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PROBABILITY THAT N POINTS ARE IN CONVEX POSITION IN A
REGULAR κ-GON: ASYMPTOTIC RESULTS

LUDOVIC MORIN,∗ Université de Bordeaux, LaBRI

Abstract

Let Pκ (n) be the probability that n points z1, . . . , zn picked uniformly and independently
in Cκ , a regular κ-gon with area 1, are in convex position, that is, form the vertex set of
a convex polygon. In this paper, we compute Pκ (n) up to asymptotic equivalence, as
n→+∞, for all κ ≥ 3, which improves on a famous result of Bárány (Ann. Prob. 27,
1999). The second purpose of this paper is to establish a limit theorem which describes
the fluctuations around the limit shape of an n-tuple of points in convex position when
n→+∞. Finally, we give an asymptotically exact algorithm for the random generation
of z1, . . . , zn, conditioned to be in convex position in Cκ .
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1. Introduction

Let Cκ be the regular κ-gon with area 1 positioned on the x-axis, as represented in Figure 1, let
rκ =

(
4 tan

(
π
κ

)
/κ
)1/2 be its side length, and let θκ = (κ−2)π

κ
be the interior angle between two

consecutive sides.
For any compact convex domain K of area 1 in R2 with non-empty interior and for any n ∈N,
we let U(n)

K denote the law of an n-tuple z[n] := (z1, · · · , zn), where the zi are independent and
identically distributed (i.i.d.) and uniform in K.
In the special case K = Cκ , we write for short U(n)

κ := U
(n)
Cκ

.

An n-tuple of points z[n] ∈ (R2)n is said to be in convex position if {z1, · · · , zn} is the vertex
set of a convex polygon, which we will refer to as the z[n]-gon; the set of such n-tuples z[n] is
denoted by Zn. Hence

PK(n) := P (z[n] ∈Zn)=U
(n)
K (Zn)

is the probability that n i.i.d. random points z[n] taken uniformly in K are in convex position,
and
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FIGURE 1. C7.

Pκ (n) := PCκ (n)

is the corresponding probability in the regular κ-gon.
The purpose of this paper is threefold. First we give an equivalent of Pκ (n) as n→∞

(see Theorem 1 below), then we describe the fluctuations of a z[n]-gon with distribution U
(n)
κ

conditioned to be in convex position (Theorem 8), and we conclude by providing an algorithm
to sample such an n-tuple z[n] (Section 6). One of the main contributions of this paper is thus
the following theorem.

Theorem 1. Let κ ≥ 3 be an integer. We have

Pκ (n) ∼
n→+∞Cκ · e2n

4n

κ3nr2n
κ sin (θκ )n

n2n+κ/2 ,

where

Cκ = 1

πκ/2
√

mκ

√
κ
κ+1

4κ (1+ cos (θκ ))κ
,

and mκ is the determinant of a deterministic matrix (see Theorem 7), an explicit formula for
which is given by

mκ = κ

3 · 2κ
(

2(− 1)κ−1 + (2−√3)κ + (2+√3)κ
)

. (1.1)

Theorem 1 actually refines a famous result of Bárány [3] in the case of κ-gons (note,
however, that Bárány’s result holds under weaker hypotheses).

Theorem 2. (Bárány [3].) For any compact convex set K of area 1 with non-empty interior,

lim
n→+∞ n2 (PK(n))

1
n = 1

4
e2AP∗(K)3,

where AP∗(K) is the supremum of the affine perimeters of all convex sets S⊂K.

The definition of the affine perimeter will be recalled in Definition 2; we send the interested
reader to [2] for additional details. In the κ-gon case, as will be shown in Lemma 17, we
have

AP∗(Cκ )= κ
(

r2
κ sin (θκ )

)1/3
,
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Points in convex position in a κ-gon 3

so that one can check that in that particular case, Theorem 1 is compatible with and more
precise than Theorem 2.

The quantity PK(n) has been widely studied since the 19th century, and for a large variety
of convex sets K, not just regular polygons. Sylvester [23] initiated the consideration of this
matter, looking at the probability that four points chosen at random in the plane were in convex
position. Though Sylvester’s question was ill-posed, it matured in its later formulation into the
study of PK(4), for any convex shape K of area 1 (see Pfiefer [20] for historical notes). In 1917,
Blaschke [5] determined the convex domain K that maximizes or minimizes the probability
PK(4) (on the set of non-flat compact convex domains of R2) by proving that the lower bound
is achieved when K =
 is a triangle, and the upper bound when K =© is a disk; that is,

2

3
= P
(4)≤ PK(4)≤ P©(4)= 1− 35

12π2
.

In the same direction, Marckert and Rahmani [18] proved in 2021 that

11

36
= P
(5)≤ PK(5)≤ P©(5)= 1− 305

48π2
.

This question can be generalized to different values of n, and other dimensions. To this day,
the conjecture in dimension 2, that

P
(n)≤ PK(n)≤ P©(n)

for all n≥ 3, remains open. Yet the value P©(n) has been known since 2017 to be computable
for all n≥ 3, thanks to Marckert’s algebraic formula [17] in the disk case. Note also that
Hilhorst et al. [13] managed in 2008 to derive an asymptotic expansion of log P©(n).

In the case of regular convex polygons, exact formulas are rare, but Valtr proved in 1995
[24] that for K a parallelogram,

P4(n)= P�(n)= 1

(n!)2

(
2n−2
n−1

)2 ∼
n→+∞

1

π225

42ne2n

n2n+2
,

and in 1996 [25] that when K is a triangle,

P3(n)= P
(n)= 2n(3n− 3)!
(2n)!((n− 1)!)3

∼
n→+∞

√
3

4

1

π3/233

33ne2n

2nn2n+3/2
.

The equivalents given at the right-hand side are of course consistent with Theorem 1. Note
however that our method will allow us to recover Valtr’s formulas in Section B (our approach
avoids discretization arguments, but it largely relies on Valtr’s ideas).

In dimension d≥ 3, if 
d and ©d denote respectively a simplex and an ellipsoid of
volume 1, the following generalization of Sylvester’s question—that

P
d (d+ 2)≤ PK(d+ 2)≤ P©d (d+ 2)

for any convex domain K ⊂Rd of volume 1—is a conjecture that remains to be proven (though
the right inequality is known as a generalization of Blaschke’s proof in dimension 2). For a
comprehensive overview of these matters, we refer to Schneider [21].

Canonical ordering of z[n]-gons. An element of z[n] ∈Zn (in convex position) is said to be
in convex canonical order if it satisfies the following conditions (see Figure 2):
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FIGURE 2. Some z[n] in C7(n).

• If (xi, yi) are the coordinates of zi in R2, then y1 ≤ yi for all i (that is, z1 has the smallest
y-component), and among the points having the minimal y-component, z1 has the
smallest x-component.

• The sequence ( arg (zi+1 − zi), 1≤ i≤ n− 1) is non-decreasing in [0, 2π ].

We denote by
�

Zn the subset of Zn of n-tuples of points z[n] in convex canonical order. The
symmetric group Sn acts transitively on Zn by relabeling the vertex indices; each orbit contains

a unique element of
�

Zn. We put Dκ (n)=Zn ∩ (Cκ )n and Cκ (n)=�

Zn ∩ (Cκ )n.
Since z[n] is picked according to the uniform distribution on (Cκ )n, and since this measure

is the Lebesgue measure Leb on this set, we have

Pκ (n)= Leb2n(Dκ (n))= n! Leb2n(Cκ (n)).

In what follows, we will abandon Dκ (n) and work mainly in Cκ (n), as the elements of this
set are easier to parametrize. The argument we detail for the computation of Leb(Cκ (n)) is
mainly deterministic, and we will not really be using random variables in the analysis, even
though everything could be rewritten in terms of them (but the proof would then be much more
cumbersome).

Notation. From now on, we denote by Q
(n)
K the law of an n-tuple of points with distribution

U
(n)
κ , conditioned to be in Cκ (n), and write for short Q(n)

κ := Q
(n)
Cκ

; that is,

dQ(n)
κ (z[n])= n!

Pκ (n)
1{z[n]∈Cκ (n)}dz1 . . . dzn.

This formula represents the measure, but it is not amenable to being used in further computa-
tions; we will thus need an alternative geometric understanding of Cκ (n), which was inspired
by Valtr’s papers.

