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Abstract

The generalised elliptic-type integral /?,,(&, a, y)

cos2""1 (0/2) sin21"-20-'(0/2)

where 0 < k < 1, Re(y) > Re(a) > 0, Re(/x) > —0.5, is represented in terms of the
Gauss hypergeometric function by Kalla, Conde and Hubbell [8]. In 1987, Kalla, Lubner
and Hubbell derived a simple-structured single-term approximation for this function in the
neighbourhood of k2 = 1 in some range of the parameters a, y and fi. Another formula
which complements the parameter range was recently derived by the author. In this paper
a novel technique is used in deriving multiple-term efficient approximations in the neigh-
bourhood of k2 = 1 for R^ik, a, y) which may be considered as a generalisation to the
concept of the single-term approximations mentioned above. Two non-overlapping expres-
sions which almost cover the entire range of parameters (a, y, /x) are derived. Closed-form
solutions are obtained for single- and double-term approximations (in the neighbourhood of
k2 = 1). Results show that the proposed technique is superior to existing approximations
for the same number of terms. Our formulation has potential application for a wide class
of special functions.

1. Introduction

Kalla, Conde and Hubbell [8] have treated a family of integrals of the form

" cos2"'1 (9/2) $1X1^-^(6/2) jn

— ( i - F cos e y ^ — d e - &

These integrals have special importance since many physical and engineering
problems are simply special cases of this representation, examples of which occur
in radiation field problems [2,5]. Other forms of interesting elliptic-type integrals
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are special cases of such representations. If, for example, y = 2a = l, fi = j
(non-negative integer), then

Rj (k, I, 1) = / (1 -k2 cos9)->-l/2d9 = Qj(k)
Jo

which is the well-known Epstein-Hubbell function [4]. First and second complete
elliptic integrals are related to do(k), and fij (k) respectively [8]. Kalla and Al-Saqabi
[7] have treated the family of integrals

n cos2" 9

o (1 "

which is related to the generalised elliptic-type integral by [1]

M*. n) = £(-l)m2" (2n) R» (k, I, m + l).
m=0 \ m /m=0

If, y — 2« then (1) gives

where
sin2" 9

The case Re(v) = Re(a - 5) > -5 was studied by Kalla [6]. Al-Saqabi [1] has
treated the family

2" 9 sin2^ 9
d9,Jo U — i

where 0 < k < 1, Re(/J) > — 5, Re(/u,) > — 5, and n is a non-negative integer, which
is related to /?M(&, a, y) by

BM(*. n, B) = 22^ f^(- i r2 m f2") J?M (t, ̂  + i, m + IB + l).
m=0 \ /

In [1, 4-8] recurrence relations, series expansions, relations with known functions
and asymptotic approximations in the neighbourhood of k2 = 1 have been given. A
simple-structured single-term asymptotic approximation in the parameter subspace
where Re((x + ^ + a — y) > I has been given by Kalla, Leubner and Hubbell in [9].

Another single-term approximation which covers the parameter subspace where
Re(y — a — IJL — \) > 1 has been derived by the author in recent work [3]. The results
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of [9] are included in [3] and the latter contains single-term asymptotic approximations
of (1) which almost cover the entire range of parameters (a, y, /A). Our object in this
paper is a generalisation of the work given in [3]. That is, we derive simply structured,
efficient multiple-term approximations of (1) in the neighbourhood of k2 = 1. It is
sufficiently accurate to allow a semi-quantitative assessment of the dependence of
(1) on the parameters /x, k -> 1, or and y, which is usually an important first step in
physical applications [9]. The paper is organised as follows. In Section 2 two formulas
for asymptotic expansions which almost cover the entire range of the parameters are
obtained. Two general formulations of the multiple-term approximation are obtained
in Section 3, while two expressions for single- and double-term approximations are
given in Section 4, where different closed-form results are obtained. Finally, results,
error estimates and concluding remarks are given in Section 5.

