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Attrition is monotonic when agents leaving multi-period studies do not return. Under
a general missing at random (MAR) assumption, we study efficiency in estimation of
parameters defined by moment restrictions on the distributions of the counterfactuals
that were unrealized due to monotonic attrition. We discuss novel issues related to
overidentification, usability of sample units, and the information content of various
MAR assumptions for estimation of such parameters. We propose a standard doubly
robust estimator for these parameters by equating to zero the sample analog of
their respective efficient influence functions. Our proposed estimator performs well
and vastly outperforms other estimators in our simulation experiment and empirical
illustration.

1. INTRODUCTION

Subjects/respondents often leave at various junctures of multi-period/phase stud-
ies/surveys. If they do not return, then that creates a monotonically missing dataset
with respect to the original cohort of the study/survey. Monotonicity is reflected by
the fact that the members of the original cohort that are observed in a later period
are also observed in earlier periods. Equivalently, monotonicity is also reflected
by the fact that the variables observed for those that left after an earlier period are
also observed for those that left after later periods.

Attrition in the sample causes problems with statistical analysis. First, the
sample’s representativeness of the original population may be lost. Second, even if
representativeness is restored by virtue of plausible assumptions such as missing-
ness at random (selection on observables), the loss in data leads to imprecision
in estimation; therefore, efficient estimation that optimally uses the remaining
available information is of utmost importance.
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2 JEAN-LOUIS BARNWELL AND SARASWATA CHAUDHURI

Our paper is about efficiency in estimation with monotonically missing at
random (MAR) data. We build on the early work of Robins and Rotnitzky (1992),
Robins, Rotnitzky, and Zhao (1995), Rotnitzky and Robins (1995), Fitzgerald,
Gottschalk, and Moffitt (1996), Abowd, Crepon, and Kramarz (2001), Wooldridge
(2002), Nicoletti (2006), Wooldridge (2010), etc. in the biostatistics and economet-
rics literature extending them to subpopulations defined by the monotone pattern of
missingness. Such subpopulations are interesting because they reflect the attrition
behavior of economic agents, e.g., agents left school or job or marriage after period
one, after period two,..., never left.

To set the benchmark that any regular estimator should strive to reach, we obtain
the efficiency bound for estimating parameters in general moment restrictions
models. Our proposed estimator can reach this bound, and belongs in the class
of two-step estimators satisfying double robustness with respect to the underlying
nuisance parameters that can be estimated parametrically or nonparametrically.
This class of estimators is well studied and known to be attractive in practice;
see, e.g., Robins et al. (1994), Robins and Ritov (1997), Holcroft, Rotnitzky,
and Robins (1997), Scharfstein, Rotnitzky, and Robins (1999), Bang and Robins
(2005), Tsiatis (2006), Tan (2007), Cao, Tsiatis, and Davidian (2009), Rothe and
Firpo (2019), and Chernozhukov et al. (2022).

Our results provide insights on the relation between the information content of
the MAR assumption and the usability of the sample units toward estimation in
subpopulations. The general (i.e., weakest) MAR assumption is that the hazard of
leaving at any period does not depend on what would have happened afterward
once we condition on “all” that has already happened. Under this general MAR
assumption, we show that if interest lies on those that left at the end of, e.g.,
period four, then those that left before period four are not usable for estimation. By
contrast, we show that if it is plausible to strengthen this general MAR assumption
by restricting the “all” in its conditioning set as in, e.g., Chaudhuri (2020), then
more (not all) sample units for whom the restricted “all” is observed and not just
those that did not leave before period four become usable for estimation.

We also show that the efficiency bounds under the general MAR assumption
coincide with those of particular augmented moment condition problems. A
similar analysis in Chaudhuri (2020) was built on Graham (2011) that was based
on an orthogonalization in Brown and Newey (1998). That cannot work for
subpopulations in our setup because the key nuisance parameters—the conditional
hazards of leaving—are unknown. (Known/unknown did not matter for Graham
(2011) since he focused on the full population [see Hahn 1998].) Here, on the
other hand, we need to use the orthogonalization in Newey (1994), Ackerberg
et al. (2014), Chernozhukov et al. (2022), etc. for a unified treatment of full and
subpopulations.

This orthogonalization implies that, in theory, the asymptotic variance of an
inverse probability weighted (IPW) estimator based on nonparametrically esti-
mated nuisance parameters will equal the inverse of the efficiency bound under
the general MAR condition. However, our simulations suggest that this theory
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could severely underestimate IPW’s true variability (measured by Monte Carlo
variance) even in very large samples when, unlike in Hirano, Imbens, and Ridder
(2003), Chen, Hong, and Tarozzi (2008), Graham (2011), etc., we move beyond
the single level of missingness. Our simulations also suggest that even the more
conservative (in finite samples) formula for asymptotic variance in the spirit of
Ackerberg, Chen, and Hahn (2012) can be a poor approximation underestimating
IPW’s true variability in small samples. Hence, IPW is not our recommended
estimator. On the other hand, at least in our simulations, we do not see either of
these two problems with our proposed estimator.

We also note that while this orthogonalization from Newey (1994), Ackerberg
et al. (2014), Chernozhukov et al. (2022), etc. provides valid influence functions,
it may not lead to semiparametric efficiency in general. Its claim to efficiency
is solely based on a given moment function (e.g., IPW) involving unknown
nuisance parameters that are nonparametrically exactly identified by a second
set of moments, and on no additional information like the MAR assumption. In
our setup, however, semiparametric efficiency is tied to the strength of the MAR
assumption. While the general MAR assumption turns out to not contain any rele-
vant information in this context, we show that when we strengthen that assumption
then the said orthogonalization cannot reach the resulting efficiency bound. This
suggests that while such orthogonalizations are obviously very useful, it is still
important to consider all the available information to obtain the semiparametric
efficiency bound that follows from it.

Finally, an important feature of our paper is that we obtain the efficiency
results for parameters defined by overidentifying moment restrictions. This is not
common in this literature; Chen et al. (2008) is among notable exceptions. To our
understanding, the characterization of the tangent set in Chen et al. (2008) may
be incomplete because overidentification is not explicitly used for that.1 We show
that the efficiency results in Chen et al. (2008) still hold. We also show that the
efficiency results in Chaudhuri (2020) under (i) the general MAR with planned
(known) conditional hazards or (ii) his convenient MAR can be extended to
overidentifying moment restrictions. On the other hand, under our setup, it seems
that a complete characterization of the tangent set hinders a seamless transition
of the efficiency results for certain (not all) subpopulations between just- and
overidentification. We provide a detailed treatment of this issue as it seems to
be less appreciated (at least we did not know before an anonymous referee for
Chaudhuri (2020) pointed it out).

Our paper proceeds as follows. Section 2 lays out the theoretical framework
guided by an empirical motivation based on the attrition behavior of students from
the widely studied, attrition-infested Project STAR experiment. Section 3 presents
the core theory—efficiency bound, efficient influence function, overidentification,
and the information content of the MAR assumption—by relating them to the

1We are very grateful to an anonymous referee for Chaudhuri (2020), and Patrik Guggenberger, and Whitney Newey
for their help with this issue. Any error is of course only our responsibility.
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literature. Section 4 presents the estimator and a sketch of its properties under
parametric (mis)specification and nonparametric specification of the nuisance
parameters. The asymptotic theory of such estimators is well studied and is
certainly not our contribution; the sketch is presented only for completeness.
Section 5 presents an elaborate empirical illustration of the benefits of the proposed
estimator’s precision in drawing substantive conclusions on the effect of small
class size across dimensions induced by the attrition behavior of students from
Project STAR. Section 6 concludes.

All the proofs are collected in Supplementary Appendix A. Complementing
the theory in our paper, we present in Supplementary Appendix B a Monte
Carlo experiment demonstrating excellent small-sample properties of our proposed
estimator. The experiment also suggests that the promise of efficiency made by
the theory for the competing IPW estimators based on nonparametric estimation
of nuisance parameters may not realize even in very large samples.

2. EMPIRICAL MOTIVATION AND THE THEORETICAL FRAMEWORK

2.1. Empirical Motivation

Tennessee’s Student/Teacher Achievement Ratio experiment, also known as
Project STAR, has been extensively used to study the effect of small class size
on future outcomes for the students; see, e.g., Hanushek (1999), Krueger (1999),
Krueger and Whitmore (2001), Ding and Lehrer (2010), and Chetty et al. (2011).
In Project STAR, students enrolling in grade K of 79 participating schools in the
1985–1986 school year were randomly assigned to three types of classes: small
classes (13–17 students per teacher), regular classes (22–25 students per teacher),
and regular classes with a full-time teacher’s aide (22–25 students per teacher). The
literature on Project STAR typically does not differentiate between the latter two
class types, and we will follow that here and refer to them jointly as “not-small”
classes.

We use the well-known and publicly available Project STAR data (Achilles et al.,
2008) containing characteristics of the schools, the teachers, demographic and
socioeconomic characteristics of the students, and their normalized reading and
math scores from grade K to grade 3 or to a lower grade until which they stayed
with a Project STAR school.2

Many students—701 out of 1,493 (47%) from small classes and 1,725 out of
3,477 (49.6%) from not-small classes—entering Project STAR schools in grade
K did not stay until the project ended, i.e., until the end of grade 3.3 See Table 1.

2We work with normalized scores for the sake of interpretation. For example, the normalized reading score is the
demeaned and standardized reading score of each student at each grade based on that grade’s mean and standard
deviation of reading scores of students across all participating Project STAR schools.
3In the original dataset, 917 out of 1,900 (48.3%) from small classes and 2,139 out of 4,425 (48.3%) from not-small
classes entering Project STAR schools in grade K did not stay until the end of grade 3. For simplicity of the illustration,
we construct our working sample by dropping from this original dataset students: (i) who did not enroll in Project
STAR schools in grade K in 1985 but enrolled in grades 1–3 in the next 3 years, or (ii) who left Project STAR schools
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Table 1. Number of students in our sample by their switching class type or
leaving Project STAR dynamics at the end of each grade conditional on staying
until the end of that grade in their initially assigned class. The switcher %
inside the parentheses are with respect to the class-type-specific row total, e.g.,
100×79/(1,004+410+79) ≈ 5.3.

Randomized to small class Randomized to not-small class

After Stayed Left STAR Switched Stayed Left STAR Switched

grade in small school to not-small in not-small school to small

K 1,004 410 79 (5.3%) 2,230 1,047 200 (5.8%)

1 798 188 18 (1.8%) 1,674 481 75 (3.4%)

2 672 103 23 (2.9%) 1,392 197 85 (5.1%)

For simplicity of illustration, we further exclude from our sample the very small
percentage of students who switched classes.4

This attrition makes the scores of a student in a grade unobserved/counterfactual
if the student left before completing the grade. Consequently, many of the grade-
specific average scores that researchers compare to estimate the effect of small
classes are unavailable. To fix ideas, consider the reading scores reported in
Table 2. Note that the grade-specific average reading scores in small or not-small
classes are the weighted average of the elements of that grade’s column in Table 2
with weights proportional to the corresponding number of students, e.g., for grade
K in small class, it is (−.19 × 410 − .14 × 188 − .09 × 103 + .45 × 672)/(410 +
188 + 103 + 672) ≈ .14. The grade-specific averages are unavailable (marked by
“?”) except in grade K because attrition starts after grade K.