Limit shape. Bárány [2] proved in 1999 that the convex hull of an n-tuple z[n] with distribution
Q

(n)
κ converges in probability for the Hausdorff topology to an explicit deterministic domain

Dom(K), which has the important property that

AP∗(K)=AP(Dom(K)).
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Points in convex position in a κ-gon 5

FIGURE 3. For each case κ = 3, 4, 6, the inner dashed curve delimits a convex domain Dom(Cκ ) inside
Cκ . The dashed curve represents the limit shape of a z[n]-gon taken under U

(n)
κ , conditioned to be in

convex position, as n→+∞. The curve can be drawn as follows: add the midpoints of the sides of the
initial κ-gon, and between two consecutive midpoints, add the arc of the parabola which is tangent to the
sides and incident to these inner points. The sum of the hatched areas corresponds to the supremum of
affine perimeters (for an explanation see Lemma 17 in the appendix).

In the case of the κ-gon, we represent this domain Dom(Cκ ) in Figure 3. We will explain in
Lemma 16 how Dom(Cκ ) is determined using the inner symmetries of Cκ .

Denote by dH the Hausdorff distance on the set of compact subsets of R2, and for any tuple
z[n] ∈ (R2)n, let conv(z[n]) be its convex hull. In the second main contribution of this paper,
we detail the fluctuations of the z[n]-gon having distribution Q

(n)
κ around its limit Dom(Cκ ).

Theorem 3. Let κ ≥ 3 be fixed, and let z[n] have distribution Q
(n)
κ . When n→+∞, we have

n1/2dH (conv(z[n]),Dom(Cκ ))
(d)−→
n
�,

where � is a non-trivial random variable.

This theorem will turn out to be a consequence of the fluctuations of the z[n]-gon in dis-
tribution (at scale 1/

√
n around its limit) in a functional space, as stated in Theorem 8. We

refrain from stating the latter theorem at this point, since we would need to introduce too much
material to do so; we postpone this work to Section 5.

However, we disclose an element of the proof here: the main idea is to partition each z[n]-
gon of Cκ (n) into κ suitable convex chains, one per corner of the initial polygon Cκ . Each of the
convex chains will be shown to converge separately towards the arc of the parabola associated
with the corresponding ‘corner’ of Cκ , as introduced in Figure 3.

The convergence results stated in Theorem 8 are reminiscent of the limit theorems con-
cerning lattice convex polygons: in this model, an integer n is given, and a convex (lattice)
polygon is a convex polygon contained in the square [−n, n]2 and having vertices with integer
coordinates (and any number of sides). Vershik asked whether it was possible to determine the
number and typical shape of convex lattice polygons contained in [−n, n]2. Three different
solutions were brought to light by Bárány [1], Vershik [26], and Sinai [22] in 1994, which we
outline below.

A convex lattice polygon can be decomposed naturally into four parts (delimited by the
extreme points in the north/east/south/west directions), which determine four ‘polygonal con-
vex lines’ between them. It is therefore natural to investigate the behavior of these chains,
which can be considered, in a first approximation, as convex chains going from (0, 0) to (n, n)
in the square [0, n]2 (up to rotations/translations). For these chains, Bárány [1], Vershik [26],
and Sinai [22] proved that when n→+∞,
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6 L. MORIN

(1) the number of these convex polygonal lines is exp (3(ζ (3)/ζ (2))1/3n2/3 + o(n2/3)),
where ζ is the Riemann zeta function,

(2) the random number of vertices in such a chain is concentrated around the quantity(
ζ (3)2/ζ (2)

)−1/3
n2/3, and

(3) the limit shape of such a chain, normalized in both directions by n, is an arc of a parabola.

These results were refined by Bureaux and Enriquez [10] in 2016, and generalized to higher
dimensions by Bárány et al. [11] in 2018, as well as by Buffière [9] for zonotopes in 2023.

On a related topic, the paper of Bodini et al. [7] gives a characterization of digitally convex
polyominoes using combinatorics on words.

Random generation of a z[n]-gon with distribution Q
(n)
κ . The naive way of sampling a

z[n]-gon with distribution Q
(n)
κ consists in rejection sampling, i.e. sampling points that are

U
(κ)
n -distributed until they are in Cκ (n) (or in Dκ (n)). This algorithm works fine for small values

of n, but as n grows, computation times become unacceptable (by Theorem 1, the probability
of success is less than kn

n2n for some constant k). In particular, the limit shape theorem proven
by Bárány cannot be observed empirically using such a method.

A comprehensive understanding of the distribution Q
(n)
κ will allow us to determine another

distribution D(n)
κ , for which we have an exact sampling algorithm (called κ-sampling and

defined in Section 6) that behaves asymptotically like Q(n)
κ , meaning that dV (Q(n)

κ ,D
(n)
κ ) −→

n→+∞
0, where dV is the total variation distance. The distribution D(n)

κ is defined in Section 3 and can

be viewed as Q(n)
κ conditioned to satisfy a property which occurs with probability going to 1.

This algorithm is asymptotically exact (in n, for κ fixed), for the Q
(n)
κ -sampling.

Theorem 4. The algorithm of κ-sampling samples an n-tuple of points with distribution D(n)
κ

with a complexity of O
(
nκ/2+1κ log (κ)

)
.

Contents of the paper. In the second section of this paper, we analyze the properties of an
n-tuple z[n] ∈ Cκ (n) in the light of a new geometric description. In Section 3 we derive the
distribution of the important variables of this geometric scheme, using which we provide the
proof of Theorem 1 in Section 4. Section 5 is dedicated to the proof of Theorem 3 and the
understanding of the fluctuations of z[n] around its limit. In Section 6, we provide the afore-
mentioned algorithm of κ-sampling and some alternative (more efficient) versions in the cases
κ = 3 and κ = 4. As for the appendices, the first is dedicated to some proofs omitted from the
main text, and the second provides a new demonstration of Valtr’s formulas in the triangle and
the parallelogram.

2. Geometric aspects

Notation. In the sequel, κ ≥ 3 is considered to be fixed. We will work quite a lot with indices
j running through the set of integers {1, . . . , κ}. By convention, in the case j= 1, j− 1 stands
for κ , and when j= κ , j+ 1 stands for 1 (we do so to avoid tedious notation).

We start by defining the equiangular circumscribed polygon ECP(z[n]) associated to z[n] ∈
Cκ (n), any n-tuple of points in canonical convex order: as represented (in blue) in Figure 4, this
is the polygon equal to the intersection of all equiangular polygons whose sides are parallel,
one by one, to those of Cκ , and which contain z[n].
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FIGURE 4. On the left, we draw an ECP(z[n]) for an n-tuple taken in
�

C7(n), with distances �[7] from the
sides of C7 to those of ECP(z[n]). This latter polygon, whose side lengths are given by the tuple of values
c[7], is drawn with a dashed boundary inside C7. On the right, a six-sided ECP(z[n]) in C7. One of the
sides is reduced to a point: this happens when three consecutive values �j−1, �j, �j+1 are defined on the
same point zi in z[n].

We now define some quantities that will allow the description of z[n] in terms of its
circumscribed polygon (see also Figure 4).

The distance from the jth side of Cκ to z[n] is denoted by �j := �j(z[n]). The length of the
side of ECP(z[n]) parallel to the x-axis is denoted by c1 := c1(z[n]). Then, the consecutive side
lengths of ECP(z[n]), sorted counterclockwise, are denoted by c1, c2, . . . , cκ , one or several
ci possibly being zero.

Remark 1. If κ = 3, the only possible internal polygons within C3 are equilateral triangles.
If κ = 4, only rectangles are admitted. In both these cases, an internal polygon within Cκ has
exactly κ sides. This is no longer true for κ ≥ 5, as we can see in the right panel of Figure 4.
The number of ‘nonzero sides’ of ECP(z[n]) is bounded above by κ , and below by 3 (in fact
by 4 for the κ = 4 case; it can technically be 2 if all the points in z[n] are aligned, but we may
neglect this case).

Some properties of equiangular circumscribed polygons. A moment’s thought allows
one to see that ECP(z[n]) is characterized by the κ-tuple of distances �[κ] :=
(�1(z[n]), · · · , �κ (z[n])), and that, in turn, �[κ] determines the side lengths of the ECP,
c[κ] := (c1(z[n]), · · · , cκ (z[n])). In the sequel, since there is no other set of points (except
for z[n]) for which �[κ] or c[κ] would be defined, we deliberately omit the mention of z[n]
when there is no ambiguity.

