2) = 0, which, together with 𝑝 ∈ (𝑞(L)′, 𝑞(L)), further implies that 𝑢1 −𝑢2 = 𝑐.
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Thus, the problem (3.1) has a unique solution 𝑢 ∈ 𝑊1, 𝑝 (R2) up to constants. This finishes the proof of
Lemma 3.1. �

The following was essentially obtained in [25].

Lemma 3.2. Let 𝑛 ≥ 2 and 𝑂 ⊂ R𝑛 be a bounded Lipschitz domain. If 𝐴 ∈ VMO(R𝑛), then there exists
a positive constant 𝜀0, depending only on n and the Lipschitz constant of O, such that, for any given
𝑝 ∈ ( 4+𝜀0

3+𝜀0
, 4 + 𝜀0) when 𝑛 = 2 or 𝑝 ∈ ( 3+𝜀0

2+𝜀0
, 3 + 𝜀0) when 𝑛 ≥ 3, ∇L−1

𝐷,𝑂div is bounded on 𝐿 𝑝 (𝑂). In
particular, if 𝜕𝑂 ∈ 𝐶1, it holds that 𝜀0 = ∞; that is, ∇L−1

𝐷,𝑂div is bounded on 𝐿 𝑝 (𝑂) for any 𝑝 ∈ (1,∞).

We now identify A𝑝
0 (Ω) with Ã𝑝

0 (Ω).

Proposition 3.3. Let 𝑛 ≥ 2, Ω ⊂ R𝑛 be an exterior Lipschitz domain, and 𝑝 ∈ (1,∞). Take a large
𝑅 ∈ (0,∞) such that Ω𝑐 ⊂ 𝐵(0, 𝑅) and let Ω𝑅 := Ω∩ 𝐵(0, 𝑅). Assume that min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )} > 𝑛
and 2 < 𝑝 ∈ [𝑛, min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )}). When 𝑛 ≥ 3,

Ã𝑝
0 (Ω) = A𝑝

0 (Ω) = {𝑐(𝑢0 − 1) : 𝑐 ∈ R},

where 𝑢0 is the unique solution in 𝑊1,2 (Ω) ∩𝑊1, 𝑝 (Ω) of the problem{
−div(𝐴∇𝑢0) = 0 in Ω,
𝑢0 = 1 on 𝜕Ω.

(3.2)

When 𝑛 = 2,

Ã𝑝
0 (Ω) = A𝑝

0 (Ω) = {𝑐(𝑢0 − 𝑢1) : 𝑐 ∈ R},

where 𝑢1 is a solution of the problem (3.1) and 𝑢0 is the unique solution in 𝑊1,2 (Ω) ∩𝑊1, 𝑝 (Ω) of the
problem {

−div(𝐴∇𝑢0) = 0 in Ω,
𝑢0 = 𝑢1 on 𝜕Ω.

(3.3)

Proof. For 2 < 𝑝 ∈ [𝑛, min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )}) and 𝜙 ∈ Ã𝑝
0 (Ω), extend 𝜙 by zero in Ω𝑐 . Then the

extension of 𝜙, still denoted by 𝜙, belongs to 𝑊1, 𝑝 (R𝑛) and satisfies that

div(𝐴∇𝜙) = 0 in Ω, div(𝐴∇𝜙) = 0 in Ω𝑐 , and 𝜙 = 0 on 𝜕Ω.

Since 𝜙 ∈ 𝑊1, 𝑝 (R𝑛), it follows that 𝜕𝜙
𝜕𝝂 ∈ 𝑊−1/𝑝,𝑝 (𝜕Ω), where 𝜕𝜙

𝜕𝝂 := (𝐴∇𝜙) · 𝝂 denotes the conormal
derivative of 𝜙 on 𝜕Ω, and 𝑊−1/𝑝,𝑝 (𝜕Ω) denotes the dual space of 𝑊1/𝑝,𝑝′ (𝜕Ω). Moreover, it is easy
to show that div(𝐴∇𝜙), as a distribution in R𝑛, satisfies that, for any 𝜑 ∈ D(R𝑛),

〈div(𝐴∇𝜙), 𝜑〉 = −
〈
𝜕𝜙

𝜕𝝂
, 𝜑

〉
𝜕Ω

, (3.4)

where 〈·, ·〉𝜕Ω denotes the duality pairing between 𝑊−1/𝑝,𝑝 (𝜕Ω) and 𝑊1/𝑝,𝑝′ (𝜕Ω). Furthermore, let h
denote the distribution defined by div(𝐴∇𝜙); that is, for any 𝜑 ∈ D(R𝑛),