Naively imputing these grade-specific averages by the “Never left” category
would be extremely misleading for both small (.14 by .45) and not-small (−.07
by .20) classes in grade K. (We could compare since grade K scores are actually
observed for all.) Therefore, naive imputation based on the Never left category
would possibly be misleading as well for grades 1–3, where some sort of imputa-
tion is actually required. Interestingly, such imputations are less misleading when
we compare the difference between the averages of grade K reading score in small
and not-small classes: (.45 − .20)− (.14 − (−.07)) = .25 − .21 = .04—the effect
of attrition largely cancels out, which can be seen as a type of “common trend”
phenomenon.5

after grade K or 1 or 2 but came back in the subsequent years during the experiment, or (iii) with incidental missing
(relevant) variables when the missingness is unrelated to attrition, or (iv) with invalid test scores (see, e.g., page 151
of Hanushek, 1999).
4Only 18 and 23 students switched from small class after grades 1 and 2, respectively. These numbers are too small for
any analysis without extremely stringent restrictions on models for the switching behavior. We do not know enough
to impose such stringent restrictions and hence exclude the switchers from our analysis.
5Similar observations have been made repeatedly in economics; see, e.g., the Special Issue: “Attrition in Longitudinal
Surveys” in the Journal of Human Resources (1998) where one observes that big distortions of group means due to
attrition often vanish in the results of regression, i.e., for difference in group means.
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Table 2. Observed and unobserved normalized reading scores by attrition behav-
ior of students from their initially assigned classes. If the full population is of
interest, then the number of levels of missingness in any grade’s score is the
number of x’s in that grade’s column.

Left STAR Randomized to small class Randomized to not-small class

school at the Number of Reading score in grade Number of Reading score in grade

end of grade students K 1 2 3 students K 1 2 3

K 410 −.19 x x x 1,047 −.36 x x x

1 188 −.14 −.19 x x 481 −.27 −.54 x x

2 103 −.09 −.14 −.23 x 197 −.00 −.22 −.31 x

3 (Never left) 672 .45 .50 .47 .44 1,392 .20 .33 .30 .22

Average score .14 ? ? ? −.07 ? ? ?

However, the investigation cannot end here as there are two outstanding ques-
tions. First, will the same phenomenon emerge from the scores in grades 1–3?
Second, are any of those differences between small and not-small classes going to
be statistically significant?

The first question is not answerable without assumptions on the mechanism of
attrition because it involves comparing counterfactual means with the scores of the
Never left category. We do not have anything original to say in this regard and will
work under a very general MAR (selection on observables) assumption with a very
flexible model specification for it.

On the other hand, our paper is about efficiency in estimation and is devised to
address the second question. Under a general MAR assumption, we will estimate
the counterfactual means with likely most precision and check if the concerned
differences are statistically significant. (Section 5 will present strong evidence that
such differences are significant.)

To efficiently estimate the grade-specific counterfactual mean, we will need to
efficiently estimate the attrition-category-specific counterfactual means in each
grade, i.e., the ones that are marked by “x” in Table 2. These are examples of
what we mean by subpopulation-specific parameters where the subpopulations
partition the full population by the attrition behavior of the students (population
units). Such subpopulation-specific parameters are obviously important for many
other purposes including as descriptive statistics, and we will make use of them in
various ways in the empirical illustration in Section 5.

2.2. Theoretical Framework

Let Z := (Z′
1, . . . ,Z

′
R)′, where Zr is a dr × 1 random vector and

∑R
r=1 dr is finite.

Let C be a random variable with support {1, . . . ,R}. Let TC(Z) be a transformation
defined as Tr(Z) := (Z′

1, . . . ,Z
′
r)

′ for r = 1, . . . ,R. The notation is standard (see, e.g.,
Tsiatis, 2006). Zj’s may have common elements, e.g., time-invariant variables, and
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empirical practice (coding, etc.) should ensure that they are not counted in the
Tr(Z)’s more than once.

Let O := (C,T ′
C(Z))′ denote what is observed for a unit in the sample.

Consider the Project STAR example. This is an R = 4 period study where grade
K is period 1,..., and grade 3 is period 4. Zr are the variables—characteristics
of the schools, the teachers, demographic and socioeconomic characteristics of
the students, and their normalized reading and math scores in period r—that are
observed in period r. Tr(Z) is the cumulative history of the Zr variables (some
of which may be time-invariant) observed until and including period r. If a unit
(student) leaves after period j ∈ {1, . . . ,R}, then its C = j and we only observe
Tj(Z) for it. C = R is the same as never leaving (some denote this as C = ∞).

We maintain the general MAR (selection on observables) assumption that

P(C = r|TR(Z),C ≥ r) = P(C = r|Tr(Z),C ≥ r) for r = 1, . . . ,R−1. (1)

Since Tr(Z) is observable when C ≥ r, (1) imposes that the conditional haz-
ard P(C = r|TR(Z),C ≥ r) at period r does not depend on the unobservables
Zr+1, . . . ,ZR once conditioned on the observables Tr(Z). (1) is the MAR assumption
in the sense of Rubin (1976).

Plausibility of MAR depends on the context. MAR has been widely used in
studies on attrition especially if, as in our paper, the missingness is monotone.6

Ding and Lehrer (2010) (and, less explicitly, Krueger (1999)) assumed MAR for
attrition in the Project STAR data.

Generalizing the nomenclature introduced in Section 2.1, we refer to the
underlying population of O := (C,T ′

C(Z))′ as the full population. We refer to the
partition of this full population by the values taken by C as subpopulations; e.g.,
subpopulation r is the underlying population from which units with C = r can
be viewed as randomly drawn. There are R unitary subpopulations indexed by
r = 1, . . . ,R. Unions of unitary subpopulations form a composite subpopulation,
e.g., C ∈ {1,2}, or the full population C ∈ {1, . . . ,R}.

Under the general MAR condition in (1), the unconditional distribution of Z
may not be the same as the distribution of Z conditional on C = r for r = 1, . . . ,R,
i.e., the subpopulations are possibly heterogeneous. In the example from Section
2.1 where the subpopulations are defined by the attrition categories based on the
timing of attrition, this means that the distribution of the (potential) grade 3 reading
scores may not be the same for those who left after grade K and those who left after
grade 2 and those who never left.

We will work with a generic target subpopulation C ∈ {a, . . . ,b}, denoted for
brevity by a ≤ C ≤ b or [a,b], for a ≤ b and a,b ∈ {1, . . . ,R}. If a = b = r, then this
is the underlying unitary subpopulation from which the units who left at the end

6If the missingness is non-monotone, then MAR or selection on observables is unrealistic since the choice to return
could depend on unobservables, i.e., on what happened when the individual was out of the study; see, e.g., Gill, van
der Laan, and Robins (1997), Robins and Gill (1997), and Vansteelandt, Rotnitzky, and Robins (2007). That would
be a case of selection on unobservables. Hoonhout and Ridder (2019) compare various selection on unobservables
conditions with MAR in a multi-period context. We do not contribute to that literature.
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of period r can be viewed as randomly drawn. If a < b, then this is the composite
subpopulation for the units who left in the periods a,a+1, . . . ,b. If a = 1 and b = R,
then this is the full population.

Denote the distribution of Z in the target population by FZ|(a≤C≤b)(z). This is the
weighted average of the distributions of Z in subpopulations a, . . . ,b with weights
P(C = j)/P(a ≤ C ≤ b) for j = a, . . . ,b. We will define the parameter of interest
as a finite-dimensional feature of FZ|(a≤C≤b)(z). Accordingly, consider a function
m(Z;β) : Support(Z)×B �→ R

dm , β ∈ B ⊂ R
dβ , and dβ ≤ dm. Then, for a given

a,b ∈ {1, . . . ,R} with a ≤ b, define the parameter value of interest β0
[a,b] by an

overidentifying system of moment restrictions as

E[m(Z;β) | a ≤ C ≤ b] = 0 for β ∈ B if and only if β = β0
[a,b]. (2)

m(Z;β) can depend on any element of Z; e.g., reading score in grade K or 1 or 2 or
3. If the least frequently observed element of Z that is involved in m(Z;β) belongs
in Zk for some k = 1, . . . ,R, then exactly the same analysis in the sequel will still
apply but with a different observability indicator C̄ instead of C where C̄ := k if
C ≥ k and C̄ := C otherwise.

We will also maintain the following assumptions that are standard in this
literature.

Assumption A.

(A1) The observed sample units {Oi := (Ci,T ′
Ci

(Zi))
′}n

i=1 are i.i.d. copies of O :=
(C,T ′

C(Z))′.
(A2) P(C = R|TR(Z)) is bounded away from zero almost surely TR(Z).
(A3) M[a,b] is a dm × dβ finite matrix of full column rank where M[a,b] :=

M[a,b](β
0
[a,b]) and M[a,b](β̄) :=

{
∂

∂β ′ E [m(Z;β)|a ≤ C ≤ b]
}

β=β̄
at any β̄ ∈ B

where it exists.

Remark. (A1) rules out dependence and heterogeneity across sample units
when viewed as random draws from O. (A2) imposes the bounded away from
zero condition instead of only P(C = R|TR(Z)) > 0 to avoid the “limited overlap”
problem (see, e.g., Khan and Tamer, 2010). (A3) gives local identification of β0

[a,b];
it allows for non-smooth m(Z;β) but requires the expectation to be differentiable
with respect to β (see, e.g., Chen et al., 2008).

3. THE EFFICIENCY RESULTS

3.1. Efficiency Bound and Efficient Influence Function

Writing Tr(Z) as Tr, for r = 1, . . . ,R, let us first introduce the key quantities for
this section. Define

ϕ[a,b](O;β) :=
b∑

j=a

P(C = j)

P(a ≤ C ≤ b)
ϕ[j,j](O;β) (3)
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for the subpopulation [a,b] as the weighted average of the unitary subpopulation
quantities

ϕ[j,j](O;β) :=
R∑

r=j+1

I(C ≥ r)ωr,j(Tr−1)(E[m(Z;β)|Tr]−E[m(Z;β)|Tr−1])

+ I(C = j)

P(C = j)
E[m(Z;β)|Tj] (4)

that are feasible for each β ∈ B based on the observed data because of the equality
in (5):

ωr,j(Tr−1) := P(C = j|Tj)

P(C = j)P(C ≥ r|Tr−1)
= P(C = j|Tj,C ≥ j)

P(C = j)
∏r−1

k=j [1−P(C = k|Tk,C ≥ k)]
.

(5)

Under regularity conditions, the weighted average representation of ϕ[a,b](O;β)

implies

∂

∂β ′ E
[
ϕ[a,b](O;β)

]=
b∑

j=a

P(C = j)

P(a ≤ C ≤ b)

∂

∂β ′ E
[
ϕ[j,j](O;β)

]
=

b∑
j=a

P(C = j)

P(a ≤ C ≤ b)

∂

∂β ′ E [m(Z;β)|C = j]

= ∂

∂β ′ E [m(Z;β)|a ≤ C ≤ b] and

Var
(
ϕ[a,b](O;β)

)=
b∑

j=a

b∑
k=a

P(C = j)P(C = k)

P2(a ≤ c ≤ b)
Cov

(
ϕ[j,j](O;β),ϕ[k,k](O;β)

)
.

The covariance (j �= k) terms in the composite (sub)populations simplify when
a = 1,b = R.