Proposition 1. Let z[n] ∈ Cκ (n), with the corresponding c[κ], �[κ].

(i) The vectors �[κ] and c[κ] are related by the κ equations

cj = rκ − clj(�[κ]), ∀j ∈ {1, . . . , κ}, (2.1)

where, for all j ∈ {1, . . . , κ}, clj(�[κ]) := (�j−1 + �j+1 + 2�j cos (θκ )
)
/ sin (θκ ) (here cl

stands for ‘linear combination’).

(ii) The set Lκ = �[κ] (Cκ (n)) (of all possible vectors �[κ]) is the set of solutions �[κ] to the
system of inequalities {

clj(�[κ])≤ rκ , ∀j ∈ {1, . . . , κ}, (2.2)

together with the conditions �j ≥ 0, j ∈ {1, . . . , κ}.
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FIGURE 5. Characteristics of an internal polygon.

(iii) The perimeter of the z[n]-gon satisfies

κ∑
j=1

cj + 2(1+ cos (θκ ))

sin (θκ )

κ∑
j=1

�j = κrκ .

Proof.

(i) The formulas (2.1) may be deduced from routine computations on the angles and some
appropriate applications of Thales’s theorem according to Figure 5 below. Indeed, we
have

rκ
�j−1/ sin (θκ )+ cj + �j+1/ sin (θκ )

= aκ
aκ + �j/ sin (θκ )

,

with (see Figure 5) aκ = −rκ
2 cos (θκ ) .

(ii) It is clear that all elements of Lκ solve the system (2.2). Let �[κ] be a solution to (2.2).
Draw a κ-gon and add a straight line (l1) at distance �1 parallel to the first side of Cκ ,
and another one (l2) at distance �2 from Cκ ’s second side. The intersection point of these
two lines is a vertex b1 of the ECP. Since c2 = rκ − cl2(�[κ])≥ 0, a second vertex b2 of
the ECP is at distance c2 from b1 on (l2). We can draw (l3) parallel to the third side of
Cκ passing through b2. With c3 = rκ − cl3(�[κ])≥ 0, we can set b3 as the third vertex
of the ECP. Recursively, with all cj = rκ − clj(�[κ])≥ 0, we get all vertices (b[κ]) and
a full ECP. Hence, each solution of (2.2) is in Lκ .

To get (iii), just sum all of the equations in (2.1) for all values of j. �

Contact points. For each z[n] in Cκ (n), each side of ECP(z[n]) contains at least one element
of {z1, · · · , zn}. The jth ‘contact point’ cpj := cpj(z[n]) is the point of {z1, · · · , zn} which is
on the jth side of ECP(z[n]), and which is the smallest with respect to the lexicographical
order among those with this property. Note that we will work with n-tuples z[n] of random
variables, so that when z[n] is Q

(n)
κ -distributed, there is a single point of {z1, · · · , zn} on the

jth side of ECP(z[n]) with probability 1; thus the particular choice of the lexicographical order
has no importance. However, cpj = cpj+1 is possible and occurs with positive probability for
all n≥ 1.

Denote by bj the intersection point between the jth and (j+ 1)th sides of ECP(z[n]) for all
j ∈ {1, . . . , κ} (the jth vertex of ECP(z[n])). In the case where the jth side of ECP(z[n]) is
reduced to a point, i.e. cj = 0, we have cpj−1 = bj−1 = cpj = bj = cpj+1.
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Points in convex position in a κ-gon 9

FIGURE 6. In C7, an example of a z[n]-gon, the ECP(z[n]), and its vertices b[7], as well as the first and
second corners (the hashed areas). Here we have s[7]= (2, 3, 1, 2, 1, 3, 0).

The triangle with vertices cpj, cpj+1, bj will be referred to as the jth corner of ECP(z[n])
or cornerj(z[n]) (see Figure 6 below for a summary).

Convex chains between contact points. To get a comprehensive description of z[n] with
respect to its circumscribed polygon ECP(z[n]), we need to enrich the decomposition between
the contact points. For this purpose, let ABC be the triangle with vertices A,B,C (taken
in that order) in the plane. For every integer m≥ 0, we denote by Chainm(ABC) the set
of (m+ 1)-tuples (A, z′1, . . . , z′m−1, B) such that z′1, . . . , z′m−1 are in the triangle ABC, and

(A, z′1, . . . , z′m−1, B) ∈�

Zm+1. Hence, m is the number of vectors needed to join the points of
any convex chain in Chainm(ABC). If A= B, we define Chainm(ABC) only for m= 0 as the
set reduced to the trivial chain (A, A). We can now decompose the z[n]-gon between the contact
points as follows.

For all j ∈ {1, . . . , κ}, let k := k(j) ∈ {1, . . . , n} be such that zk = cpj, and denote by
sj := sj(z[n]) the integer such that zk+sj = cpj+1 (eventually sj = 0); the quantity sj denotes
the number of vectors joining the points of the convex chain (zk = cpj, . . . , zk+sj = cpj+1). We
will refer to the tuple s[κ] as the size vector (see Figure 6 for an example).

The main technical ingredient of the paper is now tackled in the following structural lemma.

Lemma 1. For a given s[κ] and j ∈ {1, . . . , κ}, set k=∑t<j st (so that cpj = zk). Given s[κ],
cpj, and cpj+1, the set of convex chains (cpj, zk+1, . . . , zk+sj−1, cpj+1) coincides with the set
Chainsj(cornerj).

Hence, if z[n] has distribution Q
(n)
κ , conditional on (cpj, cpj+1, sj = sj), the points

in the tuple (zk+1, · · · , zk+sj−1) have the same distribution as that of sj − 1 points
(z′1, . . . , z′sj−1) taken uniformly and independently in the triangle cornerj, conditioned on

(cpj, z′1, . . . , z′sj−1, cpj+1) being in
�

Z sj+1.

https://doi.org/10.1017/apr.2024.63 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.63


10 L. MORIN

cp4

cp1

S1 = +
S2 = +

FIGURE 7. An example in the square case, where the ECP is always a rectangle.

Proof. The first statement is equivalent to saying that there are no restrictions on
(zk, . . . , zk+sj) other than those defining Chainsj (cornerj): indeed, it is immediate to check
that given two consecutive contact points zk = cpj and zsj+k = cpj+1, the points of z[n] are in
convex position if and only if both subsets S1 and S2 of points above and below the straight line
joining cpj and cpj+1 (where both S1 and S2 contain cpj and cpj+1) are in convex position. An
example is given in Figure 7.

Because of this property, under Q(n)
κ , the distribution of (zk+1, · · · , zk+sj−1), conditional

on the position of (cpj, cpj+1), is the same as that of (zk+1, · · · , zk+sj−1) conditional on the
position of all the other points, and it is therefore proportional to the Lebesgue measure on
the set of points in convex position in the jth corner (that is, in Chainsj (cornerj)), which is
equivalent to the second statement of the theorem. �

The law of chain (A, u1, · · · , uk, B) conditioned to be in Chaink+1(ABC) will be called the
uniform law in Chaink+1(ABC).

Denote by the right triangle with vertices (0, 0),(1, 1),(0, 1). For a given non-flat triangle
ABC and an integer m≥ 1, let AffABC be the unique affine map that sends ABC onto (meaning
it sends A, B, C to (0, 0),(1, 0),(1, 1), respectively). In the sequel, for m≥ 0, we will denote
by CCm a random variable whose law is uniform in Chainm( ), and refer to this random
variable as a generic -normalized convex chain of size m.

From the fundamental property that affine maps preserve convexity, we deduce the
following lemma.

Lemma 2.

• For a triangle ABC (with non-empty interior), and k points u1, · · · , uk with distribution
U

(k)
ABC, the probability that the chain (A, u1, · · · , uk, B) is in the set Chaink+1(ABC)

does not depend on ABC (so that this value is the same as in the right-triangle case).

• The map AffABC sends ABC to , sends the uniform distribution on ABC to that of (as
well as U(k)

ABC to U(k) ), and sends the uniform distribution on Chainm(ABC) to that on
Chainm( ).

The affine map ϕ. In the following, we will work in the spirit of Lemma 1 by map-
ping every corner of an ECP to a right triangle. Let z[n] ∈ Cκ (n), let c[κ] be the side
lengths of ECP(z[n]), and let b[κ] the vertices of ECP(z[n]). For convenience we impose
the condition sj > 0, so as to have cpj �= cpj+1 (the mapping is still definable otherwise).
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Points in convex position in a κ-gon 11

Let A′j = (0, cj), B′j = (0, 0),C′j = (cj+1, 0), and define ϕj as the unique affine map that sends
bj−1, bj, bj+1 to A′j, B′j,C′j, respectively:

A′j := ϕj(bj−1), B′j := ϕj(bj), C′j := ϕj(bj+1).