〈ℎ, 𝜑〉 = 〈div(𝐴∇𝜙), 𝜑〉 = −
〈
𝜕𝜙

𝜕𝝂
, 𝜑

〉
𝜕Ω

,

which, combined with the Sobolev trace embedding theorem (see, for instance, [23, Section 2.5.4,
Theorem 5.5]), further implies that, for any 𝜑 ∈ D(R𝑛),
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|〈ℎ, 𝜑〉| ≤
����𝜕𝜙𝜕𝝂

����
𝑊 −1/𝑝,𝑝 (𝜕Ω)

‖𝜑‖𝑊 1/𝑝,𝑝′ (𝜕Ω) �

����𝜕𝜙𝜕𝝂
����
𝑊 −1/𝑝,𝑝 (𝜕Ω)

‖𝜑‖𝑊 1, 𝑝′ (Ω𝑐 )

�

����𝜕𝜙𝜕𝝂
����
𝑊 −1/𝑝,𝑝 (𝜕Ω)

‖𝜑‖𝑊 1, 𝑝′ (R𝑛) .

By this and the fact that D(R𝑛) is dense in 𝑊1, 𝑝′ (R𝑛), we conclude that ℎ ∈ 𝑊−1, 𝑝 (R𝑛) and h has a
compact support.

When 𝑛 ≥ 3, from Lemma 2.7, it follows that the problem, that div(𝐴∇𝑤) = ℎ in R𝑛, has a unique
solution in 𝑊1,2 (R𝑛) ∩𝑊1, 𝑝 (R𝑛). Therefore, 𝑤 − 𝜙 ∈ 𝑊1, 𝑝 (R𝑛) and div(𝐴∇(𝑤 − 𝜙)) = 0 in R𝑛. By
this and the assumption 2 < 𝑝 ∈ [𝑛, min{𝑞(L), 𝑞(L𝐷,Ω𝑅 )}), we find that 𝑤 − 𝜙 = 𝑐 with 𝑐 ∈ R, which,
together with the fact that div(𝐴∇𝜙) = 0 in Ω, implies that the restriction of w to Ω is the unique solution
in 𝑊1,2 (Ω) ∩𝑊1, 𝑝 (Ω) of the problem that div(𝐴∇𝑤) = 0 in Ω and 𝑤 = 𝑐 on 𝜕Ω. Thus, 𝑤 = 𝑐𝑢0 with
𝑢0 being the same as in (3.2) and 𝜙 = 𝑐(𝑢0 − 1). This shows Ã𝑝

0 (Ω) ⊂ A𝑝
0 (Ω).

When 𝑛 = 2, without the loss of generality, we can assume that 〈ℎ, 1〉 ≠ 0. Otherwise, 〈ℎ, 1〉 = 0,
and we see that ℎ ∈ 𝑊−1,2(R2) ∩𝑊−1, 𝑝 (R2). Then the same proof as in the case of 𝑛 ≥ 3 yields that
𝜙 = 𝑐(𝑢0 − 1) with 𝑢0 obtained by (3.2). However, since 1 ∈ 𝑊1,2(R2) ∩𝑊1, 𝑝 (R2), the uniqueness then
implies 𝑢0 = 1 and 𝜙 = 0.

Suppose now 〈ℎ, 1〉 ≠ 0. Let 𝑢1 ∈ 𝑊1, 𝑝 (R2) be a solution of the problem (3.1). Then 𝑢1 satisfies

div(𝐴∇𝑢1) = 0 in Ω, div(𝐴∇𝑢1) = 0 in Ω𝑐 , and 〈−div(𝐴∇𝑢1), 1〉 = 1.

Let 𝑤 ∈ 𝑊1,2(R2) ∩𝑊1, 𝑝 (R2) satisfy

div(𝐴∇𝑤) = ℎ + 〈ℎ, 1〉div(𝐴∇𝑢1) in R2. (3.5)

Indeed, by ℎ ∈ 𝑊−1, 𝑝 (R2) and

−div(𝐴∇𝑢1) =
1

𝜎(𝜕Ω) 𝛿𝜕Ω ∈ 𝑊−1, 𝑝 (R2),

we conclude that the right-hand side of (3.5) belongs to 𝑊−1, 𝑝 (R2). This, together with the fact that
both h and 1

𝜎 (𝜕Ω) 𝛿𝜕Ω have compact supports and Lemma 2.6, further implies that

ℎ + 〈ℎ, 1〉div(𝐴∇𝑢1) ∈ 𝑊−1,2 (R2).