Lemma 1. In the case of the full population a = 1,b = R, the above representa-
tion gives

ϕ[1,R](O;β) =
R∑

r=2

I(C ≥ r)

P(C ≥ r|Tr−1)
(E[m(Z;β)|Tr]−E[m(Z;β)|Tr−1])

+E[m(Z;β)|T1],

Var
(
ϕ[1,R](O;β)

)=
R∑

r=2

E

[
Var (E[m(Z;β)|Tr]|Tr−1)

P(C ≥ r|Tr−1)

]
+Var (E[m(Z;β)|T1]) .

Equipped with these key quantities, we will now present the main result of our
paper.
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Proposition 2. Let the MAR condition in (1), the moment restrictions in (2),
and Assumption A hold. Let V[a,b] := Var(ϕ[a,b](O;β0

[a,b])) be a finite and positive
definite matrix.7 Then the semiparametric efficiency bound for β0

[a,b] is given by

�[a,b] := M′
[a,b]V

−1
[a,b]M[a,b]:

(i) when a = 1,b = R (full population) or a = b (unitary subpopulations);
(ii) when a,b ∈ {1, . . . ,R} with a ≤ b, if additionally β0

[a,b] is just-identified, i.e.,
dm = dβ .

A regular estimator β̂[a,b] whose asymptotic variance equals �−1
[a,b] has

the asymptotically linear representation (with obvious cancellations giving
�−1

[a,b]M
′
[a,b]V

−1
[a,b] = M−1

[a,b] when dm = dβ):

√
n(β̂[a,b] −β0

[a,b]) = −�−1
[a,b]M

′
[a,b]V

−1
[a,b]

1√
n

n∑
i=1

ϕ[a,b](Oi;β0
[a,b])+op(1).

Remarks. First, Proposition 2 covers the well-known special cases found in the
literature. R = 2 with a = b = 1 or a = 1,b = 2 covers Theorem 1 of Chen et al.
(2008) (see also Robins et al., 1994). a = 1,b = R > 2 gives the full-population
result like Robins and Rotnitzky (1992), Robins and Rotnitzky (1995), Rotnitzky
and Robins (1995), and Holcroft, Rotnitzky, and Robins (1997).

Second, few papers in this literature allow for dm > dβ , i.e., overidentifying
restrictions for β0

[a,b]. Chen et al. (2008) is among notable exceptions. However, it is
possible that the characterization of the tangent set there (and similar papers) may
be incomplete because overidentification is not explicitly used for that. Proposition
2(i) shows that Chen et al.’s (2008) results (Chen et al. (2008) worked with R = 2
with a = b = 1 or a = 1,b = 2) still hold. Additionally, in Section 3.2, we also
extend the main efficiency results in Chaudhuri (2020) (also a generalization of
Chen et al. (2008)) to the case of overidentifying restrictions.

Third, overidentification is not innocuous in our general framework. Under just
identification, the efficiency bound in Proposition 2 applies to any a,b ∈ {1, . . . ,R}
with a ≤ b. However, in the case of overidentification, the efficiency bound result
is for the full population (a = 1,b = R) and all R unitary subpopulations (a = b)
but not for generic composite subpopulations [a,b]’s. Unlike in Chaudhuri (2020),
here the overidentifying restrictions for β0

[a,b] impose restrictions on the tangent
set that do not seem to be satisfied for generic [a,b]’s by the influence function

7While it is easier to think of primitive conditions for positive definiteness of Var
(
ϕ[a,b](O;β)

)
when a =

b or a = 1,b = R, we maintain positive definiteness of Var
(
ϕ[a,b](O;β0

[a,b])
)

generally. Writing ϕ[s,t](O;β)

as ϕ[s,t] for s,t = 1, . . . ,R and m(Z;β) as m for brevity, the components of Var
(
ϕ[a,b]

)
can be expressed as

follows. For j = a, . . . ,b and k = a, . . . ,j − 1: Var
(
ϕ[j,j]

) = ∑R
r=j+1 E

[
�r,j|C = j

] + Var
(

I(C=j)
P(C=j) E[m|Tj]

)
and

Cov
(
ϕ[j,j],ϕ[k,k]

) = E
[∑R

r=j+1 �r,j +∑j
r=k+1 ∇r,j,k

∣∣∣C = j
]

+ Cov
(

I(C=j)
P(C=j) E[m|Tj],

I(C=k)
P(C=k) E[m|Tk]

)
where, again

for simplicity, we have used the notation �r,j := ωr,j(Tr−1)Var (E[m|Tr]|Tr−1) for r = j + 1, . . . ,R, and ∇r,j,k :=
ωr,k(Tr−1)E[m|Tj](E[m|Tr]−E[m|Tr−1])′ for r = k + 1, . . . ,j. If, e.g., a = b = j then primitive conditions for the
positive definiteness of Var

(
ϕ[j,j]

)
can be guided by its expression above.
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presented in the proposition. Since it seems less appreciated, we utilize Section
3.2 to be explicit about the restrictions imposed by overidentification.

Fourth, the weighted average representation of ϕ[a,b](Oi;β0
[a,b]) in (3),

that follows from the representation E[m(Z;β)|a ≤ C ≤ b] = ∑b
j=a

P(C=j)
P(a≤C≤b)

E[m(Z;β)|C = j], presents an easy way of combining the efficient estimators
for the unitary subpopulations to obtain the efficient estimator for the composite
subpopulation [a,b] under just identification dm = dβ :

√
n

⎛⎝β̂[a,b] −
b∑

j=a

[
M−1

[a,b]

P(C = j)

P(a ≤ C ≤ b)
M[j,j](β

0
[a,b])

]
β̂[j,j]

⎞⎠= op(1),

where the weights for the β̂[j,j]’s add up to the identity matrix since M[a,b] =∑b
j=a

P(C=j)
P(a≤C≤b)

M[j,j](β
0
[a,b]).

8 Dardanoni, Modica, and Peracchi (2011), Abrevaya
and Donald (2017), Muris (2020), and others also considered combining estimators
or moment restrictions in similar contexts with missing data.

Fifth, each ϕ[j,j](O;β0
[a,b]) is doubly robust to the misspecification of the two

sets of unknown nuisance parameters: the conditional hazards P(C = r|Tr,C ≥ r)
and the conditional expectations E[m(Z;β)|Tr] for the various r’s. Therefore, the
representation of ϕ[a,b](O;β0

[a,b]) in (3) implies that ϕ[a,b](O;β0
[a,b]) also satisfies

such double robustness. ϕ[j,j](O;β0
[a,b]) is robust to the misspecification of the

P(C = r|Tr,C ≥ r)’s under (1) since if we take expectation after replacing each
P(C = r|Tr,C ≥ r) in (4) (precisely, (5)) by arbitrary scalar functions of Tr, we
still obtain E[m(Z;β)|C = j] if the expectation exists. To see that ϕ[j,j](O;β0

[a,b]) is
also robust to the misspecification of the E[m(Z;β)|Tr]’s, rewrite (4) as

ϕ[j,j](O;β) := I(C = R)ωR,j(TR−1)m(Z;β)

+
R−1∑

r=j+1

[
I(C ≥ r)

P(C ≥ r|Tr−1)
− I(C ≥ r +1)

P(C ≥ r +1|Tr)

]
P(C = j|Tj)

P(C = j)
E[m(Z;β)|Tr]

+
[

I(C = j)

P(C = j)
− I(C ≥ j+1)

P(C ≥ j+1|Tj)

P(C = j|Tj)

P(C = j)

]
E[m(Z;β)|Tj],

(6)

replace each E[m(Z;β)|Tr] in (6) by arbitrary dm-dimensional functions of Tr,
take expectation while noting that P(C ≥ r|Tr) = P(C ≥ r|Tr−1) (see Lemma 9
in Supplementary Appendix A.1), and finally see that (1) gives the expectation as

8To see this result, write the weights M−1
[a,b]

P(C=j)
P(a≤C≤b)

M[j,j](β
0
[a,b]) as Aj for brevity and note that

√
n(β̂[a,b] −β0

[a,b]) = −M−1
[a,b]

1√
n

n∑
i=1

ϕ[a,b](Oi;β0
[a,b])+op(1) = −M−1

[a,b]

b∑
j=a

P(C = j)

P(a ≤ C ≤ b)

1√
n

n∑
i=1

ϕ[j,j](Oi;β0
[a,b])+op(1)

=
b∑

j=a

Aj

[
−M−1

[j,j](β
0
[a,b])

] 1√
n

n∑
i=1

ϕ[j,j](Oi;β0
[a,b])+op(1) =

b∑
j=a

Aj
√

n
(
β̂[j,j] −β0

[a,b]

)
+op(1).

The result follows since β0
[a,b] on both sides cancels out as

∑b
j=a Aj = Idm = Idβ implies β0

[a,b] =∑b
j=a Ajβ

0
[a,b].
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12 JEAN-LOUIS BARNWELL AND SARASWATA CHAUDHURI

E[I(C = R)ωR,j(TR−1)m(Z;β)] = E[m(Z;β)|C = j] (see Lemma 5) if the expecta-
tion exists. This is double robustness with respect to misspecification of nuisance
parameters; see Robins et al. (1994), Robins and Ritov (1997), Scharfstein et al.
(1999), Bang and Robins (2005), Tan (2007), Cao et al. (2009), Rothe and Firpo
(2019), Chernozhukov et al. (2022), etc. We use this double robustness to motivate
the estimating function for β0

[a,b] in Section 4 based on ϕ[a,b](O;β0
[a,b]).

Sixth, the expression for the ϕ[j,j](O;β)’s in (4) or (6) tells us that if a ≥ 2 then
the units with C < a do not contribute to the estimation of the target β0

[a,b].
9 We

note that this is an artifact of the general MAR condition in (1). Units with C < a
can contribute to the efficient estimation of β0

[a,b] if it is plausible to strengthen the
MAR condition. A concrete example can be found in Proposition 4 below adopted
for extension from Chaudhuri (2020). (This example of strengthened MAR is
revisited in Section 3.3 to caution against suboptimal use of sample units in case
of overidentification of the nuisance conditional hazards.) In extreme contrast,
Proposition 3 below adopted for extension from Chaudhuri (2020) shows that all
sample units are usable for all target β0

[a,b]’s if the conditional hazards are actually
known.

3.2. Overidentification of β0
[a,b]: Restriction on the Tangent Set

Let f and F denote the density and distribution functions, with the concerned
random variables specified inside parentheses. Their conditional counterparts are
denoted similarly. Let L2

0(F) denote the space of mean-zero, square integrable
functions with respect to F.

We will first characterize the tangent set for all regular parametric submodels
satisfying the semiparametric assumptions on the observed data O = (C′,T ′

C(Z))′.
(We will then impose on it the restrictions due to overidentification.) Consider a
regular parametric submodel indexed by a parameter η for the distribution of O.
The log of this distribution is

log fη(O) = log fη(Z1)+
R∑

r=2

I(C ≥ r) log fη(Zr|Z1, . . . ,Zr−1)

+
R∑

r=1

I(C = r) logPη(C = r|Z1, . . . ,Zr)

in terms of (C,Z′)′. The score function with respect to η is, in terms of (C,Z′)′,

Sη(O) = sη(Z1)+
R∑

r=2

I(C ≥ r)sη(Zr|Z1, . . . ,Zr−1)+
R∑

r=1

I(C = r)
Ṗη(C = r|Z1, . . . ,Zr)

Pη(C = r|Z1, . . . ,Zr)
,

9Thus, generalizing the caption of Table 2, if Zk is the least frequently observed element of Z that is involved in
m(Z;β), then the effective level of missingness is max{0,k −a} under the MAR condition in (1).
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where sη(Z1) := ∂
∂η

log fη(Z1), sη(Zr|Z1, . . . ,Zr−1) := ∂
∂η

log fη(Zr|Z1, . . . ,Zr−1),

for r = 2, . . . ,R, and Ṗη(C = r|Z1, . . . ,Zr) := ∂
∂η

Pη(C = r|Z1, . . . ,Zr), for r =
1, . . . ,R. The tangent set T is the mean square closure of all dβ-dimensional linear
combinations of Sη(O) (see Newey (1990, pp. 105–106)) and can be expressed as

T := ν1(Z1)+
R∑

r=2

I(C ≥ r)νr(Z1, . . . ,Zr)+
R∑

r=1

I(C = r)ωr(Z1, . . . ,Zr), (7)

where ν1(Z1) ∈ L2
0(F(Z1)) and νr(Z1, . . . ,Zr) ∈ L2

0(F(Zr|Z1, . . . ,Zr−1)) for r =
2, . . . ,R, and ωr(Z1, . . . ,Zr) is any square integrable function of Z1, . . . ,Zr for
r = 1, . . . ,R.