The map ϕj can be seen as the composition of a rotation of the jth corner so as to place the
second side (in the clockwise order) parallel to the x-axis; the straightening of the angle of the
triangle thus obtained to produce a right triangle; and a translation (which does not play any
role). Therefore, the Jacobian determinant of ϕj is the determinant of the matrix Aj(θκ ) defined
as follows:

Aj(θκ ) :=
(

1cos (βκ )

0sin (βκ )

)−1

︸ ︷︷ ︸
straightening

(
cos (− jβκ ) sin (jβκ )

− sin (jβκ ) cos (− jβκ )

)
︸ ︷︷ ︸

rotation

, (2.3)

where βκ = π − θκ . The Jacobian determinant of ϕj is thus

Jacϕj = det
(
Aj(θκ )

)= 1

sin (θκ )
. (2.4)

Encoding convex chains in a triangle by simplex products. For all � ∈R+ and k ∈Z>0,
define the simplex

P[�, k]= {(a1, . . . , ak), 0< a1 < . . . < ak < �} (2.5)

and the ‘reordered’ simplex

I[�, k]=
{

(b1, . . . , bk) where 0< b1 < . . . < bk < �, and
k∑

i=1

bi = �
}

. (2.6)

An element (a1, . . . , ak) of the set P[�, k] encodes k points on the segment [0, �], whereas an
element (b1, . . . , bk) of I[�, k] must be seen as k increasing intervals partitioning the segment
[0, �].

Nonetheless, the set I[�, k] can actually be identified as a subset of P[�, k− 1] whose incre-
ments are increasing. Indeed, if (a1, . . . , ak−1) is in P[�, k− 1] and is such that a1 < a2 − a1 <

. . . < ak−1 − ak−2 < �− ak−1, then (a1, a2 − a1, . . . , ak−1 − ak−2, �− ak−1) is in I[�, k]. We
will sometimes make this identification to present some bijections; nevertheless it is important
to remember that topologically, I[�, k] remains a surface in Rk, a (k− 1)-dimensional simplex,
and that useful bijections in measure theory are those whose Jacobian determinant may be
computed.

Note that the Lebesgue measures of these sets are

Lebk(P[�, k])=
∫

P[�,k]
da[k]= �

k

k! ,

and Lebk−1(I[�, k])=
∫

I[�,k]
da[k− 1]= �k−1

k!(k− 1)! , (2.7)

where, for any tuple a[k]= (a1, . . . , ak), the notation da[k] stands for
∏k

i=1 dai.
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FIGURE 8. The map ϕj.
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FIGURE 9. A convex chain in a right triangle abc.

An m!-to-1 map, piecewise linear, from Chain to a simplex product. Let abc be a right
triangle in c of R2, and let d1 = ac, d2 = bc denote the distances. For any convex chain
(a, u1, · · · , um−1, b) ∈Chainm(abc), we may consider the vectors v[m] joining the points of
the convex chain in their order of appearance. Then let the x- and y-coordinates x[m],y[m]

of these vectors be given by xi = π1(vi), yi = π2(vi) for all i ∈ {1, . . . ,m}, and let (
◦
x1 < . . . <◦

xm), (
◦
y1 < . . . <

◦
ym) be the tuples of reordered coordinates (see Figure 9 for an example).

Now consider the following surjective mapping (note that we will be working with vectors
that are randomly distributed and such that P

(∃i �= j s.t. xi = xj or yi = yj
)= 0 almost surely

(a.s.), which ensures that the map Order(m)
abc is well-defined):

Order(m)
abc : Chainm(a, b, c) −→I[d1,m]× I[d2,m]

(a, u1, · · · , um−1, b) �−→(
◦
x[m],

◦
y[m])

. (2.8)

This map is piecewise linear (see Definition 1 below) and has Jacobian determinant 1 since we
are in a right triangle.

Definition 1. (Piecewise linear map.) A map g : E⊂Rn→Rn is said to be piecewise linear if
the following hold:

• There exists a collection of polytopes (Pi)i∈{1,...,m} such that
⋃m

i=1 Pi = E and the
interiors P◦i of the sets (Pi)i∈{1,...,m} are pairwise disjoint.

• For all i ∈ {1, . . . ,m}, g : P◦i →Rn is linear.
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Points in convex position in a κ-gon 13

Piecewise differentiability may be defined in an analogous way (here the term ‘piecewise’
must be understood as g being piecewise differentiable on every P◦i ).

Of course, ‘polytopes’ can be replaced by more general Lebesgue-measurable sets, the
union of whose interiors would partition E, up to a Lebesgue-negligible set.

Remark 2. Consider the mapping

g : R3 −→ R3

(x1, x2, x3) �−→ (x(1), x(2), x(3))

where (x(1) ≤ x(2) ≤ x(3)) is the sorted sequence (x1, x2, x3). The map g is clearly not linear;
however, for any (x �= y �= z) ∈R3, there exists a neighborhood of (x,y,z) on which g is actually
linear. At several places in the paper, we use this kind of reordering map, and so we use the
term ‘piecewise linearity’ (and ‘piecewise differentiability’) in these cases.

Lemma 3. Let (
◦
x[m],

◦
y[m]) ∈ I[d1,m]× I[d2,m]. We have

#
(
Order(m)

abc

)(−1) (◦
x[m],

◦
y[m]

)
=m!. (2.9)

Proof. There are m! distinct ways of pairing every element of
◦
x[m] with one of

◦
y[m] to form

m vectors. There exists a unique order that sorts these vectors by increasing slope. This forms
the boundary of a convex chain whose vertices in canonical convex order (a, u1, . . . , um−1, b)
are in Chainm(abc). �

This lemma allows us to obtain the Lebesgue measure of the set Chainm(a, b, c), by carry-
ing the Lebesgue measure of I[d1,m]× I[d2,m] onto Chainm(abc). In order to compute the
Lebesgue measure of Chainm(abc), we need to identify the convex chains with m vectors as a
subset of R2(m−1) (so that its dimension is 2(m− 1), and appears as such). Therefore we intro-
duce Chain′m(a, b, c)= {(z1, · · · , zm−1) : (a, z1, · · · , zm−1, b) ∈Chainm(abc)}. By a change
of variables we have

Leb2(m−1)
(
Chain′m(abc)

)= ∫
(R2)m−1

1{Chain′m(abc)}dz[m− 1]

=m!(m− 1)! · Lebm−1(I[d1,m]) · Lebm−1(I[d2,m])

= (d1d2)m−1

m!(m− 1)! . (2.10)

Note that the term in (m− 1)! on the second line accounts for the relabeling of the points
(u1, · · · , um−1), and m! appears because of Lemma 3.

Intuition. For z[n] with distribution Q
(n)
κ , these lemmas reveal that conditional on the posi-

tion of ECP(z[n]), cp[κ](z[n]), and s[κ](z[n]) (all together), the convex chains in each corner
are independent. Thus each corner can be considered separately, and by mapping the jth
corner of ECP(z[n]) to A′j, B′j,C′j with ϕj (see (2.3)), we are brought back to the (simpler)
study of a convex chain in a right triangle. However, although this big picture is useful for
understanding the limit shape theorem, it is unfortunately not sufficient for computing the
full asymptotic expansion of Pκ (n), mainly because of the fact that the joint distribution of
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14 L. MORIN

(�[κ](z[n]), s[κ](z[n]), cp[κ](z[n])) is intricate and needs to be understood. Hence we need to
introduce some more tools to work with the joint distribution.

Number of sides of ECP(z[n]). For z[n] ∈ Cκ (n) and the corresponding c[κ], define the map
NZS as follows:

NZS : Cκ (n) −→ P({1, . . . , κ})
z[n] �−→ {

i; ci �= 0
} . (2.11)

This map records the indices corresponding to the nonzero sides of ECP(z[n]). Let us also set

Nκ (n)= {s[κ] ∈N such that s1 + . . .+ sκ = n and sj−1 + sj �= 0 for all j ∈ {1, . . . , κ}},
and define

Cκ (Nκ (n)) := {z[n] ∈ Cκ (n) such that s[κ](z[n]) ∈Nκ (n)} .
The following proposition states an equivalent condition on s(n)[κ] to ensure a ‘full-sided’
ECP.