Moreover, it is easy to find that

〈[ℎ + 〈ℎ, 1〉div(𝐴∇𝑢1)], 1〉 = 0.

Therefore, from this and Lemma 2.7, we deduce that the problem (3.5) has a unique solution
𝑤 ∈ 𝑊1,2(R2) ∩𝑊1, 𝑝 (R2) up to constants. Then, by the fact that w satisfies (3.5), we conclude that
𝑤 − 〈ℎ, 1〉𝑢1 − 𝜙 ∈ 𝑊1, 𝑝 (R2) and

div(𝐴∇[𝑤 − 〈ℎ, 1〉𝑢1 − 𝜙]) = 0 in R2,

where 𝜙 is as in (3.4), which, combined with 𝑝 ∈ (2, 𝑞(L)), implies that

𝜙 = 𝑤 − 〈ℎ, 1〉𝑢1 − 𝑐 in R2, (3.6)

where c is a constant.
From the boundary condition that 𝜙 = 0 on 𝜕Ω and (3.6), we deduce that 𝑤 = 𝑐 + 〈ℎ, 1〉𝑢1 on

𝜕Ω. Then the restriction of w to Ω is the unique solution in 𝑊1,2 (Ω) ∩𝑊1, 𝑝 (Ω) of the problem that
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div(𝐴∇𝑤) = 0 in Ω and 𝑤 = 𝑐 + 〈ℎ, 1〉𝑢1 on 𝜕Ω. Moreover, let 𝑤1 ∈ 𝑊1,2(Ω) ∩𝑊1, 𝑝 (Ω) be the unique
solution of the problem {

div(𝐴∇𝑤1) = 0 in Ω,
𝑤1 = 〈ℎ, 1〉𝑢1 on 𝜕Ω,

that is, 𝑤1 = 〈ℎ, 1〉𝑢0. Then, we find that 𝑤 = 𝑤1 + 𝑐 = 〈ℎ, 1〉𝑢0 + 𝑐. This, combined with (3.6), further
concludes that

𝜙 = 〈ℎ, 1〉(𝑢0 − 𝑢1).

This shows Ã𝑝
0 (Ω) ⊂ A𝑝

0 (Ω) for 𝑛 = 2.
The converse inclusion A𝑝

0 (Ω) ⊂ Ã𝑝
0 (Ω) is obvious, since constants belongs to 𝑊1, 𝑝 (R𝑛) for 𝑝 ≥ 𝑛

and 𝑢1 ∈ 𝑊1, 𝑝 (Ω) for 𝑛 = 2. �

Lemma 3.4. Let 𝑛 ≥ 2 and 𝑝 ∈ (1,∞). Suppose that 𝐴 ∈ VMO(R𝑛) satisfies (𝐺𝐷), or 𝐴 ∈ CMO(R𝑛).
Then the operator ∇L−1div is bounded on 𝐿 𝑝 (R𝑛).

Proof. The case 𝐴 ∈ CMO(R𝑛) follows from [14, Theorem 1]. For the case 𝐴 ∈ VMO(R𝑛) satisfying
(𝐺𝐷), it follows from [17] (see also [16, Theorem 5.1 and Proposition 5.2]) that ∇L−1/2 is bounded on
𝐿𝑝 (R𝑛) for 1 < 𝑝 < ∞. Thus, we have ��∇L−1div

��
𝑝→𝑝

< ∞,

which gives the desired conclusion. �

We also point out that when both the matrix A and Ω have nice smoothness, the function u as in (3.1)
can be represented by using the fundamental solution associated with L (see, for instance, [1, Theorem
2.7]).

Proposition 3.5. Let 𝑛 ≥ 2, Ω ⊂ R𝑛 be an exterior Lipschitz domain, and 𝑝 ∈ (1,∞).