2. Asymptotic expansion

2.1. Expansion valid for the parameter subspace Re( / i+ |+a — •y) > N, N > 1.
With some simple transformations, (1) can be written as [9]

1

*"<*' "•Y) = ( 1 - t f V " / ^ Jo

For K = 2k2/(I - it2), the series expansion has been given in [9, Equation (6), p.273]
by

where RN is the remainder.

2.2. Expansion valid for the parameter subspace Re(7 — Q —/x— \) > N, N > 1.
Equation (1) can also be written as

dx

(see [3]), where S = (1 — k2)/(l + k2). Its series expansion has been given in [3] as
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which may be written in the form

\ £ n!r(l/2-/*-n)
because

rq/2-/*) = rgt+i/2 + w)
ra/2-/*-n)

forRe(y — a — ix — ~) > n, n = 0 , 1 , . . . , N.

3. Multiple-term approximations

3.1. Formulation valid for the parameter subspaee Re(/i+|+a—7) > N, N > 1.
Assume that there exist complex values C\,Ci,... ,Cs,z\,Zi, • • • ,zs such that

where s = 1 for a single-term approximation, s = 2 for a double-term approximation,
and so on. By performing binomial expansions, (7) gives

J / \ O O / , \ -I

y = l \ / n=0 \ " / "

or

^ C J ( z J ) , = ( - l ) " ( 1 ~ t |
g ) " , » = 0 , l , 2 , . . . , 2 * - l , (8)

y = l K

where

(«)« = r ^ + " ) = a(fl+l)(fl+D(fl+2)... (a+n-l) and (~") = (-1^ a ( f l + l ) ( f l + D ( f l + 2 ) . . . (a+nl) and ( ) ( 1 ) ^ .

3.2. Formulation valid for the parameter subspaee Re(7 — a — fi — | ) > N , N >
1. Assume that there exist complex values P\, P2,... , Ps,xi,x2,... ,xs such that

+ T)~X' « (1 + 5r)-"-1/2, (9)

where s determines the number of terms in the approximation. Equation (9) results in

+1-) Sn, n = 0,l,...,2s-l. (10)
j=\
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4. Single- and double-term approximations

4.1. Single-term approximation

Solution valid for Re(/x + \ + a - 7) > 1. Set s = 1 in (8), and n = 0, 1. This
results in C\ = 1, Z\ = (a — 1)/K, and (7) is thus

(l - - ) " " ' % (1 + *)-«"-»/'. (11)

This approximation coincides with that given by Kalla et al. [9]. Upon substitution of
this approximation in (3) and performing the integration, the single-term approxima-
tion is given by

which has been given by Kalla et al. [9].

Solution valid for Re(7 - a - \i - \) > 1. Set s = 1 in (9), and n = 0,1.
This results in Pi = 1, x\ = (/x + k)8. Thus

(1 + 5r)~M-1/2 % (1 + T ) - ^ 1 ^ (13)

which is the same approximation as has been given by the author in [3].
Upon substitution of (13) in (5) and performing the integration, the single-term

approximation is given by

B (a, y - a - t (a + |))
R ( k a y ) * { \ ' Z

where £ = 2k2/(I + k2), which is identical to that given by the author in [3].

4.2. Double-term approximations

Solution valid for Re(/x + \ + a - 7) > N, N > 1. Set s = 2 in (8) so that

j(zj)n = {-iril~a)n, n = 0,1,2,3. (15)

This gives a system of four non-linear equations, which can be written in the form

ClZ" + C2z$ = Pn, n = 0 , l , 2 , 3 , (16)
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Po = 1,
( t t -D

Pi = .
(o-l) /(a-2) A

Pi = 1 ) ,
K \ K )

(17)

(a-1) /(o-2)(a-3) 3(o - 2)

Solution with real a > 1. This solution is obtained by solving the first three
equations of (16) for Cx = C2 = \ which assumes z\ and zi are complex conjugates.
Setting Z\ = re'e, zi — re~'e and solving these equations results in

r =
y/(a - IKa + K)

6 = cos"1

U

Thus

(a-D

Z2 =
(a - 1) I V ( « - 1 ) ( 1 + K )

(18)

Upon substitution of 5 = 2, C, = C2 = 5 and (18) in (7) and performing the
integration, the double-term approximation for real a > 1 is given by

„ . . _ B(.Y-a,

Solution with complex a . The first three equations of (16) are solved for C\ =
C2 = \ and arbitrary a, a = ax + iay, where ax and ay are the real and imaginary
components.