Proposition 2. Let z[n] have distribution Q
(n)
κ . Then NZS(z[n])= {1, . . . , κ} is equivalent to

s[κ](z[n]) ∈Nκ (n).

Proof. Suppose that the ECP(z[n]) has exactly κ nonzero sides, i.e. that if c[κ]= c[κ](z[n]),
then we have cj > 0 for all j ∈ {1, . . . , κ}. Inside the tuple z[n], consider for all j ∈ {1, . . . , κ}
the contact points cpj−1, cpj, and cpj+1. A small picture suffices to show that we cannot have
cpj−1 = cpj = cpj+1 for this is equivalent to cj = 0, and thus is also equivalent to the fact that
there exists a nonzero vector leading either cpj−1 to cpj (i.e. sj−1 ≥ 1), or cpj to cpj+1 (i.e.
sj ≥ 1). �

Therefore the set Cκ (Nκ (n)) admits another equivalent definition:

Cκ (Nκ (n)) := {z[n] ∈ Cκ (n) such that NZS(z[n])= {1, . . . , κ}} .
The following lemma ensures that the overwhelming mass of n-tuples z[n] ∈ Cκ (n) is actually
contained in Cκ (Nκ (n)).

Lemma 4. Let z[n] have distribution U
(n)
κ . Denote by P̃κ (n) := n! P (z[n] ∈ Cκ (Nκ (n))) the

probability that the z[n] are in convex canonical order and additionally that their ECP has
κ nonzero sides. We have

Pκ (n) ∼
n→+∞ P̃κ (n).

The proof of this result requires several arguments related to Bárány’s limit shape theorem,
so we send the interested reader to Appendix A for a complete overview of the proof.

Remark 3. Lemma 4 is of paramount importance since it allows us to neglect a subset of Cκ (n)
whose Lebesgue measure becomes insignificant relative to that of Cκ (n) as n→+∞. To do so,
we will assume that all n-tuples of points z[n] we are working with are in Cκ (Nκ (n)), so as to
force—by Proposition 2—the number of nonzero sides of ECP(z[n]) to be κ .

Notation. Denote by D(n)
κ the distribution of an n-tuple of random points z[n] with distribution

U
(n)
κ , conditioned to be in Cκ (Nκ (n)).
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FIGURE 10. The jth side-partition (0= u(j)
0 < u(j)

1 < . . . < u(j)
Nj
< u(j)

Nj+1 = cj) of cj, with sj = 2, sj+1 = 3.

An alternative way of building the u(j)[Nj, cj] will be given in Figure 11. Notice here that we see the
contact point on cj, but we do not mark it; we treat it the same as the other points.

3. Distribution of a convex z[n]-gon

Notation. From now on, we will work with a fixed size vector s[κ] ∈Nκ (n). We denote by
Cκ (s[κ]) the subset of all z[n] ∈ Cκ (Nκ (n)) such that s[κ](z[n])= s[κ], i.e. the set of n-tuples
z[n] ∈ Cκ (n) with a prescribed size vector s[κ]. We will write Nj = sj + sj+1 − 1 for all j ∈
{1, . . . , κ}.

The choice to work with a prescribed size vector is not only a technical tool: as a matter of
fact, our analysis relies deeply on the computation of the distribution of the size vector, and
then on the description of the chains with a prescribed size vector (a foretaste has been given
in Lemma 1, for instance). Later in the paper, we will see that the fluctuations of the z[n]-gon
in each corner depend also on the fluctuations of the vector s[κ], so that considerations of this
kind cannot be avoided.

3.1. Encoding z[n]-gons into side-partitions of ECP(z[n])

A new geometric description: convex chains between contact points, convex chains in a
right triangle, and simplex product. Let us now fix s[κ] ∈Nκ (n). For all z[n] ∈ Cκ (s[κ]),
consider the corresponding side lengths c[κ] (which are thus all nonzero), and for all j ∈
{1, . . . , κ}, define the side-partition u(j)[Nj, cj]= (u(j)

1 , . . . , u(j)
Nj

) of the jth side length cj of
ECP(z[n]), which is defined in Figure 10 below and is an element of P[cj,Nj]. For any side-

partition u(j)[Nj, cj] thus defined, we set u(j)
0 := 0, u(j)

Nj+1 = cj, so that we have u(j)
0 < u(j)

1 < . . . <

u(j)
Nj
< u(j)

Nj+1.

Main strategy of the proof. Our main strategy is to consider for all s[κ] ∈Nκ (n) the extraction
mapping, which encodes a convex z[n]-gon in terms of its ECP(z[n]) and its side-partitions:

χs[κ] : Cκ (s[κ]) −→ NiceSet(s[κ])

z[n] �−→ (
�[κ], u(1)[N1, c1], . . . , u(κ)[Nκ , cκ ]

), (3.1)

where NiceSet(s[κ]) := Im(χs[κ]) is a strict subset of (R+)κ ×∏κ
j=1 (R+)Nj that we now

discuss. Recall that for all j ∈ {1, . . . , κ} we have set Nj = sj + sj+1 − 1.
In what follows, we need to see the map χs[κ] as a ‘nice map’ (a piecewise linear map; see

Definition 1) with a ‘nice inverse’ (i.e. with a computable Jacobian determinant), since we will
later use this inverse to push forward a measure of NiceSet(s[κ]) onto the Lebesgue measure
on Cκ (s[κ]).
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16 L. MORIN

Since Cκ (s[κ]) is a subset of R2n with non-empty interior, NiceSet(s[κ]) will be seen to
be identifiable with a subset of a domain with the same dimension. In order to characterize
NiceSet(s[κ]), it is relevant to notice that since the s[κ] are fixed, the u(j)[Nj, cj] allow us to
reconstruct the vectors of the convex chains. Since these vectors have increasing slope (as we
progress counterclockwise around the z[n]-gon), the u(j)[Nj, cj] must satisfy a condition that
we now detail.

The image set of χs[κ]. Set L∗κ := {�[κ] ∈Lκ s.t. for all j ∈ {1, . . . , κ}, cj > 0}. For any �[κ] ∈
L∗κ , consider the side lengths c[κ] of the ECP induced by �[κ]. For any κ-tuple of side-
partitions

(
u(1)[N1, c1], . . . , u(κ)[Nκ , cκ ]

)
of c[κ], and all j ∈ {1, . . . , κ}, define the inter-point

distances of the side-partition u(j)[Nj, cj] by�u(j)
i = u(j)

i − u(j)
i−1 for all i ∈ {1, . . . ,Nj + 1}. Then

define the vectors

v(j)
k =

(
�u(j)

sj+k

�u(j+1)
k

)
, ∀k ∈ {1, . . . , sj+1}.

In words, summing the vectors v(j)[sj+1] allows one to join the point (0, 0) to (cj − u(j)
sj , u(j+1)

sj+1 ).
When reordered by increasing slope, these vectors form the boundary of a convex polygon
whose vertices form a convex chain. This condition on the vectors must be encoded in the side-
partitions when we decompose a z[n]-gon through χs[κ]; this condition allows us to identify the
image set NiceSet(s[κ]).

We therefore define the following open subset of Rκ ×∏κ
j=1 R

Nj :

S(n)(s[κ]) :=
{ (
�[κ],w(1), . . . ,w(κ)

)
∈L∗κ ×

κ∏
j=1

RNj

where w(j) := w(j)[Nj, cj] ∈ P[cj,Nj],

and
�w(j)

1

�w(j−1)
sj−1+1

< . . . <
�w(j)

sj

�w(j−1)
sj−1+sj︸ ︷︷ ︸

condition on order of slopes

for all j ∈ {1, . . . , κ}
}

.

Note that we set �[κ] in L∗κ so as to force the construction of any ECP possible (except
those having a nonzero side) within Cκ . We consider the increments for the side-partitions
because they make up the vectors in each corner as described by Figure 11. Recall the family
of mappings (ϕj)j∈{1,...,κ} introduced in (2.3) together with Figure 8.

A powerful diffeomorphism. It is quite easy to see that, up to a Lebesgue-null set (we want
to avoid treating separately the cases in which several points of z[n] are parallel to the lines of
Cκ , or more than two zi are aligned), χs[κ] is a bijection between Cκ (s[κ]) and S(n)(s[κ]). The
following theorem details some even more important properties of the mapping χs[κ].