This is typically how the tangent set is characterized in this literature (e.g., Chen
et al., 2008), but it does not take into account the additional restrictions imposed
by overidentification of β0

[a,b]. Apart from the incompleteness in the proofs due
to such omissions, it does seem that the additional restrictions will matter in our
general setup with generic subpopulations [a,b]. Hence, we will provide the details
behind these additional restrictions.

For simplicity, we will drop the subscript η from all quantities (e.g., in (8)
below) evaluated at η0 where η0 is the “true” submodel η, i.e., fη0(O) is the actual
distribution of the observed data. Note that the moment restrictions in (2) give the
following identity in η for given a,b:

0 ≡ Eη[m(Z;β0
[a,b])|a ≤ C ≤ b] ≡ Eη

[
Pη(a ≤ C ≤ b|Z)

Pη(a ≤ C ≤ b)
m(Z;β0

[a,b])

]
.

Differentiate it with respect to η under the integral at η = η0, and use (1) and (2)
to get

0 = M[a,b]
∂β0

[a,b](η0)

∂η′ +E

[
m(Z;β0

[a,b])

{
s(Z)+ Ṗ(a ≤ C ≤ b|Tb)

P(a ≤ C ≤ b|Tb)

}′∣∣∣∣∣a ≤ C ≤ b

]
,

(8)

where s(Z) := s(Z1) +∑R
r=2 s(Zr|Tr−1) (with abuse, we briefly revert to the Tr

notation for brevity). Now, we note that (2) also gives the following identity in η

for given a,b:

0 ≡ AEη[m(Z;β0
[a,b])|a ≤ C ≤ b] ≡ AEη

[
Pη(a ≤ C ≤ b|Z)

Pη(a ≤ C ≤ b)
m(Z;β0

[a,b])

]
for any A that is a full row rank dβ × dm matrix such that AM[a,b] is nonsingular.
Such an A always exists under our assumptions; e.g., A = M′

[a,b]V
−1
[a,b]. Therefore,

following the same steps as in (8) and then solving for
∂β0

[a,b](η0)

∂η′ , we obtain that

∂β0
[a,b](η0)

∂η′ = −(AM[a,b]
)−1 AE

[
m(Z;β0

[a,b])

{
s(Z)+ Ṗ(a ≤ C ≤ b|Tb)

P(a ≤ C ≤ b|Tb)

}′∣∣∣∣∣a ≤ C ≤ b

]
,
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14 JEAN-LOUIS BARNWELL AND SARASWATA CHAUDHURI

which when substituted for in (8) gives (noting that s(Z) := s(Z1) +∑R
r=2

s(Zr|Tr−1)):

0 =
(

Idβ −M[a,b]
(
AM[a,b]

)−1
A
)

×E

⎡⎣m(Z;β0
[a,b])

{
s(Z1)+

R∑
r=2

s(Zr|Tr−1)+ Ṗ(a ≤ C ≤ b|Tb)

P(a ≤ C ≤ b|Tb)

}′∣∣∣∣∣∣a ≤ C ≤ b

⎤⎦ .

(9)

Note that (9) is trivially true under just identification dm = dβ since then

M[a,b]
(
AM[a,b]

)−1
A = Idβ

by the definition of inverse. However, under overiden-
tification, (9) imposes restrictions on the quantities inside the expectations that
must be reflected by the tangent set. Therefore, a complete characterization of the
tangent set T in the case of overidentification would augment what is defined in
(7) such that its components additionally satisfy (10) if [a,b] = [1,R] and satisfy

(11) if [a,b] �= [1,R]. Letting B[a,b] :=
(

Idβ
−M[a,b]

(
AM[a,b]

)−1
A
)

,

• if the moment restrictions in (2) hold for [a,b] = [1,R], then

0 = B[1,R]E

[
m(Z;β0

[1,R])

R∑
r=1

νr(Z1, . . . ,Zr)
′
]

(10)

as Ṗη(1 ≤ C ≤ R|Z) = 0 in (9) since obviously Pη(1 ≤ C ≤ R|Z) ≡ 1 for all η;10

• if the moment restrictions in (2) hold for [a,b] �= [1,R], then

0 = B[a,b]E

[
m(Z;β0

[a,b])

{
R∑

r=1

νr(Z1, . . . ,Zr)

+
b∑

r=a

P(C = r|Z1, . . . ,Zr)

P(a ≤ C ≤ b|Z1, . . . ,Zb)
ωr(Z1, . . . ,Zr)

}′∣∣∣∣∣∣a ≤ C ≤ b

⎤⎦ . (11)

Hence, −�−1
[a,b]M

′
[a,b]V

−1
[a,b]ϕ[a,b](O;β0

[a,b]) has to satisfy the restriction (10) or
(11), as appropriate, to belong in T that is necessary for it to be the effi-
cient influence function. Generalizing the literature, Proposition 2(i) showed that
−�−1

[a,b]M
′
[a,b]V

−1
[a,b]ϕ[a,b](O;β0

[a,b]) satisfies the restriction when focus lies on the
full population, i.e., [a,b] = [1,R], or on the unitary subpopulations, i.e., a = b.
Curiously, however, −�−1

[a,b]M
′
[a,b]V

−1
[a,b]ϕ[a,b](O;β0

[a,b]) does not seem to satisfy the
restriction when a �= b but [a,b] �= [1,R], i.e., for composite subpopulations that are
not the full population, and hence it is not efficient in that case although it remains

10We have not imposed enough structure on the ωr(Z1, . . . ,Zr)’s to write (10) as a special case of (11). Other than
here—restriction on tangent set due to overidentification (that to the best of our knowledge has not been covered in
the MAR literature)—we presented full and subpopulation analysis under the same framework instead of treating
them separately as in, e.g., Hahn (1998), Hirano et al. (2003), and Chen et al. (2008).
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a valid influence function since it satisfies the so-called “pathwise derivative”
condition.

For completeness, we note that a similar characterization of the tangent
set allows us to extend the main efficiency results in Chaudhuri (2020) to the
case of overidentification. Those results work with strengthened MAR conditions
but apply to remarkably more general target (sub)populations λ. Precisely,
Propositions 3 and 4 will concern a β0

λ defined by the following moment
restrictions: For any λ that is a subset of {1, . . . ,R} including the full set, let

E[m(Z;β) | C ∈ λ] = 0 for β ∈ B if and only if β = β0
λ . (12)

Proposition 3. Let the MAR condition in (1) and the moment restrictions in (12)
hold. Let Assumption A hold with M[a,b] in A3 replaced by Mλ := E[∂m(Z;β0

λ)/∂β
′ |

C ∈ λ]. Let V̄λ := Var(ϕ̄λ(O;β0
[a,b])) be a finite and positive definite matrix where

ϕ̄λ(O;β0
λ) := ϕ̄1,λ +

R∑
r=2

I(C ≥ r)

P(C ≥ r|Tr−1)

(
ϕ̄r,λ − ϕ̄r−1,λ

)
with

ϕ̄r,λ := E

[
P(C ∈ λ|Tr)

P(C ∈ λ)
m(Z;β0

λ)

∣∣∣∣Tr

]
,

for r = 1, . . . ,R. If we additionally assume that P(C = r|Tr,C ≥ r) is known for r =
1, . . . ,R−1, i.e., the incompleteness is planned, then the semiparametric efficiency
bound for β0

λ is given by �̄λ := M′
λV̄−1

λ Mλ and the efficient influence function is
−�̄−1

λ M′
λV̄−1

λ ϕ̄λ(O;β0
[a,b]).

The planned monotonic incompleteness condition was motivated in Chaudhuri
(2020) as a cost cutting measure in survey designs. Another condition considered
in Chaudhuri (2020) is a strengthened version of MAR, referred to as convenient
MAR (CMAR), whereby

P(C = r|Z,C ≥ r) = P(C = r|T1,C ≥ r) for r = 1, . . . ,R. (13)

Proposition 4. Let the moment restrictions in (12) and the CMAR condition
in (13) hold. Let Assumption A hold with M[a,b] in A3 replaced by Mλ :=
E[∂m(Z;β0

λ)/∂β
′ | C ∈ λ]. Let VCMAR

λ := Var(ϕCMAR
λ (O;β0

λ)) be a finite and positive
definite matrix where

ϕCMAR
λ (O;β0

λ) := I(C ∈ λ)

P(C ∈ λ)
E[m(Z;β0

λ)|T1]

+
R∑

r=2

I(C ≥ r)

P(C ≥ r|T1)

P(C ∈ λ|T1)

P(C ∈ λ)

(
E[m(Z;β0

λ)|Tr]−E[m(Z;β0
λ)|Tr−1]

)
.

Then the semiparametric efficiency bound for β0
λ is given by �CMAR

λ :=
M′

λ[VCMAR
λ ]−1Mλ and the efficient influence function is −[�CMAR

λ ]−1M′
λ[VCMAR

λ ]−1

ϕCMAR
λ (O;β0

[a,b]).
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3.3. IPW, Variance Adjustment, and Information Content of MAR

Returning to the general MAR condition in (1), it is clear from (6) that ϕ[j,j](O;β) is
an augmented inverse probability weighted (AIPW) moment vector where the first
term on the right-hand side (RHS) of (6) is the IPW term, while the other terms on
the RHS are the augmentation. Therefore, the weighted average representation in
(3) implies that ϕ[a,b](O;β) is also another AIPW moment vector, but concerning
a different set of moments.

Lemma 5 summarizes in the current context the idea behind the Narain (1951)–
Horvitz and Thompson (1952)–Hajek (1971) IPW principle under the general
MAR condition in (1). For each β ∈ B, this IPW principle enables identification
of E[m(Z;β)|a ≤ C ≤ b] whose sample version is infeasible, based on a quantity
whose sample version is feasible.

Lemma 5. If P(C = R|TR) > 0 almost surely TR, then the general MAR condition
in (1) implies that E[m(Z;β)|a ≤ C ≤ b] = E

[
I(C = R)ωIPW

[a,b]m(Z;β)
]

for each
β ∈ B where

ωIPW
[a,b] :=

b∑
j=a

P(C = j|Tj,C ≥ j)
j−1∏
r=1

[1−P(C = r|Tr,C ≥ r)]

R−1∏
r=1

[1−P(C = r|Tr,C ≥ r)]P(a ≤ C ≤ b)

=
b∑

j=a

P(C = j)

P(a ≤ C ≤ b)
ωR,j(TR−1)

and where ωR,j(TR−1) is defined in (5), and indeed ωR,j(TR−1) = ωIPW
[j,j] for j =

1, . . . ,R.