Setting

ra =

results in

ay

ft,,

.ft,,
'2'

(20)
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By substitution of these values in (7) and performing the integration, the double-term
approximation is given by

B(y-a,
*"<*• « • > ' > * ' 2 ( 1 -

Note that (19) is a special case of (21) when a is real, a > 1.

An efficient double-term approximation: Re(jz + \ + a — 7) > N, N > 1.
The solution of the four equations (16) will be performed as

[i «[«]
Solving (22) results in

r _ Z2-P1

(24)

Substitution

Setting

will resolve

Substitution

c

of (24) in (23) leads to

Pi(zi + z 2 ) 2 -

Zl

the non-linearity in (25)

Ps ••

Pp •

for pi, p2 and p3 in (27)

Ps —

PP-

Zl -

Zi -

Pi

Z 2 -

Pl(Zl •

ZlZ2[Pl

+ Z2 =

Z1Z2 =

- P i

- Z i '

- Z i

- Z i '

-I-Z2) - Z 1 Z 2 = P2,

+ (Z, +Z2)] = P3-

2Ps,

Pp,

and simplifications result in

P 3 -

2(P2

P1P3

P 2 -

results

a-2

P1P2
— p j 1 ) '

- P 2 2

-pi '
in

1

K 2 '
(a - l)(a - 2)

A,2

(25)

(26)

(27)

(28)
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Finally Z\ and z2 are given by

Z\ = Ps + Jp2
s + Pp,

V ( 2 9 )
Zl = Ps ~ y/Ps + Pp-

Substitution of (28) in (29) results in

o - 2 1 1 / . 4(a -2){t , 1 \
/c 2 2V K \ K J

\
/c 2 2V K \ K J

\ ( 3 0 )
K

a-
K

2

2

1
2

Substitution of (30) and (17) in (24) results in

1 / 2 + 1 / *
- 2

1/2+ \/K

The double-term approximation in the parameter subspace Re(/i + ^ + a — y) >
N, N > 1 is given by

Note that as K - • oo, zi -> 0, z2 ->• - 1 , Q ->• 1, C2 ->• 0 and (1 - X/K)"~X -+ 1, a
requirement for convergence.

Solution with Re(7 - a - \i - \) > N, N > 1. Set s = 2 in (10) so that

" n = 0 , l ,2 ,3

\

1

j = \

which gives a system of four non-linear equations that can be written as

n
x + P2x

n
2 = en n = 0 , 1 , 2 , 3 , (33)
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where

Solution with real \i. This solution is obtained by solving the first three equations
of (34) for Pi = P2 = \, where in this case X\ and x2 are complex conjugates. Solving
these equations results in

(35)

x2 =

Upon substitution of s = 2, P] = P2 = \ and (35) in (9) and performing the
integration, the double-term approximation for real /LA is given by

B(a, y-a-n-l/2+Xt) + B(a, y - a - (i - 1/2 + x2)R^kay)

Solution with complex fi. The first three equations (34) are solved for Pi =
Pi = j . M = A1* +»'Hy, where \ix and fiy are the real and imaginary components of /i.

Setting

results in

sin (-£

sin (^

+ JrnZS cos I —

> cos -f-

(37)

On substitution of these values in (9) and performing the integration, the double-term
approximation is given by

Note that (36) is a special case of (38) when /x is real.
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An efficient double-term approximation Re(7 — a — n — 1/2) > N, N > 1.
The solution of the four equations (34) will be performed as

The solution is obtained using a similar approach to the previous case, which results
in

(41)

The double-term approximation is given by

)+ iP2B(a,

Note that as 8 -+ 0, xx -> 0, x2 -> - 1 , P, ->• 1, P2 -> 0 and (1 + 5 T ) M + 1 / 2 -J> 1 and
convergence is guaranteed.