Theorem 5. For all s[κ] ∈Nκ (n), the mapping

χs[κ] : Cκ (s[κ]) −→ S(n)(s[κ])

z[n] �−→ χs[κ](z[n])
(3.2)

is a piecewise diffeomorphism (in the sense of Definition 1) whose Jacobian determinant is
constant and equals 1/ sin (θκ )n−κ (hence the Jacobian determinant does not depend on s[κ]).

https://doi.org/10.1017/apr.2024.63 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.63


Points in convex position in a κ-gon 17

cj

c j+
1

c
j−

1

bjbj−1

straightening
−−−−−−−−−−−−−→

−1 +

B′
j−1 B′

j

A′
j−1

C′
j

π1(ϕj−1(v)) −π2(ϕj(v))

FIGURE 11. The map ϕj (resp. ϕj−1), as introduced in Figure 8, sends the triangle cornerj (resp.
cornerj−1) to the triangle A′jB′jC′j (resp. A′j−1B′j−1C′j−1). If we perform one more rotation, which is equiv-

alent to setting C′j−1 = A′j and fixing B′j−1, A′j, B′j on the same line, we may interpret the side-partitions
just as they appear in the right-hand panel.

In particular, the Lebesgue measure of the set of interest, Cκ (s[κ]), satisfies

Leb2n (Cκ (s[κ]))= Leb2n

(
S(n)(s[κ])

)
sin (θκ )n−κ . (3.3)

Proof of Theorem 5.We need to detail how the inverse mapping of χs[κ] is defined to
understand its (piecewise) linearity. Pick

(
�[κ], u(1)[N1, c1], . . . , u(κ)[Nκ , cκ ]

) ∈ S(n)(s[κ]).

Linearity. Since the tuple �[κ] is in L∗κ , it defines an equiangular parallel polygon ECP inside
Cκ . The map which associates the b[κ] to the �[κ] is piecewise linear: in the classical Cartesian
coordinate system, for any j ∈ {1, . . . , κ}, the coordinates of bj are linear in �j and �j+1, since

bj =
(

rj−1 + �j

tan (θκ )
− �j+1

sin (θκ )
, �j

)
,

up to a rotation.
Then the contact point cpj is a translation of bj−1 by u(j)

sj along the jth side of the ECP. This

means that the constructions of the contact points are linear in the �[κ] and u(j)
sj , j ∈ {1, . . . , κ}.

To reconstruct the rest of the points, recall the vectors

v(j)
k =

(
�u(j)

sj+k

�u(j+1)
k

)
, ∀k ∈ {1, . . . , sj+1 − 1}.

The convexity condition imposed on the slopes in S(n)(s[κ]) forces these vectors to appear
in order of increasing slope, so that the map ϕj sends these vectors in cornerj to form the
boundary of a convex polygon, whose tuple of vertices is thus a convex chain. The construction
of the points of this convex chain can hence be rewritten as

z(j)
2 = cpj + Aj(θκ )−1v(j)

1 ,

where Aj was introduced in (2.3), and inductively for all k ∈ {2, . . . , sj+1 − 1},

z(j)
k+1 = z(j)

k + Aj(θκ )−1v(j)
k .
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FIGURE 12. Vector-building.

We give an example of this construction in Figure 5. Notice that we have built only sj+1 − 1

vectors, since the sj+1th connects the last point z(j)
sj to cpj+1 and is thus determined.

We obtain n points (z1, . . . , zn)= ( cp1, z(1)
2 , . . . , z(1)

s1︸ ︷︷ ︸
s1 points

, cp2, z(2)
2 , . . . , z(2)

s2︸ ︷︷ ︸
s2 points

, . . . ,

cpκ , z(κ)
2 , . . . , z(κ)

sκ︸ ︷︷ ︸
sκ points

). In the end, the whole construction includes only maps

that are piecewise linear and piecewise differentiable (Definition 1) in the data(
�[κ], u(1)[N1, c1], . . . , u(κ)[Nκ , cκ ]

)
, and thus χs[κ] also has these properties.

Jacobian. Let us compute the Jacobian determinant of the inverse mapping (χs[κ])−1. This
requires first the Jacobian determinant of the construction of the contact points cp[κ]. To build
a contact point, we build the vertices b[κ]: we fix the y-coordinate of bκ and b1 as �1. Now,
rotate the figure by π/2− θκ : in this new system of coordinates, the y-coordinate of b1 and
b2 is �2. This determines the coordinates of b1, and from one rotation to the other, those of
bj for all j ∈ {1, . . . , κ}. The Jacobian determinant of the whole construction of the b[κ] is the
determinant of a product of rotation matrices, and is thus 1.

Then, as said before, the contact point cpj is built as a translation of u(j)
sj from bj−1 on the

jth side of ECP. This operation has Jacobian determinant 1 as well.
For j ∈ {1, . . . , κ}, the building of z(j)

k , k ∈ {2, . . . , sj}, is a translation from z(j)
k−1 with the

product of the matrix Aj(θκ )−1 with the vector v(j)
k−1, for all j ∈ {1, . . . , κ}. So we have

Jac
(

(χs[κ])
−1
)
=
∣∣∣∣∣∣
κ∏

j=1

det
(

Aj(θκ )−1
)sj−1

∣∣∣∣∣∣
= sin (θκ )n−κ . (3.4)

�

3.2. Working at fixed �[κ]

Above, we performed a first ‘conditioning’ based on the size vector s[κ] of the vectors
forming the boundary of any z[n]-gon. From this point, the map χs[κ] encodes z[n] in two parts:
the ‘coordinates’ �[κ] of the ECP(z[n]) (in the sense that their data is equivalent) and the side-
partitions

(
u(1)[N1, c1], . . . , u(κ)[Nκ , cκ ]

)
. We may now perform a second conditioning on the

coordinates �[κ], by introducing the set
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S(n)(�[κ], s[κ])=
{ (

w(1), . . . ,w(κ)
)

such that
(
�[κ],w(1), . . . ,w(κ)

)
∈ S(n)(s[κ])

}
. (3.5)

This conditioning actually reveals the mass of z[n]-gons contained in an ECP of coordinates
�[κ] with a repartition s[κ]. Indeed, we have the following lemma.

Lemma 5. For all �[κ] ∈Lκ , s[κ] ∈Nκ (n),

Leb2n(Cκ (s[κ]))= sin (θκ )n−κ
∫
Rκ

1{�[κ]∈Lκ }Leb2n−κ
(
S(n)(�[κ], s[κ])

)
d�[κ]. (3.6)

Proof. We have

Leb2n(S(n)(s[κ]))=∫
Rκ

1{�[κ]∈Lκ }
∫
R2n−κ

1{(u(1)[N1,c1],...,u(κ)[Nκ ,cκ ])∈S(n)(�[κ],s[κ])}du[2n− κ]︸ ︷︷ ︸
Leb2n−κ(S(n)(�[κ],s[κ]))

d�[κ], (3.7)

where we let du[2n− κ]=∏κ
j=1 du(j)[Nj, cj] to lighten the notation. Hence, (3.3) allows us to

conclude. �
This lemma encodes an n-tuple z[n] in convex position in terms of a new geometric

description embodied in the coordinates
(
�[κ], u(1)[N1, c1], . . . , u(κ)[Nκ , cκ ]

)
. This change of

variables comes at the price of the Jacobian computed in Theorem 5. The next step, as sug-
gested by Lemma 5, is to compute, for fixed (�[κ], s[κ]), the Lebesgue measure of the set
S(n)(�[κ], s[κ]).

The Lebesgue measure of S(n)(�[κ], s[κ]). Pick �[κ] ∈Lκ and
(
u(1), . . . , u(κ)

) ∈
S(n)(�[κ], s[κ]). This tuple of side-partitions

(
u(1), . . . , u(κ)

)
can be seen as an element of

the set
∏κ

j=1 P[cj,Nj]. Indeed, a side-partition u(j) := u(j)[Nj, cj] marks Nj points on the seg-
ment [0, cj]. Nonetheless, just as we did after (2.5) and (2.6), we may instead consider the
tuples of distances between points, and reorder each u(j) into increasing increments so as
to form (�̃u(1)[N1 + 1], . . . , �̃u(κ)[Nκ + 1]), which is thus an element of

∏κ
j=1 I[cj,Nj + 1].