For brevity, we used the convention that if a = 1 then
∏a−1

r=1(1−P(C = r|Tr,C ≥
r)) = 1.

Lemma 5 gives the foundation for IPW estimation based on an estimator of
E[I(C = R)ωIPW

[a,b]m(Z;β)], namely,

1

n

n∑
i=1

I(Ci = R)ω̂IPW
[a,b]m(Zi;β) (14)

as the GMM sample moment vector, where ω̂IPW
[a,b] is an estimator of ωIPW

[a,b] obtained
by replacing each conditional hazard by its parametric or nonparametric estimator.
In this section, our discussion of variance adjustment and efficiency in the context
of the information content of the general MAR condition in (1) will correspond to
nonparametric estimation of ωIPW

[a,b].

Proposition 6. (i) The “limited information” efficient GMM estimator of β0
[a,b]

based on the moment restrictions
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E
[
I(C = R)ωIPW

[a,b]m(Z;β0
[a,b])

]= 0, (15)

where for each r = a. . . ,R − 1 the P(C = r|Tr,C ≥ r)’s in ωIPW
[a,b] solve for the

pr(Tr)’s from

E [I(C ≥ r) {I(C = r)−pr(Tr)} | Tr] = 0 almost surely Tr, (16)

has asymptotic variance equal to the inverse of the semiparametric information
bound for β0

[a,b] under the “full information” contained jointly in the restrictions
(15) and (16).

(ii) Furthermore, this asymptotic variance from (i) is equal to �−1
[a,b] where

�[a,b] := M′
[a,b]V

−1
[a,b]M[a,b] is defined in the statement of Proposition 2.

Proposition 6(i) applies Theorem 1 of Ackerberg et al. (2014) to show that the
“limited information” and “full information” (using their terminology) efficient
GMM estimation of β0

[a,b] based on (15) and (16) are equivalent in terms of the
asymptotic variance of the estimator of β0

[a,b]. Concretely, this “limited informa-
tion” estimator is the efficient GMM estimator based on the IPW GMM sample
moment vector in (14), i.e.,

β̂IPW
[a,b](Wn) := argmin

β∈B

(
1

n

n∑
i=1

I(Ci = R)ω̂IPW
[a,b]m(Zi;β)

)′

×Wn

(
1

n

n∑
i=1

I(Ci = R)ω̂IPW
[a,b]m(Zi;β)

)
(17)

when W−1
n is consistent for the asymptotic variance of the moment vector, account-

ing for the estimation of the nuisance conditional hazards P(C = r|Tr,C ≥ r)’s
involved in ωIPW

[a,b].
The equivalence in asymptotic variance in Proposition 6(i) holds because

the conditional hazards P(C = r|Tr,C ≥ r)’s that constitute ωIPW
[a,b] are “exactly

identified” by (16).
Proposition 6(ii) shows that this asymptotic variance in Proposition 6(i) reaches

the semiparametric efficiency bound that was obtained in Proposition 2 under the
general MAR condition in (1) for β0

[a,b] defined by (2). Thus, in the spirit of Graham
(2011), we say that the moment restrictions (15) and (16) exhaust all available
information about β0

[a,b] under the general setup of Proposition 2. Similar results
with R = 2 are known from Hirano et al. (2003), Chen et al. (2008), Graham (2011),
etc., but the case of R > 2 will help us to get further insights into this result and
the information content of the MAR assumption.

We spend the rest of this section discussing Proposition 6(ii) with the following
remarks.

First, there are two different semiparametric efficiency bounds present in
Proposition 6: in (i) it is the bound based on the system (15) and (16), whereas
in (ii) it is the bound based on our general framework (1) and (2). The result on
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semiparametric efficiency in Newey (1994), Ackerberg et al. (2014), etc. of the
“limited information” approach concerns the first efficiency bound, i.e., the result
in Proposition 6(i). On the other hand, the second efficiency bound is traditionally
established independently in this literature, albeit in simpler contexts. Graham
(2011) established the equality of these two bounds when R = 2 and a = 1,b = R,
and dm = dβ ; however, his result was based on the Brown and Newey (1998)
orthogonalization that is not applicable here if interest lies on subpopulations.

Second, we find the equality of the two efficiency bounds remarkable in the
case of R > 2 considering how much information the general MAR condition
in (1) has and how little of it is used by the moment restrictions (15) and (16)
leading to the first efficiency bound. In fact, (1) does not play any direct role in
Proposition 6. (1)’s only role would be in the background ensuring that (15) holds,
and Proposition 6(i) takes (15) as given.11 The general MAR condition in (1) has no
role to play in (16)—it contains no information about the unknown parameters in
(16) since these moment restrictions simply follow from the definition of the con-
ditional hazards and thus the parameters involved there are what is variously called
“nonparametrically identified,” “exactly identified,” or “locally just identified”; see
Newey (1994), Ackerberg et al. (2014), Chen and Santos (2018), Chernozhukov
et al. (2022), etc.

Third, we point out that an equivalence result like Proposition 6(ii) will not
hold if the general MAR condition in (1) is strengthened. The limited or full
information approach will “pay a price” in terms of efficiency for not considering
the (strengthened) MAR condition. For a clean demonstration of paying a price,
Lemma 7(ii) strengthens (1) by imposing an extreme dimension reduction on the
conditioning set leading to the CMAR condition in (13).

Lemma 7. (i) The efficient GMM estimator of β0
[a,b] based on the moment

restrictions

E

⎡⎣ b∑
j=a

P(C = j)

P(a ≤ C ≤ b)

I(C = R)∏R−1
r=j (1−P(C = r|T1,C ≥ r))

P(C = j|T1,C ≥ j)

P(C = j)
m(Z;β0

[a,b])

⎤⎦= 0,

where for each r = a. . . ,R−1 the P(C = r|T1,C ≥ r)’s solve for the pr(T1)’s from

E [I(C ≥ r) {I(C = r)−pr(T1)} | T1] = 0 almost surely T1,

has the same asymptotic variance

(
M′

[a,b]

[
V†

[a,b]

]−1
M[a,b]

)−1

under both the

“limited and full information” approaches under regularity conditions where

V†
[a,b] := E

[
ϕ

†
[a,b]ϕ

†′
[a,b]

]
and

11For (15) to hold, it only requires the part of MAR with r = a, . . . ,R − 1. The part with r = 1, . . . ,a − 1 is unused
since only the P(C = r|Tr,C ≥ r)’s for r = a, . . . ,R−1 appear in the weight ωIPW

[a,b]; see (5).
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ϕ
†
[a,b] = I(C = R)

P(C = R|T1)

P(a ≤ c ≤ b|T1)

P(a ≤ C ≤ b)

[
m(Z;β0

[a,b])−E[m(Z;β0
[a,b])|T1]

]
+ I(a ≤ C ≤ b)

P(a ≤ C ≤ b|T1)
E[m(Z;β0

[a,b])|T1].

(ii) The inverse of the semiparametric information bound for β0
[a,b] in Proposition 4

that works under the CMAR condition in (13) cannot exceed this asymptotic

variance

(
M′

[a,b]

[
V†

[a,b]

]−1
M[a,b]

)−1

because V†
[a,b] − VCMAR

[a,b] is positive semi-

definite since V†
[a,b] −VCMAR

[a,b] is given by

R∑
r=2

E

[
P(a ≤ C ≤ b|T1)

P(a ≤ C ≤ b)

{
1

P(C ≥ R|T1)
− 1

P(C ≥ r|T1)

}
×Var

(
E[m(Z;β0

[a,b])|Tr] | Tr−1
)∣∣a ≤ C ≤ b

]
.

The moment function for β0
[a,b] in Lemma 7(i) could be more compactly written

as the weighted average of the I(C = R)ωR,j(T1)m(Z;β0
[a,b])’s where ωR,j(.) is

defined in (5). However, the more elaborate form in the lemma helps to better
visualize where/how the variance adjustment, as in Newey (1994), Ackerberg et al.
(2014), Chernozhukov et al. (2022), etc., works in this IPW estimation. It works in
Lemma 7(i) because there the conditional hazards are still exactly identified by the
respective conditional moment restrictions. By contrast, the variance adjustment
of IPW does not (and should not) work in Lemma 7(ii) in a way that leads to the
efficient influence function and efficiency bound from Proposition 4.

The variance adjustment of IPW does not lead to the efficiency bound from
Proposition 4 because the variance adjustment is based only on the given moment
restrictions and no other information such as the MAR or CMAR conditions.12

Note, e.g., that the CMAR condition in (13) contains additional information
P(C = r|Z,C ≥ r) = ·· · = P(C = r|Tr,C ≥ r) = ·· · = P(C = r|T1,C ≥ r) about the
nuisance conditional hazards P(C = r|T1,C ≥ r) in Lemma 7(i), thus providing a
sequence of additional feasible moment restrictions

E
[
I(C ≥ r) {I(C = r)−pr(T1)} | Tj

]= 0 almost surely Tj, for j = 1, . . . ,r,

to solve for the pr(T1)’s in Lemma 7(i). Lemma 7(i) does not use this additional
information and hence the IPW variance adjustment fails to reach the efficiency
bound in Proposition 4.

While CMAR is a strong assumption, other types of strengthening of MAR—
e.g., P(C = r|Z,C ≥ r) = P(C = r|Zr,C ≥ r), i.e., with conditioning set involving
only period r’s observables and not the entire history—could be more plausible.

12This did not matter in Proposition 6(ii) that worked under the MAR condition (1) because MAR did not have
any information on the nuisance conditional hazards P(C = r|Tr,C ≥ r) in Proposition 6(i). MAR’s information
P(C = r|Z,C ≥ r) = P(C = r|Tr,C ≥ r) cannot be feasibly used based on the observed data for efficiency via
overidentification of P(C = r|Tr,C ≥ r). This led to the equivalence in Proposition 6(ii).
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In general, the common empirical practice of any kind of variable selection also
leads to an implicit strengthening of the MAR condition by imposing exclusion
restrictions. It is likely that in such cases the IPW variance adjustment will also
not lead to the efficiency bound like in the CMAR example.

Finally, we note that despite Proposition 6 and the elegant theory in the literature
behind the variance adjustment of IPW estimators based on nonparametric estima-
tion of the conditional hazards, IPW is not our recommended estimator even under
MAR. The theory depends crucially on proper conditioning on the conditioning
sets Tr’s. However, the dimension of the conditioning set Tr increases with r,
and in practice it is difficult to condition on all those variables especially if they
are continuous. This makes the theory of nonparametric variance adjustment less
reflective of the finite-sample behavior even in very large samples when R > 2,
which is a key feature of our paper. Simulations in Supplementary Appendix
B suggest that nonparametric variance adjustment can underestimate IPW’s true
variability (measured by Monte Carlo variance) even in very large samples when
R > 2, while parametric variance adjustment in (17) in the spirit of Newey (1994) or
Ackerberg et al. (2012) can reflect the true variability in moderately large samples.
This issue with IPW is distinct from the problems with IPW (primarily concerning
bias) that have been noted in the recent double robustness literature; see Rothe and
Firpo (2019), Chernozhukov et al. (2022), etc.