5. Results and conclusions

In this section the implementation issues, error estimates and results are considered,
and concluding remarks made.

The proposed algorithm has been implemented using a high-level programming
language with extended memory (better than double precision) for highly accurate
results. Furthermore this implementation allows the user to enter complex data values
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using batch/interactive (user friendly) modes of operation. Thus different computer
runs have been made for some real as well as for some complex parameter values
(i, k —> 1, a and y. The approximation formulas for R^ik, a, y) developed by the
author are given in terms of the well known beta function. Since the arguments of
the beta function should have positive real part (from its integral definition), different
approximation formulas with different error measures ranging from o(h) to o^2*"1)
(5 = 1 for single term, s = 2 for double term, and so on) have been developed to
meet this requirement for an arbitrary selection of parameter values. Implementation
has been performed for single and double term approximations. Our formulation can
be extended to multiple term approximations by selecting s = 3 ,4 , . . . , n in (8) and
(10).

Error estimates for the different formulas implemented for [8, (24)], single-, and
double-term approximations are as follows (note that O stands for big order and o
stands for small order).
Equation [8, (24)] is a first-order approximation with error of the order of 0{\/K).

For single-term approximations:

(i) the error in approximating (1) using (12) is O(\/K).

(ii) the error in approximating (1) using (14) is o(<5).

For double-term approximations:

(i) the error in approximating (1) using (19), and (21) is o(l//c2).
(ii) the error in approximating (1) using (36), and (39) is o(<52).

(iii) the error in approximating (1) using (32) is o(l//c3).
(iv) the error in approximating (1) using (43) is o(<53).

Comparisons of the numerical values of R^ik, a, y) near k2 = 1 computed using
different formulas are shown in Tables 1 and 2 for some real parameter values and
in Tables 3 and 4 for some complex parameter values. These results shows the
efficiency of the derived algorithms for an arbitrary valid selection of parameter
values in the range | Re(/x + ^ + a — y)\ > 1. In this range the results agree fully
with the error estimates described above, in which (32) and (44) are the most accurate
ones. However, in the parameter subspace where \Rc(fx + | + a — y)\ is near unity
(where neither approximation is valid) the results are still acceptable for the two-term
approximations (19), (21), (36), and (38).
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TABLE 1. Comparison of the numerical values of R^ (k, a, y) near k2 = 1 for some real parameter
values in the range y — a — /x > 0.0 computed using [8,(21)], [8,(24)], (14), (39), and (44) respectively.

( l ) a = 1.100, y = 4.200, JA = 0.500, y - a - /x - 1/2 = 2.1
k [8,(21)] [8,(24)] Eqn (14) Eqn (39) Eqn (44)
0.9 2.093934E-01
0.99 2.054540E-01
0.999 2.053540E-01

1.838617E-01 2.152868E-01 2.107449E-01 2.082308E-01
2.091932E-01 2.063600E-01 2.058484E-01 2.053967E-01
2.057701E-01 2.054612E-01 2.054095E-01 2.053617E-01

(2) a = 1.100, y = 4-200, /x = 0.800, y - a - /x - 1/2 = 1.8
k [8,(21)] [8,(24)] Eqn (14) Eqn (39) Eqn (44)
0.9 1.979907E-01
0.99 1.963101E-01
0.999 1.968272E-01

3.470349E-01
2.029821E-01
1.974540E-01

2.072572E-01 2.000121E-01
1.979592E-01 1.971006E-01
1.970314E-01 1.969441E-01

1.951857E-01
1.960783E-01
1.968335E-O1

(3) a = 4.100, Y = 6-600, /z = 0.500, y - a - /x - 1/2 = 1.5
k [8,(21)] [8,(24)] Eqn (14) Eqn (39) Eqn (44)
0.9 3.782468E-02
0.99 4.670842E-02
0.999 4.873123E-02