(i) If Ω is 𝐶1, and 𝐴 ∈ CMO(R𝑛), or 𝐴 ∈ VMO(R𝑛) satisfies (𝐺𝐷), then, when 𝑛 ≥ 3, for any
𝑝 ∈ [𝑛,∞), Ã𝑝

0 (Ω) = {𝑐(𝑢0 − 1) : 𝑐 ∈ R} with 𝑢0 being the same as in (3.2); when 𝑛 = 2, for
any 𝑝 ∈ (2,∞), Ã𝑝

0 (Ω) = {𝑐(𝑢0 − 𝑢1) : 𝑐 ∈ R} with 𝑢0 being the same as in (3.2) and 𝑢1 being a
solution of the problem (3.1).

(ii) Assume L𝐷 := Δ𝐷 and Ω is 𝐶1. If 𝑛 ≥ 3 and 𝑝 ∈ [𝑛,∞), then Ã𝑝
0 (Ω) = {𝑐𝜙∗ : 𝑐 ∈ R}, where 𝜙∗

is the unique solution of the Dirichlet problem

⎧⎪⎪⎨⎪⎪⎩
Δ𝜙∗ = 0 in Ω,
𝜙∗ = 0 on 𝜕Ω,
𝜙∗(𝑥) → 1 as |𝑥 | → ∞.

If 𝑛 = 2 and 𝑝 ∈ (2,∞), then Ã𝑝
0 (Ω) = {𝑐𝜙∗ : 𝑐 ∈ R}, where 𝜙∗ is a harmonic function in Ω

satisfying that 𝜙∗ = 0 on 𝜕Ω and

⎧⎪⎪⎨⎪⎪⎩
𝜙∗(𝑥) = −𝑐0 ln |𝑥 | +𝑂 (|𝑥 |−1),
∇𝜙∗(𝑥) = −𝑐0∇ ln |𝑥 | +𝑂 (|𝑥 |−2),
∇2𝜙∗(𝑥) = 𝑂 (|𝑥 |−2),

as |𝑥 | → ∞. Here, 𝑐0 is a constant, and the notation 𝑂 (|𝑥 |−2) means that lim |𝑥 |→∞
|𝑥 |−2

𝑂 ( |𝑥 |−2) exists
and is finite.
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Proof. If 𝐴 ∈ CMO(R𝑛), or 𝐴 ∈ VMO(R𝑛) satisfies (𝐺𝐷), from Lemma 3.4, we infer that 𝑞(L) = ∞.
Moreover, by Lemma 3.2, it holds that 𝑞(L𝐷,Ω𝑅 ) = ∞. Therefore, by Proposition 3.3, we find that (i)
holds.

The conclusion of (ii) was obtained in [1, Theorem 2.7 and Remark 2.8] (see also [26, Remarks 5.3,
5.4, and 5.5]), and we omit the details here. This finishes the proof of Proposition 3.5. �

We prove Theorem 1.4 by using Theorem 2.4 and Proposition 3.5.

Proof of Theorem 1.4. (i) Assume that 𝐴 ∈ VMO(R𝑛) satisfies (𝐺𝐷), or 𝐴 ∈ CMO(R𝑛). Let 2 < 𝑝 ∈
[𝑛,∞). Let us show that K𝑝 (L1/2

𝐷 ) coincides with Ã𝑝
0 (Ω).

Take a large constant 𝑅 ∈ (0,∞) such that Ω𝑐 ⊂ 𝐵(0, 𝑅−1) and let Ω𝑅 := Ω∩𝐵(0, 𝑅). Then Ω𝑅 is a
bounded 𝐶1 domain ofR𝑛. By Lemma 3.4, we find that 𝑞(L) = ∞. Moreover, from Lemma 3.2, we infer
that 𝑞(L𝐷,Ω𝑅 ) = ∞. Therefore, by Theorem 2.4 and Proposition 3.5, it holds for any 𝑓 ∈ 𝑊̊1, 𝑝 (Ω) that

inf
𝜙∈Ã𝑝

0 (Ω)
‖∇ 𝑓 − ∇𝜙‖𝐿𝑝 (Ω) ≤ 𝐶

���L1/2
𝐷 𝑓

���
𝐿𝑝 (Ω)

.

This implies that K𝑝 (L1/2
𝐷 ) ⊂ Ã𝑝

0 (Ω).
Let us show the converse inclusion. Let 𝑢 ∈ A𝑝

0 (Ω). By Theorem 1.2(i), we see that L1/2
𝐷 𝑢 ∈ 𝐿 𝑝 (Ω).