4. ESTIMATOR OF β0
[a,b] AND ITS ASYMPTOTIC PROPERTIES

Our proposed estimator for β0
[a,b] will utilize the doubly robust structure of

ϕ[a,b](O;β) that was highlighted in remark 5 following Proposition 2. We know
from (3)–(5) that ϕ[a,b](O;β) depends on the unknown conditional hazards and
conditional expectations. Denote the true value of these nuisance parameters by
p0(TR−1) and q0(TR−1;β) where

p0(TR−1) := (P(C = R−1|TR−1,C ≥ R−1), . . . ,P(C = a|Ta,C ≥ a))′,

q0(TR−1;β) := (E[m(Z;β)|TR−1]′, . . . ,E[m(Z;β)|Ta]′)′.

Let p(TR−1) and q(TR−1;β) be generic functions of the same dimension as p0(TR−1)

and q0(TR−1;β).
Define the function g(O;β,p(TR−1),q(TR−1;β)) as ϕ[a,b](O;β) with the condi-

tional hazards and conditional expectations replaced by the concerned elements of
p(TR−1) and q(TR−1;β), respectively. Note that g(O;β,p0(TR−1),q0(TR−1;β)) ≡
ϕ[a,b](O;β) for all β.

We will use the following dm ×1 GMM sample moment vector to estimate the
dβ ×1β0

[a,b]:

ḡn(β,̂p(TR−1),̂q(TR−1,β)) := 1

n

n∑
i=1

g(Oi;β,̂p(TR−1,i),̂q(TR−1,i,β)), (18)
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where p̂(TR−1,i) and q̂(TR−1,i,β) are nonparametric or parametric estimators of
p0(TR−1,i) and q0(TR−1,i;β) for i = 1, . . . ,n; see Robins and Rotnitzky (1992),
Robins et al. (1994), etc. For a dm × dm weighting matrix Wn, we will define the
GMM estimator of β0

[a,b] as

β̂(Wn) := argmin
β∈B [ḡn(β,̂p(TR−1),̂q(TR−1,β))]′ Wn [ḡn(β,̂p(TR−1),̂q(TR−1,β))] .

(19)

Practitioners often use flexible parametric models to estimate the nuisance param-
eters. If there is “promise” to make the models more flexible when sample size
increases, then such estimators can be considered as nonparametric, otherwise they
are parametric; see, e.g., Newey (1994, p. 1369), Ackerberg et al. (2012), etc. We
adopt this convention in our paper and provide a brief heuristic discussion of the
properties of β̂(Wn) by considering both parametric and nonparametric estimation
of the nuisance parameters under a unified framework. Some generality is lost
due to the unified presentation; but these results are already well known and our
presentation here is only for the sake of completeness.

First, consider the conditional hazards. Let the parametric model, e.g.,
logit/probit, for P(C = r|Tr,C ≥ r) be pr(Tr;γr) where γr is a dγr × 1 unknown
vector for r = a, . . . ,R−1. We obtain the quasi-maximum likelihood estimator γ̂r

of γr solving the score equations:

0 = 1

n

n∑
i=1

Sr(Oi;γ̂r) for r = a, . . . ,R−1, where for i = 1, . . . ,n,

Sr(Oi;γr) := I(Ci ≥ r)
I(Ci = r)−pr(Tr,i;γr)

pr(Tr,i;γr)(1−pr(Tr,i;γr))

{
∂

∂γr
pr(Tr,i;γr)

}
.

(20)

Now, consider the conditional expectations. Let the parametric model, e.g., linear
model, for the jth element E[mj(Z;β)|Tr] of E[m(Z;β)|Tr] be qr,j(Tr;β,λr,j(β)).
Let qr(Tr;β,λr(β)) = (qr,1(Tr;β,λr,1(β)), . . . ,qr,dm(Tr;β,λr,dm(β)))′ where
λr(β) = (λ′

r,1(β), . . . ,λ′
r,dm

(β))′ and λr,j(β) is a dλr,j × 1 unknown vector for
r = a, . . . ,R − 1, j = 1, . . . ,dm. We obtain the least squares estimator λ̂r,j(β) of
λr,j(β) for j = 1, . . . ,dm as functions of β solving the normal equations:

0 = 1

n

n∑
i=1

Lr,j(Oi;β,̂λr,j(β)) for r = a, . . . ,R−1, where for i = 1, . . . ,n,

Lr,j(Oi;β,λr) := I(Ci = R)

{
∂

∂λr,j
qr,j(Tr,i;β,λr,j)

}(
mj(TR,i;β)−qr,j(Tr,i;β,λr,j)

)
.

(21)

In empirical work, the pr(Tr;γr)’s are typically logit/probit with index ξ ′
dγr

(Tr)γr,
and the qr,j(Tr;β,λr,j(β))’s are typically linear π ′

dλr,j
(Tr)λr,j(β) where the

ξdγr
(Tr)’s and πdλr,j

(Tr)’s are possibly the first dγr and dλr,j terms of some basis
function, e.g., powers. We consider the estimator p̂(TR−1)= (pR−1(TR−1;γ̂R−1), . . . ,
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pa(Ta;γ̂a))
′ for p0(TR−1) and the estimator q̂(TR−1;β) = (q′

R−1(TR−1;β,̂λR−1(β)),

. . . ,q′
a(Ta;β,̂λa(β)))′ for q0(TR−1;β) as parametric if the dγr ’s and dλr,j ’s are fixed,

and as nonparametric if the dγr ’s and dλr,j ’s increase with n.

Assumption CH. The conditional hazard (CH) models are correct, i.e., there
exists a γ 0 = (γ 0′

a , . . . ,γ 0′
R−1)

′ such that pr(Tr;γ 0
r ) = P(C = r|Tr,C ≥ r) for

r = a, . . . ,R−1.

Assumption CE. The conditional expectation (CE) models are correct, i.e.,
there exists a λ0 = (λ0′

a , . . . ,λ0′
R−1)

′ such that qr(Tr;β0
[a,b],λ

0
r ) = E[m(Z;β0

[a,b])|Tr]
for r = a, . . . ,R−1.

Assumptions CH and CE can be assumed to hold approximately arbitrarily well
if p̂(TR−1) and q̂(TR−1;β) are nonparametric. But assumptions CH and CE may
not hold if p̂(TR−1) and q̂(TR−1;β) are parametric. We will assume that ‖̂p−p∗‖ =
op(1) and ‖̂q−q∗‖ = op(1) (at suitable rates and with respect to suitable metrics in
suitable function spaces) for some pseudo-true functions p∗(TR−1) and q∗(TR−1;β)

where p∗(TR−1) = p0(TR−1) if CH holds and q∗(TR−1;β0
[a,b]) = q0(TR−1;β0

[a,b]) if
CE holds. If both CH and CE fail to hold, then there is no protection of double
robustness and the GMM moment for β0

[a,b] may be misspecified. Then, in case
of overidentification (dm > dβ), there may be no solution to the GMM population
moment restriction and the probability limit of β̂(Wn), if it exists, may depend
on the limiting behavior of Wn; see, e.g., Hall and Inoue (2003). Such probability
limits may not be of interest in the related empirical literature where the focus is
on the true value β0

[a,b] and not the pseudo true values. Therefore, in our heuristic
discussion below of the asymptotic properties of β̂(Wn), we will maintain that
assumptions CH and CE cannot be jointly false.

First, consistency. Double robustness implies (see remark 5 following Proposi-
tion 2) that

E[g(O;β,p∗(TR−1),q
0(TR−1;β))]

= E[g(O;β,p0(TR−1),q
∗(TR−1;β))] = E[m(Z;β)|a ≤ C ≤ b].

Therefore, consistency β̂(Wn)
p−→ β0

[a,b] follows under standard conditions (see,
e.g., Theorem 1 of Chen, Linton, and van Keilegom (2003)) if CH and CE are
not jointly false.

Now, the asymptotic distribution of β̂(Wn). We can see that the same double
robustness property also implies that the M[a,b] defined in assumption A3 satisfies

M[a,b] = ∂

∂β ′ E[g(O;β0
[a,b],p

0(TR−1),q
∗(TR−1;β))]

= ∂

∂β ′ E[g(O;β0
[a,b],p

∗(TR−1),q
0(TR−1;β0

[a,b]))].

Let Gp(β,p,q)[vp] and Gq(β,p,q)[vq] be the pathwise derivatives of E[g(O;β,p,q)]
at p and q in the directions vp and vq such that p + τvp and q + τvq for τ ∈ [0,1]
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belong in the respective function spaces. We can see that the same double
robustness property also implies that

Gp(β
0
[a,b],p

∗(TR−1),q
0(TR−1,β

0
[a,b])) = 0 and Gq(β

0
[a,b],p

0(TR−1),q
∗(TR−1,β)) = 0.

(22)

Let Wn
p−→ W. If β̂(Wn)

p−→ β0
[a,b] as we just noted above, then it now follows under

standard conditions (see, e.g., Theorem 2 of Chen et al. (2003)) that

√
n
(
β̂(Wn)−β0

)= − (M′WM
)−1

M′W
√

n
[
ḡn(β

0,p∗,q∗)

+ Gp(β
0,p∗,q∗)[̂p−p∗]+Gq(β

0,p∗,q∗)[̂q−q∗]
]+op(1),

writing the triple β,p(TR−1),q(TR−1;β) as β,p,q, and dropping the subscript [a,b]
for brevity.

Therefore, if assumption CH holds, then p∗(TR−1) = p0(TR−1) and hence by (22)
√

n
(
β̂(Wn)−β0

)
= −(M′WM

)−1
M′W

√
n
[
ḡn(β

0,p0,q∗)+Gp(β
0,p∗,q∗)[̂p−p0]

]+op(1).

So the estimation of the unknown conditional expectations E[m(Z;β0)|Tr]’s has
no effect on the asymptotic distribution of β̂(Wn) if the conditional hazard models
are correct.

Similarly, if assumption CE holds, then q∗(TR−1;β0) = q0(TR−1;β0) and hence
by (22)
√

n
(
β̂(Wn)−β0

)
= −(M′WM

)−1
M′W

√
n
[
ḡn(β

0,p∗,q0)+Gq(β
0,p0,q0)[̂q−q0]

]+op(1).

So the estimation of the unknown conditional hazards P(C = r|Tr;C ≥ r)’s has
no effect on the asymptotic distribution of β̂(Wn) if the conditional expectation
models are correct.

Finally, if both assumptions CH and CE hold, then we have p∗(TR−1) = p0(TR−1)

and q∗(TR−1;β0) = q0(TR−1;β0) and hence by (22)

√
n
(
β̂(Wn)−β0

)= −(M′WM
)−1

M′W
√

nḡn(β
0,p0,q0)+op(1).

Now consider efficiency in the sense of Proposition 2. If W−1 = Var
(
g(O;β0,

p∗(TR−1),q∗(TR−1,β
0))
) =: V(β0,p∗,q∗), which when CH and CE hold jointly is

denoted by V(β0,p0,q0), then
√

n
(
β̂(Wn)−β0

)
= −(M′[V(β0,p0,q0)]−1M

)−1
M′[V(β0,p0,q0)]−1√nḡn(β

0,p0,q0)+op(1)

when CH and CE hold jointly. Now, since the moment vector g(O;β,p,q) was
defined such that g(O;β0,p0,q0) ≡ ϕ[a,b](O;β0) (and hence V(β0,p0,q0) ≡ V[a,b]),
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it follows that

√
n
(
β̂(Wn)−β0

)= −�−1
[a,b]M

′
[a,b]V

−1
[a,b]

1√
n

n∑
i=1

ϕ[a,b](Oi;β0)+op(1), (23)

where the non-op(1) term on the RHS is the influence function from Proposition 2
which was shown to be efficient for any [a,b] when dm = dβ and for a = b or
a = 1,b = R when dm > dβ . Under the conditions maintained in Proposition 2, it
follows from (23) that
√

n
(
β̂(Wn)−β0

) d−→ N
(
0,�−1

[a,b]

)
.