Considering the elements of
∏κ

j=1 I[cj,Nj + 1] rather than those of
∏κ

j=1 P[cj,Nj] prevents us
from forming the same convex chain twice. Next we define

Order�[κ],s[κ]: S(n)(�[κ], s[κ]) −→ ∏κ
j=1 I[cj,Nj + 1](

u(1), . . . , u(κ)
) �−→ (�̃u(1)[N1 + 1], . . . , �̃u(κ)[Nκ + 1])

,

a piecewise linear mapping. Given (�̃u(1)[N1 + 1], . . . , �̃u(κ)[Nκ + 1]) ∈∏κ
j=1 I[cj,Nj + 1],

how many distinct n-tuples
(
u(1), . . . , u(κ)

) ∈ S(n)(�[κ], s[κ]) can we build out of this object?
We answer this question in the following lemma.

Lemma 6. Let s[κ] ∈Nκ (n), �[κ] ∈Lκ , with the corresponding c[κ]. Consider a tuple
(�̃u(1)[N1 + 1], . . . , �̃u(κ)[Nκ + 1]) ∈∏κ

j=1 I[cj,Nj + 1]. Then

#Order−1
�[κ],s[κ]

(
�̃u(1)[N1 + 1], . . . , �̃u(κ)[Nκ + 1]

)
=

κ∏
j=1

(
sj+sj+1

sj

)
sj!. (3.8)
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0

cj+1

0 cj

−→

reordering

bj−1 bj

bj+1

cpj

cpj+1

FIGURE 13. In the first drawing, given a partition in I[cj, sj−1 + sj] and a partition in I[cj+1, sj + sj+1],
we randomly pair sj pieces of cj with sj pieces of cj+1 to form the vectors in the jth corner. Note that an
affine transformation is hiding in the construction of these vectors. In the second drawing, vectors have
been reordered by increasing slope. The points cpj, cpj+1 naturally appear as the edges of the convex
chain formed by those vectors. In these particular drawings, we took sj = 3, sj−1 = 2, sj+1 = 2.

Proof. We need to build κ sets of vectors, the jth being devoted to the construction of the
convex chain in the jth corner of the ECP. To form the sj vectors in the jth corner, we select
sj pieces in �̃u(j)[Nj + 1] that will account for the x-contributions of the vectors, and we select
sj pieces (or, complementarily, sj+1 pieces) in �̃u(j+1)[Nj+1 + 1] that will account for the y-

contributions. There are
∏κ

j=1

(
sj+sj+1

sj

)
ways of choosing these pieces, and

∏κ
j=1 sj! ways to

pair these elements to form the sj vectors in each corner (see Figure 13 for an example of the
construction).

There exists a unique order that sorts these vectors into convex order in each
corner, so that, put together, these pieces form a convex polygon whose set
of vertices is a ‘distinct’ n-tuple z[n] ∈ Cκ (s[κ]) with �[κ](z[n])= �[κ]. Now, con-
sider χs[κ](z[n])= (�[κ], u(1)[N1, c1], . . . , u(κ)[Nκ , cκ ]

)
: the last entries

(
u(1), . . . , u(κ)

)
:=(

u(1)[N1, c1], . . . , u(κ)[Nκ , cκ ]
)

of this tuple form a new distinct element (since z[n] is one
as well) of S(n)(�[κ], s[κ]). �

This allows us to compute the Lebesgue measure of S(n)(�[κ], s[κ]). Indeed, the map
Order�[κ],s[κ] carries the Lebesgue measure of S(n)(�[κ], s[κ]) onto that of

∏κ
j=1 I[cj,Nj + 1].

Corollary 1. For s[κ] ∈Nκ (n), and �[κ] ∈Lκ fixed, we have

Leb2n−κ
(
S(n)(�[κ], s[κ])

)
=

κ∏
j=1

c
sj+sj+1−1
j

sj!(sj + sj+1 − 1)! . (3.9)

Proof. Indeed, by the previous lemmas, we obtain

Leb2n−κ
(
S(n)(�[κ], s[κ])

)
=

κ∏
j=1

(
sj+sj+1

sj

)
sj! · LebNj

(
I[cj,Nj + 1]

)
, (3.10)

and we conclude by (2.7). �

3.3. The joint distribution of the pair (�(n)[κ], s(n)[κ])

Theorem 5 concretizes our understanding of this new equivalent geometric description
of the set Cκ (s[κ]) in terms of the ECP. Let z[n] have distribution D(n)

κ , and set �(n)[κ]=
�[κ](z[n]), s(n)[κ]= s[κ](z[n]). By computing the Lebesgue measure of the set S(n)(�[κ], s[κ]),
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we managed to understand the weight of all z[n]-gons contained in any (�[κ], s[κ])-fibration,
which is the key to the computation of the joint distribution of the pair (�(n)[κ], s(n)[κ]).

Theorem 6. Let z[n] have distribution D(n)
κ , and consider the random variables �(n)[κ]=

�[κ](z[n]), s(n)[κ]= s[κ](z[n]). Then for a given s[κ] ∈Nκ , the pair (�(n)[κ], s(n)[κ]) has the
joint distribution

P

(
�(n)[κ] ∈ d�[κ], s(n)[κ]= s[κ]

)
= f (n)

κ (�[κ], s[κ]) d�[κ], (3.11)

where

f (n)
κ (�[κ], s[κ])= n! sin (θκ )n−κ

P̃κ (n)
1{s[κ]∈Nκ (n)}1{�[κ]∈Lκ }

κ∏
j=1

c
sj−1+sj−1
j

sj!(sj−1 + sj − 1)! . (3.12)

Proof. Write

dD(n)
κ (z[n])= n!

P̃κ (n)
1{z[n]∈Cκ (n)}1{s[κ](z[n])∈Nκ (n)}dz[n] (3.13)

= n!
P̃κ (n)

∑
s[κ]∈Nκ (n)

1{z[n]∈Cκ (s[κ])}dz[n]. (3.14)

For any continuous bounded test function η : Rκ ×Nκ→R, we have

E

[
η
(
�(n)[κ], s(n)[κ]

) ]
=
∫

(R2)n
η( (�[κ](z[n]), s[κ](z[n])) dD(n)

κ (z[n]),

which, after the change of variables χs[κ](z[n])= (�[κ], u(1)[N1, c1], . . . , u(κ)[Nκ , cκ ]
)
, per-

formed at fixed (�[κ], s[κ]), gives

E

[
η
(
�(n)[κ], s(n)[κ]

) ]
= n!

P̃κ (n)

∑
s[κ]∈Nκ (n)

Jac
(

(χs[κ])
−1
) ∫

Rκ

η(�[κ], s[κ])

×
[∫

R2n−κ
1{(�[κ],u(1)[N1,c1],...,u(κ)[Nκ ,cκ ])∈S(n)(s[κ])}du[2n− κ]

]
d�[κ]. (3.15)

Now, Jac
(
(χs[κ])−1

)= sin (θκ )n−κ for all s[κ] ∈Nκ (n) by (3.4), and the last bracket in (3.15)
is nothing but the Lebesgue measure of S(n)(�[κ], s[κ]), which we computed in Corollary 1!
Hence substituting (3.9) in (3.15) gives Theorem 6. �

In the next section, we are going to exploit the asymptotic stochastic behavior of the pair
(�(n)[κ], s(n)[κ]) to deduce an equivalent of P̃κ (n). However, in the particular cases κ ∈ {3, 4},
we have D(n)

κ =Q
(n)
κ , and the set Lκ is easily computable. Hence we can immediately compute

the exact value of Pκ (n) from Q
(n)
κ . In Appendix B, we take a look at these computations to

recover Valtr’s famous results for the triangle and the parallelogram.

4. An asymptotic result for convex regular polygons

Let z[n] have distribution D(n)
κ , and consider �(n)[κ]= �[κ](z[n]), s(n)[κ]= s[κ](z[n]). By

symmetry, we have s(n)
j

(d)= s(n)
1 for all j ∈ {1, . . . , κ}, and since

∑κ
j=1 s(n)

j = n, the expectation
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of s(n)
j is given by E[s(n)

j ]= n/κ . In the sequel we will set s(n)
κ = n−∑κ−1

j=1 s(n)
j , and we will

describe s(n)[κ − 1] since the last value is determined by the other ones. What we are interested
in here are the fluctuations of s(n)[κ − 1] around its expectation, and the asymptotic behavior
of the variables �(n)[κ] as n grows. This is all contained in the following theorem.