Denote by {𝑝𝐷𝑡 }𝑡>0 the heat kernels of the heat semigroup {𝑒−𝑡L𝐷 }𝑡>0. By [7, Lemma 2.3], we further
find that there exists 𝛾 > 0 such that, for all 𝑡 > 0,∫

Ω

��∇𝑥 𝑝
𝐷
𝑡 (𝑥, 𝑦)

��2 exp
{
𝛾 |𝑥 − 𝑦 |2/𝑡

}
𝑑𝑥 ≤ 𝐶𝑡1−

𝑛
2 ,

which implies for 1 < 𝑞 < 2 that∫
Ω

��∇𝑥 𝑝
𝐷
𝑡 (𝑥, 𝑦)

��𝑞 exp
{
𝛾 |𝑥 − 𝑦 |2/(2𝑡)

}
𝑑𝑥 ≤ 𝐶𝑡

𝑞
2 −

𝑛
2 .

Thus, 𝑝𝐷𝑡 (𝑥, ·) ∈ 𝑊̊1,𝑞 (Ω) for 1 < 𝑞 < 2 and all 𝑡 > 0. Therefore, for each 𝑡 > 0, L𝐷𝑒−𝑡L𝐷𝑢 satisfies
that, for all 𝑥 ∈ Ω,

L𝐷𝑒−𝑡L𝐷𝑢(𝑥) =
∫
Ω
(L𝐷)𝑥 𝑝𝐷𝑡 (𝑥, 𝑦)𝑢(𝑦) 𝑑𝑦 =

∫
Ω
(L𝐷)𝑦 𝑝𝐷𝑡 (𝑥, 𝑦)𝑢(𝑦) 𝑑𝑦

= −
∫
Ω
𝐴(𝑦)∇𝑦 𝑝

𝐷
𝑡 (𝑥, 𝑦) · ∇𝑢(𝑦) 𝑑𝑦 =

∫
Ω
𝑝𝐷𝑡 (𝑥, 𝑦)L𝐷𝑢(𝑦) 𝑑𝑦 = 0,

where the second equality by symmetry of the heat kernel, the third equality by 𝑢 ∈ 𝑊̊1, 𝑝 (Ω) and
𝑝𝐷𝑡 (𝑥, ·) ∈ 𝑊̊1, 𝑝′ (Ω), 1/𝑝 + 1/𝑝′ = 1, 𝑝 > 𝑛 when 𝑛 = 2 and 𝑝 ≥ 𝑛 when 𝑛 ≥ 3. We thus see that

L1/2
𝐷 𝑢 =

1
√
𝜋

∫ ∞

0
L𝐷𝑒−𝑠L𝐷𝑢

𝑑𝑠
√
𝑠
=

1
√
𝜋

∫ ∞

0
𝑒−𝑠L𝐷L𝐷𝑢

𝑑𝑠
√
𝑠
= 0,

which implies that Ã𝑝
0 (Ω) ⊂ K𝑝 (L1/2

𝐷 ).
(ii) By (i) and Theorem 2.4, we conclude that, for all 𝑓 ∈ 𝑊̊1, 𝑝 (Ω),

inf
𝜙∈K𝑝 (L1/2

𝐷 )
‖∇ 𝑓 − ∇𝜙‖𝐿𝑝 (Ω) ≤ 𝐶

���L1/2
𝐷 𝑓

���
𝐿𝑝 (Ω)

.
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This further implies that, for all 𝑓 ∈ 𝑊̊1, 𝑝 (Ω),

inf
𝜙∈K𝑝 (L1/2

𝐷 )
‖∇ 𝑓 − ∇𝜙‖𝐿𝑝 (Ω) ≤ 𝐶

���L1/2
𝐷 𝑓

���
𝐿𝑝 (Ω)

.

Moreover, by Theorem 1.2(i), it holds for all 𝑓 ∈ 𝑊̊1, 𝑝 (Ω) and 𝜙 ∈ K𝑝 (L1/2
𝐷 ) that���L1/2

𝐷 𝑓
���
𝐿𝑝 (Ω)

=
���L1/2

𝐷 ( 𝑓 − 𝜙)
���
𝐿𝑝 (Ω)

≤ 𝐶‖∇( 𝑓 − 𝜙)‖𝐿𝑝 (Ω) .

The last two inequalities give the desired conclusion and complete the proof. �
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