The related literature on the doubly or locally robust moment functions using
nonparametric p̂ and q̂, or even parametric p̂ and q̂ but without allowing for the
violation of CH or CE, focuses solely on (23) and takes �−1

[a,b] as the asymptotic

variance of β̂(Wn) when Wn
p−→ V−1

[a,b].
However, assumption CH or CE may not hold if p̂ and q̂ are parametric.

Then the above asymptotically linear representations of β̂(Wn) are not practically
useful to obtain the asymptotic variance of β̂(Wn) without more structure on p̂
and q̂. The usual solution is to exploit the parametric structure of p̂ and q̂, and
obtain the asymptotic variance of β̂(Wn) based on the standard stacked represen-
tation of the moment vectors for β, γ := (γ ′

a, . . . ,γ
′
R−1)

′ and λ := (λ′
a, . . . ,λ

′
R−1)

′

where λr := (λ′
r,1, . . . ,λ

′
r,dm

)′ for r = a, . . . ,R − 1. Accordingly, consider the(
dm +∑R−1

r=a dγr +∑R−1
r=a

∑dm
j=1 dλr,j

)
×1 stacked moment vector:

ψ(Oi;β,γ,λ) :=
⎡⎢⎣g(Oi;β,p(Zi;γ ),q(Zi;β,λ))

S(Oi;γ )

L(Oi;β,λ)

⎤⎥⎦ where S(Oi;γ ) :=

⎡⎢⎢⎣
Sa(Oi;γa)

...

SR−1(Oi;γR−1)

⎤⎥⎥⎦,

L(Oi;β,λ) :=

⎡⎢⎢⎣
La(Oi;β,λa)

...

LR−1(Oi;β,λR−1)

⎤⎥⎥⎦, and Lr(Oi;β,λr) :=

⎡⎢⎢⎣
Lr,1(Oi;β,λr,1)

...

Lr,dm(Oi;β,λr,dm)

⎤⎥⎥⎦
for r = a, . . . ,R−1. We will obtain the GMM estimator β̂ using the usual two-step
GMM.

We will refer to β̂ as EFF (as in efficient). In step one, we use the identity
matrix as the GMM weighting matrix to obtain the first step estimators β̄,γ̄ and
λ̄ for β,γ and λ, and estimate the efficient weighting matrix as �̂−1

n (β̄,γ̄ ,λ̄)

where �̂n(β,γ,λ) :=∑n
i=1 ψ(Oi;β,γ,λ)ψ ′(Oi;β,γ,λ)/n. Step one is not needed

if dm = dβ . In step two, we obtain the efficient GMM estimators β̂,γ̂ , and λ̂

by minimizing with respect to β,γ,λ the GMM objective function based on the
efficient weighting matrix. Finally, we estimate the asymptotic variance of β̂,
i.e., EFF, as the first dβ × dβ block diagonal of the GMM asymptotic variance

matrix
(
�̂ ′

n(β̂,γ̂ ,̂λ)�̂−1
n (β̂,γ̂ ,̂λ)�̂n(β̂,γ̂ ,̂λ)

)−1
where �̂n(β̂,γ̂ ,̂λ) is the (possibly
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numerical) derivative of
∑n

j=1 ψ(Oj;β,γ,λ)/n with respect to β,γ , and λ at β̂,γ̂ ,
and λ̂.

The asymptotic theory for EFF with parametric (fixed) nuisance models is
simple. When CH and CE are not jointly false, the interesting structure described
in the text between equations (22) and (23) is preserved by the influence function
of EFF (and hence its asymptotic variance) thanks to the double robustness to the
misspecification of the parametric nuisance models. If the parametric nuisance
models are not fixed but “promise” to become sufficiently flexible with the increase
in sample size, then, as shown in Ackerberg et al. (2012) (see also Newey, 1994),
EFF can be interpreted as semiparametric and the estimator of its asymptotic
variance obtained above can be consistent for the benchmark variance �−1

[a,b].

5. EMPIRICAL ILLUSTRATION BASED ON PROJECT STAR

We continue with the motivating example from Section 2.1 of attrition in Project
STAR. We wish to illustrate the possible benefits of the efficiency gains due to our
proposed estimator EFF in drawing substantive conclusion from this experiment
on the effect of small class size on students’ performance. As a reference to EFF,
we also present the same results using the IPW estimator from (14) that is the
reweighted Hajek (1971) version of IPW.

To this end, it is useful to first ask which effects an “ideal” Project STAR
experiment would have generated with the subjects/students entering grade K
in 1985 if there was no subsequent attrition or other implementation-related
compromises (see, e.g., Hanushek, 1999). The answer is that, since there was no
protocol to randomly assign the class types of students except at the beginning, an
“ideal” Project STAR experiment would have generated in grades K, 1, 2, and 3 the
effect of continued presence in small classes with respect to continued presence in
not-small classes. Our illustration will focus on the “ideal” experiment.

We first formally define these effects that the “ideal” experiment would have
generated. We view attrition—a compromise to the ideal experiment—as a mitigat-
ing action by students in response to the treatment (class type) that they perceived
as unhelpful to them. To gain a better understanding of this mitigating action, we
then decompose these effects by the attrition behavior of students from small and
not-small classes.

For brevity of this illustration, we present only the results for (normalized)
reading scores.13 Let Ys(grade j read) be the potential grade j reading score of
a student had (s)he stayed in the small class at least until the end of grade j
for j = K,1,2,3 after being initially randomized to a small class in grade K.
Similarly, with superscript “ns” denoting not-small, define the potential scores

13To streamline our empirical illustration, we ignore the compromises other than attrition to the experiment, e.g.,
students who enrolled after grade K or the few students (1.8%–5.8% in the respective grades; see Table 1) who
switched their assigned class types. Some of these compromises can be accommodated in this illustration at the cost
of strong modeling assumptions and messier notation that we want to avoid here for simplicity.
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Yns(grade j read) for j = K,1,2,3. These scores are not observed for a student in
grade j if the student left the participating school before grade j = 1,2,3.

As noted above, we focus on two treatment regimes—a continued presence in
small classes and a continued presence in not-small classes over the 4 years of
Project STAR. Denote the average difference between the outcomes of these two
regimes at each grade j = K,1,2,3 as

μread
j := E[Ys(grade j read)−Yns(grade j read)].

5.1. Evolution of the Effect of Small Classes

First, consider the trajectory of μread
j for j = K,1,2,3 to see how the effect of

the small-class regime with respect to the not-small class regime evolved over
continued presence in these regimes. Their EFF and IPW estimates are plotted
in Figure 1a.14 The EFF and IPW estimates of the trajectory are quite similar.
Consistent with the literature, we observe that the initial effect μread

K is very large
compared to the “value added” (e.g., μread

j −μread
K for j = 1,2,3) in the subsequent

grades 1, 2, and 3. However, our value added estimates are not as pessimistic as
Hanushek’s (1999) that led him to question the justification of the huge cost of
prolonged operation of small classes, but are more in line with Krueger (1999).

We conjecture that the correction for attrition makes our estimates less pes-
simistic than Hanushek’s (1999). This would happen under asymmetric selection,
e.g., if the students leaving not-small classes left because they were going to score
badly had they stayed, whereas the students leaving small classes left under other
concerns or lesser concerns of bad scores.

Following up on our conjecture, as proxies to Hanushek’s (1999) annual and
4-year samples, respectively, we also plot in Figure 1a the “In grade” and “Never
left” estimates of the trajectory. These are based on the average observed score of
the students who took the tests at the end of the respective grades (for In grade
estimates) and the students who continued in Project STAR until the end of grade
3 (for Never left estimates).15 Note that Never left actually estimates νread

j,3 , while
In grade estimates νread

j,j for j = K,1,2,3 where

14We obtain these estimates following Section 4 using parametric models specified for the conditional hazards and
conditional expectations. The conditional hazard of leaving small (resp. not-small) classes after grade j (= K, 1, 2)
is modeled as logit with a linear index of a constant, dummies for race, sex, types of school (inner city, urban, and
rural), the share of students on free lunch in school, dummies for all grades (present and past) where the student
was on free lunch, where the student’s teacher had bachelor’s degree, and the difference in each of the past grades
between the student’s normalized math and reading scores from, respectively, the average normalized math and
average normalized reading scores in small classes and also in not-small classes in their school. The differences
between the student’s and the average scores are continuous variables, and we also include their quadratic and cubic
terms in the index. The conditional expectations of the grade j (= 1,2,3) scores in small (resp. not-small) classes are
modeled linearly with exactly the same set of variables. These estimation results are not reported but are available
from us.
15“In grade” and “Never left” are those that correspond to the so-called “available cases” and “complete cases,”
respectively, in the parlance of the missing data literature. To fix ideas, consider Table 2. Never left has its own row
in the table, while In grade for each grade is composed of the non-x entries in the column for that grade. In grade is
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Figure 1. (a) EFF, IPW, In grade, and Never left estimates of effect on reading score at each grade. (b) EFF and IPW estimates and
confidence intervals (90%, 95%, and 99%) of μread

K ,μread
1 ,μread

2 ,and μread
3 . The 90%, 95%, 99% EFF, and IPW confidence intervals

for the decomposition of μread
3 by comparing: (c) the entirety of small classes with different attrition categories from not-small classes

and (d) the different attrition categories from small classes with the entirety of not-small classes.
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νread
j,l := E[Ys(grade j read)|Bs

l ] − E[Yns(grade j read)|Bns
l ] for j,l = K,1,2,3

and Bs
l is the event that a student assigned to small class in grade K does not leave

before the end of grade l for l = K,1,2,3; and similarly Bns
l is the event for the

not-small class.16

Supporting our conjecture, visual inspection of In grade and Never left estimates
reveals that without correction for attrition the value added estimates would indeed
be pessimistic.

5.2. Does Attrition Matter?

But, beyond this visual inspection, does the correction for attrition matter sta-
tistically as well? More precisely, since we observed that the attrition-corrected
estimates (EFF and IPW) are larger than the attrition-uncorrected estimates (In
grade, which is typically favored to Never left), it is natural to ask if this is entirely
due to sampling variation or is there systematic evidence for this in the population.
That is, one would want to test the null hypothesis H0,j : μread

j = νread
j,j against the

alternative H1,j : μread
j > νread

j,j for grades j = 1,2,3.
The p-values for these tests using EFF and IPW estimates of μread

j for grades
j = 1,2,3 are as follows:

• 21% using EFF and 26.3% using IPW for H0,1 : μread
1 = νread

1,1 against
H1,1 : μread

1 > νread
1,1 . (Note that grade 1 score has a single level of missingness;

see the caption of Table 2.)
• 5.5% using EFF and 30.7% using IPW for H0,2 : μread

2 = νread
2,2 against

H1,2 : μread
2 > νread

2,2 .
• 6.6% using EFF and 23.3% using IPW for H0,3 : μread

3 = νread
3,3 against

H1,3 : μread
3 > νread

3,3 .