1.384385E-01
5.167806E-02
4.919103E-02

4.602029E-02 3.992645E-02
4.875022E-02 4.796716E-02
4.901376E-02 4.893351E-02

3.193469E-02
4.581456E-02
4.869304E-02

(4) a = 1.100, Y = 2-800, fi = 0.500, y - a - ft - 1/2 = 0.7
k [8,(21)] [8,(24)] Eqn (14) Eqn (39) Eqn (44)
0.9 5.293588E-01
0.99 6.148831E-01
0.999 6.504273E-01

2.837057E-01
5.966988E-01
6.488000E-01

6.321023E-01 5.461978E-01
6.596220E-01 6.459745E-01
6.626075E-01 6.611700E-01

2.523377E-02
6.988331E-01
6.660787E-01

(5) a = 1.100, y = 3.000, n = 0.800, y - a - /x - 1/2 = 0.6
_fc [8,(21)] [8,(24)] Eqn (14) Eqn (39) Eqn (44)
0.8 4.295741E-01 -2.115114E-01 5.437709E-01 4.143580E-01 2.871081E-01
0.85 4.391267E-01 5.399295E-02 5.609462E-01 4.337491E-01 1.841555E-01
0.9 4.563970E-01 2.479054E-01 5.811327E-01 4.669419E-01 -3.444037E-01

(6) a = 1.100, y = 2.600, /x = 0.500, y-a -/i-1/2 = 0.5
k [8,(21)] [8,(24)] Eqn (14) Eqn (39) Eqn (44)
0.8
0.85
0.9

6.052904E-01
6.233944E-01
6.525245E-01

1.727362E-01
3.532578E-01
5.007962E-01

7.853774E-01
8.174955E-01
8.540038E-01

5.769254E-01
6.119775E-01
6.688503E-01

2.798452E-01
-1.357250E-01

5.618882E+O0
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TABLE 2. Comparison of the numerical values of R^k, a, y) near k2 = 1 for some real parameter
values in the range a + n - y > 0.0 computed using [8,(21)], [8,(24)], (12), (19), and (32) respectively.

[8,(21)] [8,(24)] Eqn (12) Eqn (19) Eqn (32)
(1) a = 0.900, y = 1000, (i = 0.850, a + ft + 1/2 - y = 2.1
0.99 1.210422E+03 1.209931E+03 1.210498E+03 1.210581E+03 1.21O886E+O3
0.999 2.136422E+04 2.136337E+04 2.136403E+04 2.136417E+04 2.136465E+04
0.9999 3.796268E+05 3.796253E+05 3.796262E+05 3.796264E+05 3.796272E+05
(2) a = 5.900, y = 6.200, ^ = 2.000, a + fi + 1/2 - y = 2.20
0.99 1.106853E+04 1.118958E+04 1.111249E+04 1.108410E+04 1.106495E+04
0.999 1.745831E+06 1.747946E+06 1.746595E+06 1.746135E+06 1.745819E+06
0.9999 2.765751E+08 2.766086E+08 2.765871E+08 2.765798E+08 2.765747E+08
(3) a = 1.100, y = 2.800, /z = 3.500,
0.9 3.444503E+00 3.506083E+00
0.99 4.595303E+02 4.601659E+02
0.999 8.810573E+04 8.8U750E+04

+ ii+l/2-y ~ 2.30
3.520160E+00 3.504459E+00 3.483416E+00
4.598788E+02 4.597165E+02 4.595665E+02
8.811173E+04 8.810868E+04 8.810596E+04

(4) a = 1.800, y = 3.800, fi = 4.900,
0.9 6.640246E+00 7.225418E+00
0.99 1.050541E+04 1.057719E+04
0.999 2.521706E+07 2.523399E+07

a + \L + 1/2 - y = 2.40
6.875321E+00 6.736296E+00 6.641078E+00
1.053254E+04 1.051492E+04 1.050549E+04
2.522345E+07 2.521931E+07 2.521714E+07

(5) a - 0.700, y = 1.000, fi = 3.000,
0.9 3.856661E+02 3.835179E+02
0.99 4.954628E+05 4.952559E+05
0.999 7.695165E+08 7.694855E+08

a + fi + 1/2 - y = 3.20
3.851123E+02 3.854767E+02 3.856644E+02
4.954134E+05 4.954492E+05 4.954628E+05
7.695096E+08 7.695150E+08 7.695170E-T-08

(6) a = 0.450, y = 2.300, ft = 5.500,
0.9 2.411059E+01 2.299221E+01
0.99 1.898106E+05 1.891848E+05
0.999 2.537167E+09 2.536363E+09

a + fi + 1/2 - y = 4.15
2.371229E+01 2.394027E+01 2.406342E+01
1.896169E+05 1.897551E+05 1.898105E+05
2.536933E+09 2.537113E+09 2.537184E+09

(7) a = 0.700, y = 1.200, fi = 5.300,
0.9 4.133850E+03 4.116341E+03
0.99 5.844504E+08 5.842442E+08
0.999 1.127955E+14 1.127918E+14

a + fi + 1/2 - y = 4.3
4.130749E+03 4.133158E+03 4.133785E+03
5.844200E+08 5.844463E+08 5.844517E+08
1.127952E+14 1.127957E+14 1.127958E+14

(8) a = 4.000, y = 6.500, fi = 8.5000,
0.9 1.183240E+02 1.385660E+02
0.99 1.986265E+08 2.013939E+08
0.999 5.902838E+14 5.910941E+14

a + fi + 1/2 - y = 6.50
1.229674E+02 1.192964E+02 1.181464E+02
1.992768E+08 1.987617E+08 1.986258E+08
5.904770E+14 5.903264E+14 5.902874E+14

(9) a = 1.200, y = 3.400, n = 10.000,
0.9 3.003545E+03 3.025522E+03
0.95 6.038944E+05 6.058987E+05
0.999 4.991774E+19 4.992153E+19

a + /j, + 1/2 - y = 8.30
3.007982E+03 3.004467E+03 3.003632E+03
6.042773E+05 6.039695E+05 6.039052E+05
4.991905E+19 4.991860E+19 4.991852E+19
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TABLE 3. Comparison of the numerical values of R^(k, a, y)neark2 = 1 for some complex parameter
values in the range a + ix - y > 0.0 computed using [8,(21)], [8,(24)], (12), (21), and (32) respectively.

(1) a = (0.900,0.700),)/= (1.000,0.800),
k [ 8 , ( 2 1 ) ]

(0.850,0.600), Re (a+M+1/2 - / ) = 1.25
[8,(24)]

0.900
0.990
0.999

k
0.900
0.990
0.999

k

(53.233625, -6.280356)
(473.282878,747.731133)

(-8620.248592, 13028.77982)

Eqn (12)
(53.630786,-6.008611)

(472.931028, 748.560205)
(-8622.015485, 13028.87515)

Eqn (32)
0.900 (53.038156, -6.203533)
0.990 (473.195063,747.613208)
0.999 (-8620.313258, 13028.68662)

(2) or = (0.700,0.800), y = (1.000,0.700), ft =
k [8,(21)]

0.800
0.900
0.990

k
0.800
0.900
0.990

k
0.800
0.900
0.990

(3)or = l
k

0.900
0.990
0.999

k

(-24.000830, 37.553806)
(-319.160376, -58.900526)
(180265.7725,381195.851)

Eqn (12)
(-24.158842,37.801935)

(-319.922950, -59.161555)
(180281.422,381282.123)

Eqn (32)
(-23.987450, 37.533648)

(-319.144264, -58.874237)
(180267.936,381200.619)

[4.000,1.800), y = (6.500,2.000), /x =
[8,(21)]

(51.695508,55.877749)
(102034016.4, 71234905.9)

(2.87549E + 14, 2.31198E+ 14)

Eqn (12)

(53.534379, -5.278908)
(472.109255,748.812009)