The EFF p-values for H0,2 and H0,3 are small and not sufficient in practice to take
for granted the reliability of the attrition-uncorrected In grade estimates for the true
effect μread

2 and μread
3 . On the other hand, the IPW p-values are quite a bit larger for

H0,2 and H0,3. It is, however, not prudent (and possibly misleading) to take H0,2

and H0,3 for granted because, as we will see below, the large IPW p-values are
entirely due to the imprecise nature of the IPW estimates. By contrast, EFF helps

preferred in practice (not always correctly) to Never left as a representative of the full population since it contains
Never left and also units from various subpopulations of the full population.
16While we have deviated from the C-notation for attrition category to better reflect the sequencing K,1,2,3 of grades,
in this 4-period experiment: Bs

K ≡ {C ≥ 1} and Bs
l ≡ {C ≥ l + 1} if l = 1,2,3 for small class, and similarly Bns

l for
not-small class. We hope that this switch from C to B notation is not confusing.

Equipped with this notation, let us now recall and generalize the motivating discussion below Table 2 in
Section 2.1 on the problem of selection. νread

K,K = μread
K obviously as attrition started only after the end of grade K.

However, in general, νread
j,l �= μread

j for j = K,1,2,3 and l = 1,2,3 unless suitable mean independence assumptions
hold or, by happenstance, the biases for small and not-small classes cancel out, i.e., E[Ys(grade j read)|Bs

l ] −
E[Ys(grade j read)] = E[Yns(grade j read)|Bns

l ]−E[Yns(grade j read)].
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to avoid this possibly misleading confidence in H0,2 and H0,3 and points toward
the possibility that attrition does matter here.

5.3. Do Attrition-Corrected Estimates Give Substantive Conclusions
on the Effects?

Attrition-correction will be of limited use to practitioners if it does not lead to
precisely estimated (zero or nonzero) effects. To explore if that is the case here,
we plot in Figure 1b the 90%, 95%, and 99% two-sided confidence intervals around
the EFF and IPW estimates for μread

K ,μread
1 ,μread

2 , and μread
3 . The EFF intervals turn

out to be subsets of the IPW intervals.
Specifically, while the EFF and IPW intervals are identical for μread

K by definition
and are similarly precise for μread

1 (one level of missingness), the EFF intervals are
much more precise than the IPW intervals for μread

2 and μread
3 (more than one level

of missingness).
EFF rejects a zero or negative value of μread

j for all j = K,1,2,3 at all con-
ventional levels, but IPW fails to reject it for j = 2,3 at the 1% level. (The
EFF p-values do not exceed even .01%.) Small classes are an expensive policy
proposition. Hence, the fact that EFF can rule out with extreme confidence any
negative evidence against continued presence in small classes for every duration
1–4 years (after starting in grade K) has serious policy implications.

5.4. Attrition as a Mitigating Action against Unhelpful Class Type
Assignment

Students were randomly assigned to small and not-small classes when they
enrolled in a Project STAR school in grade K. Many students did not score well
in their randomly assigned class type. Leaving the Project STAR school was an
important course of mitigating action available to these students. If attrition in
Project STAR was primarily due to this mitigating action, then, given the initial
random assignment, we would expect that students who stayed scored better than
what students who left would have scored had they stayed instead.

This is exactly what we observe in our estimates for each grade 1, 2, and 3.
For brevity, we report here only the results for grade 3 since it is the terminal
period of the experiment, and compare those who never left with each of the other
attrition categories. Table 3 reports the EFF and IPW estimates of α

s,read
3 −α

s,read
j

and α
ns,read
3 −α

ns,read
j for j = K,1,2 where

α
s,read
j := E[Ys(grade 3 read) | As

j ], and α
ns,read
j := E[Yns(grade 3 read) | Ans

j ]

and As
j is the event that a student assigned to small class in grade K leaves exactly

at the end of grade j; and similarly Ans
j is the event for not-small classes.17

17This switch from the C to A notation in this 4-period experiment is trivial: As
K ≡ {C = 1} and As

j ≡ {C = j + 1}
if j = 1,2,3 for small class, and similarly Ans

j for not-small class. As in footnote 16, this switch better reflects the
sequencing K,1,2,3 of grades and does so in small and not-small classes separately.
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Table 3. EFF and IPW estimates and standard errors (in parentheses) for α
t,read
3 −

α
t,read
j for t = s,ns and j = K,1,2. ∗, ∗∗, and ∗∗∗ signify if the null that the parameter

is zero is rejected against the alternative that it is greater than zero at the 10%, 5%,
and 1% levels, respectively.

α
s,read
3 −α

s,read
j α

ns,read
3 −α

ns,read
j

j EFF IPW EFF IPW

K 0.39∗∗∗ 0.34∗∗∗ 0.48∗∗∗ 0.48∗∗∗

(0.11) (0.14) (0.05) (0.18)

1 0.45∗∗∗ 0.48∗∗ 0.64∗∗∗ 0.63∗∗∗

(0.16) (0.24) (0.08) (0.19)

2 0.51∗∗∗ 0.47∗∗∗ 0.46∗∗∗ 0.46

(0.11) (0.20) (0.09) (0.53)

EFF and IPW estimates are very similar, but EFF is much more precise than
IPW. Consequently, EFF confirms with a higher level of confidence in all cases
the intuition that students who stayed scored better on average than what students
who left would have scored had they stayed instead. By contrast, IPW fails to
confirm at conventional levels of significance this intuition behind the choice to
leave not-small classes at the end of grade 2.

Relatedly, consider the two decompositions of the effect μread
3 of small classes

by attrition categories

μread
3 =

∑
j=K,1,2,3

μread
3,j,∗ ×P

(
As

j

) =
∑

j=K,1,2,3

μread
3,∗,j ×P

(
Ans

j

)
based on the attrition from small and not-small classes, respectively, where, for
j = K,1,2,3,

μread
3,j,∗ = E[Ys(grade j read)| As

j ] − E[Yns(grade j read)],

μread
3,∗,j = E[Ys(grade 3 read)] − E[Yns(grade 3 read)|Ans

j ].

EFF and IPW estimates of these two decompositions, along with the 90%, 95%,
and 99% two-sided confidence intervals, are reported in Figure 1c,d, showing the
relative contribution of each attrition category from small and not-small classes,
respectively, toward the overall effect. Given the large number of students who
left, it is important to understand what the effect would have been with respect
to students leaving at various junctures of the experiment. μread

3,∗,j and μread
3,j,∗ for

j = K,1,2,3 are those effects on the grade 3 reading scores.
Figure 1c reveals that if we compare a randomly chosen student assigned to

small class with a randomly chosen student assigned to not-small class who never
left not-small class, then there is no benefit of small classes on the grade 3 reading
score. The benefit on the grade 3 reading score is driven by the comparison of the
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Table 4. EFF and IPW estimates of expected (counterfactual) reading scores in
grade 3 by the student’s attrition period are presented under the class types to which
they were initially randomized. Standard deviations are presented in parentheses.
All results in this empirical illustration are based on such parameters, and the
standard errors of those results were computed by noting that the estimates in this
table across the two class types are independent but are correlated within class
types. Row (d), i.e., Never left, involves nothing unobserved, and hence both IPW
and EFF estimates are equal to the simple group averages.

Left STAR school Randomized to small class Randomized to not-small class

at the end of grade EFF IPW EFF IPW

(a) K 0.05 0.10 −0.27 −0.26

(0.11) (0.13) (0.05) (0.17)

(b) 1 −0.02 −0.04 −0.42 −0.42

(0.16) (0.23) (0.08) (0.19)

(c) 2 −0.07 −0.03 −0.24 −0.24

(0.11) (0.19) (0.09) (0.53)

(d) 3 (Never left) 0.44 0.44 0.22 0.22

(0.04) (0.04) (0.03) (0.03)

former student with randomly chosen students assigned to not-small class who left
not-small class after grade K, 1, or 2.

Figure 1d reveals that if we compare a randomly chosen student assigned to not-
small class with randomly chosen students assigned to small class who left small
class after grade K or 1 or 2, then there is no harm to the grade 3 reading score due
to not-small classes. The harm to the grade 3 reading score due to not-small classes
is driven by the comparison of the former student with a randomly chosen student
assigned to small class who never left small class. Thus, attrition was clearly a
mitigating action against unhelpful class assignment.

These decompositions reveal such interesting patterns telling us which group
of students (by attrition category) are driving the overall effect of small classes
in the terminal period grade 3, and by how much. While the EFF estimates of
the decompositions are very similar to the IPW estimates, the precision of EFF
provides more statistical confidence toward confirming the contribution of each
group of students to the overall effect of small classes.18

Lastly, as we noted in Section 2.1, these EFF-based inferences are precise mainly
because the subpopulation-specific components of the effects are estimated more
precisely by EFF. Table 4 reports the results for EFF and IPW estimation of a subset

18Note that, for each j = K,1,2, the estimands from Table 3 are related to these decompositions as follows:

α
s,read
3 −α

s,read
j = μread

3,3,∗ − μread
3,j,∗ while α

ns,read
3 −α

ns,read
j = −(μread

3,∗,3 − μread
3,∗,j).

Therefore, going back to Table 3, we see that it suggests that EFF rejects the null μread
3,∗,3 = μread

3,∗,j against μread
3,∗,3 < μread

3,∗,j

and the null μread
3,3,∗ = μread

3,j,∗ against μread
3,3,∗ > μread

3,j,∗ for each j = K,1,2 even at the 1% level. IPW cannot do that, and

moreover it does not reject μread
3,3,∗ = μread

3,2,∗ at any conventional level of significance.
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of such components. Rows (a)–(c) correspond to the components marked with “x”
in the columns for the grade 3 score in Table 2 that was presented in Section 2.1 as
an empirical motivation behind the theoretical contribution of our paper. The gain
in precision due to EFF is clear in all cases.

6. CONCLUSION

Our paper provided a comprehensive presentation of efficiency in estimation of
parameters defined by the missingness pattern of monotonically MAR data. The
efficiency results on the parameters for generic subpopulations are new, and extend
the well-known results on the treatment effects on the treated or the untreated or the
parameters from the so-called “verify-out-of-sample” case in various empirically
relevant directions.

We saw in the empirical illustration that such parameters are, among other
things, fundamental to our understanding of the economic agent’s mitigation
behavior when faced with unhelpful situations, e.g., leaving a school where a class-
assignment is perhaps not working well for the student. Our proposed estimator
for such parameters is a standard two-step doubly robust estimator. We saw that
its computation is standard, and its precision may help to draw substantive conclu-
sions when the standard estimators fail to do so. The excellent performance of our
proposed estimator in our simulation experiment (Supplementary Appendix B)
and, by contrast, the poor performance of its competitors give credibility to the
results obtained by our proposed estimator, and we hope that encourages its use in
practice.

We now conclude by recalling two important technical features of our paper.
First, we clearly characterized the additional restrictions that were imposed on the
tangent set for the underlying semiparametric model by the overidentification of
the parameters of interest. To the best of our knowledge, this characterization was
missing from the related literature on missing data. In the process, we validated
and extended various existing results.

Second, we analyzed the information content (strength) of the MAR assumption
linking it to the usability of sample units toward efficient estimation in subpopu-
lations. This allowed us to contrast between the efficiency bound that is reached
by the variance adjustment due to the estimation of exactly identified nuisance
parameters and the efficiency bound that is obtained under the model assumptions
involving the strength of the MAR assumption.

To the best of our knowledge, these two technical features distinguish our paper
from the related literature on missing data, and are possibly of independent interest
for future work on semiparametric efficiency bounds in broader contexts.

SUPPLEMENTARY MATERIAL

Barnwell and Chaudhuri (2024): Supplement to “Efficiency in estimation under
monotonic attrition,” Econometric Theory Supplementary Material. To view,
please visit https://doi.org/10.1017/S0266466624000203.
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