(-8622.831955, 13027.68588)

Eqn (21)
(53.532530, -6.336027)

(473.324386,748.297231)
(-8621.325519, 13029.31969)

(3.000,1.700), Re(a + /Li+1/2-)/) = 3.2
[8,(24)]

(-25.159671,37.763667)
(-320.929155, -62.063334)
(180081.096,381562.560)

Eqn (21)
(-23.974962,37.645515)

(-319.370876,-58.810854)
(180281.297,381214.797)

(8.500,5.700), Re(a + /x+1/2-y) = 6.5
[8,(24)]

(60.173725,62.276061)
(103325460.9,71869786.4)

(2.87902E + 14, 2.31463E + 14)

Eqn (21)
0.900 (53.659487,56.020544)
0.990 (102297179.4,71216634.1)
0.999 (2.87617E + 14, 2.3125279E+14)

k Eqn (32)

(51.983772,55.723464)
(102063909.5,71225830.9)

(2.87548E + 14, 2.31251E + 14)

0.900
0.990
0.999

(51.659125,
(102031838.8

(2.87539E + 14,

55.923562)
,71256335.9)
2.31259E+14)
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TABLE4. Comparison of the numerical values of R^ik, a, y)nearfc2 = 1 for some complex parameter
values in the range y - a - n > 0.0 computed using [8,(21)], [8,(24)], (14), (39), and (44) respectively.

(1) a = (1.800,2.200), y = (3.800,2.500),/x = (0.800,0.600), R e ( y - a - M - 1 / 2 ) =0 .7
[8,(21)] [8,(24)]

0.900 (0.062210,-0.133610)
0.990 (0.145507,-0.109602)
0.999 (0.167232,-0.082968)

k E q n (14)

(-0.180580,-0.115165)
(0.129122,-0.111037)
(0.165698,-0.083159)

Eqn (39)

0.900 (0.137686,-0.105474)
0.990 (0.164314,-0.075990)
0.999 (0.166592, -0.072469)
k E q n (44)

(0.081452,-0.145413)
(0.159704,-0.085353)
(0.166175, -0.073468)

0.900 (0.046495, -0.445326)
0.990 (0.189366, -0.071709)
0.999 (0.168855,-0.071864)

(2) a = (3.100,2.300), y = (3.500,4.100),
k [ 8 , ( 2 1 ) ]

(1.500,0.900), R e ( y - a - M - 1 / 2 ) =1.6
[8,(24)]

0.900 (-0.690440,2.419067)
0.990 (50.592918,3.185830)
0.999 (-845.293873,-1641.763390)

k E q n (14)

(0.741511,1.768056)
(48.064994,2.901764)

(-841.198662,-1633.025388)

Eqn (39)
0.900 (-0.838484, 1.498341)
0.990 (47.918409, 1.126190)
0.999 (-849.303877,-1634.613743)

k E q n (44)

(-0.927487, 1.995796)
(49.261647, 1.232497)

(-851.247429,-1639.355073)

0.900 (-1.694687,2.291769)
0.990 (49.431664,2.677346)
0.999 (-846.762018,-1642.202329)
(3) a = (1.100,0.600), x = (2.800,1.600),

k [ 8 , ( 2 1 ) ]

(3.500,2.700), Re(y-a-M-1/2) = 2.3
[8,(24)1

0.900 (2.997343,0.547758)
0.990 (-304.024857,-273.367087)
0.999 (6826.118865,78204.919249)
k E q n (14)

(3.080951,0.737646)
(-303.606312,-275.681007)
(6787.219163,78232.622919)

Eqn (39)
0.900 (3.059542,0.602605)
0.990 (-304.198135,-274.317901)
0.999 (6812.929814,78221.307795)

k E q n (44)

(3.030089,0.549819)
(-304.237090,-273.672673)
(6821.757142,78212.955010)

0.900 (2.989206,0.537953)
0.990 (-304.022982, -273.379601)
0.999 (6822.616646,78206.332409)
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