Theorem 7. Let z[n] have distribution D(n)
κ , and consider �(n)[κ]= �[κ](z[n]), s(n)[κ]=

s[κ](z[n]). We introduce the random variables �
(n)

[κ]= n�(n)[κ] and x(n)
j =

s(n)
j −n/κ√

n/κ
, for all

j ∈ {1, . . . , κ}. The following convergence in distribution holds in R2κ−1:(
�

(n)
1 , . . . , �

(n)
κ , x(n)

1 , . . . , x(n)
κ−1

)
(d)−→
n

(
�1, . . . , �κ , x1, . . . , xκ−1

)
,

where the variables �[κ] are independent from the x[κ − 1]; the �[κ] are κ random variables

that are exponentially distributed with rate
2wκ
κrκ

, where wκ = 1+ cos (θκ )

sin (θκ )
; and x= x[κ − 1]

is a centered Gaussian random vector whose inverse covariance matrix �−1
κ of size (κ − 1)×

(κ − 1) is given by

�−1
3 =

1

2

(
6 3

3 6

)
, �−1

4 =
1

2

⎛⎜⎝6 4 2

4 8 4

2 4 6

⎞⎟⎠ , �−1
5 =

1

2

⎛⎜⎜⎜⎝
6 4 3 2

4 8 5 3

3 5 8 4

2 3 4 6

⎞⎟⎟⎟⎠ ,
and more generally

�−1
κ =

1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 4 3 · · · · · · 3 2

4 8 5 4 · · · 4 3

3 5
. . .

. . .
. . .

...
...

... 4
. . .

. . .
. . . 4

...

...
...

. . .
. . .

. . . 5 3

3 4 · · · 4 5 8 4

2 3 · · · · · · 3 4 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. for κ ≥ 6,

The determinant mκ = det
(
�−1
κ

)
of the latter matrix has already been mentioned in

Theorem 1. The value of this determinant, i.e.

mκ = κ

3 · 2κ
(

2(−1)κ−1 + (2−√3)κ + (2+√3)κ
)
,

stated in (1.1), is computed in Appendix C.

We first state two important intermediate lemmas which will allow us to prove Theorem 7.

Lemma 7. (Local limit theorem for Poisson variables.) Let κ be a positive integer and Yn a
Poisson variable of mean n

κ
. We have

sup
y

∣∣∣∣∣
√

n

κ
P

(
Yn =

⌊
n

κ
+ y

√
n

κ

⌋)
− e−y2/2

√
2π

∣∣∣∣∣ −→n→∞ 0.
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Proof. Pick n i.i.d. random Poisson variables X1, . . . , Xn of mean 1/κ and apply the local
limit theorem [19, Theorem VII.1.1] to X̃i =√κ(Xi − 1

κ
). The support of X̃1 is included in√

κZ− 1/
√
κ , and X1 + · · · + Xn is a Poisson variable of mean n/κ . �

Lemma 8. Let (gn)n∈N be a sequence of nonnegative measurable functions on Rd. Assume that
for every ε > 0 there exists a compact set Kε such that for all n large enough,

∫
Kc
ε

gn < ε (where

Kc
ε is the complement of Kε in Rd), and that gn uniformly converges on all compact subsets

of Rd towards a density g (with respect to the Lebesgue measure on Rd). Then there exists a
sequence (αn)n∈N such that for n large enough (for small values of n, gn could be zero), 1

αn
gn

is a density and αn −→
n→+∞ 1.

Proof. Take ε > 0, and choose K such that for n large enough,
∫

Kc gn < ε. Since g is a
density, there exists a compact set H such that

∫
H g≥ 1− ε. Let S=K ∪H. By the uniform

convergence, there exists m ∈N such that for all n≥m, we have
∫

S |gn − g| ≤ ε. Then the
triangle inequality gives∫

S
gn ≥

∫
S

g−
∫

S
|gn − g| ≥ 1− 2ε

and
∫
Rd

gn ≤
∫

S
g+

∫
S
|gn − g| +

∫
Sc

gn ≤ 1+ 2ε. (4.1)

This shows αn =
∫
Rd gn is finite, well-defined, and nonzero for n large enough, and 1

αn
gn is a

density on Rd. From (4.1), we have αn −→
n→+∞ 1, and this concludes the proof. �

Notation. Recall that by Proposition 1, if z[n] ∈ Cκ (n), we can express the side lengths c[κ] as
a function of the boundary distances �[κ] of the ECP(z[n]):

cj = rκ − clj(�[κ]), for all j ∈ {1, . . . , κ},
with clj(�[κ])= (�j−1 + �j+1 + 2�j cos (θκ ))/ sin (θκ ).

Proof of Theorem 7. Note that the joint density of
((

�1, . . . , �κ
)
, (x1, . . . , xκ−1)

)
on Rκ+ ×

Rκ−1 is given by

gκ (�[κ], x[κ − 1])=
(√

mκ

(2π )κ−1
exp

(
−1

2
xt�−1

κ x

))(
2wκ
κrκ

)κ
exp

⎛⎝−2wκ
κrκ

κ∑
j=1

�j

⎞⎠ .

The proof of Theorem 7 is carried out in two steps:

(i) We show the uniform convergence on compact sets of the ‘density’ of the pair(
�

(n)
[κ], x(n)[κ − 1]

)
.

More precisely, we show the uniform convergence on compact sets of a density g(n)
κ ,

introduced in (4.4), that is associated to these random variables.

(i) (2) We give an argument of uniform integrability for this limit, which allows us to apply
Lemma 8 and conclude.
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Step 1: Let ψ :Rκ+ ×Rκ−1→R a bounded continuous function, and let us pass to the limit
in the expectation

E

[
ψ
(
�

(n)
[κ], x(n)[κ − 1]

)]
=∑

s[κ]∈Nκ (n)

∫
Rκ

ψ

(
n�[κ],

s[κ − 1]− n/κ√
n/κ

)
f (n)
κ (�[κ], s[κ]) d�[κ], (4.2)

where the joint distribution f (n)
κ of the pair (�(n)[κ], s(n)[κ]) is given in Theorem 6.

We perform both substitutions �j = n�j and xj = (sj − n/κ)/
√

n/κ in the right-hand side of
(4.2). We turn our sum over s[κ] ∈Nκ (n) into an integral, in the following way:

n! sin (θκ )n−κ

P̃κ (n)

∫
Nκ−1(n)

∫
Lκ
ψ

(
n�[κ],

�q[κ − 1]� − n/κ√
n/κ

)

×
κ∏

j=1

(
rκ − clj(�[κ])

)�qj�+�qj+1�−1

�qj�!(�qj� + �qj+1� − 1)! · d�[κ]dq[κ − 1],

where �qκ� is set to satisfy �qκ� = n−∑κ−1
j=1

⌊
qj
⌋

(notice that there is no integration with
respect to qκ ) and the integration is now done on the region

Nκ−1(n) :=
⎧⎨⎩q[κ − 1], with qj > 0 and

κ−1∑
j=1

qj ≤ n

⎫⎬⎭ .

Let us consider the term

n! sin (θκ )n−κ

P̃κ (n)

∫
Nκ−1(n)

∫
Lκ
ψ

(
n�[κ],

q[κ − 1]− n/κ√
n/κ

)

×
κ∏

j=1

(
rκ − clj(�[κ])

)�qj�+�qj+1�−1

�qj�!(�qj� + �qj+1� − 1)! · d�[κ]dq[κ − 1]

(we have removed the floor function in ψ). This quantity turns out to be the expectation

E

[
ψ
(
�

(n)
[κ], x(n)[κ − 1]

)]
,

where for all j ∈ {1, . . . , κ − 1} we set x(n)
j := x(n)

j +Uj/
√

n/κ , with Uj a random variable
uniformly distributed in [0, 1].

We have replaced a sum by an integral, which amounts to representing a discrete random

variable by a continuous one; i.e. if X has a discrete law, P(X = k)= pk, k ∈Z, then X
(d)= �X +

U�, where U is uniform in [0, 1]. Then∑
k∈Z

pkf (k)=
∫
R

f (�x�)p�x�dx.
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We are going to prove first that E

[
ψ
(
�

(n)
[κ], x(n)[κ − 1]

)]
converges to deduce that its

counterpart E
[
ψ
(
�

(n)
[κ], x(n)[κ − 1]

)]
converges as well, to the same limit.

After substitution, we obtain

E

[
ψ
(
�

(n)
[κ], x(n)[κ − 1]

)]
=∫

Rκ−1

∫
R
κ+
ψ(�[κ], x[κ − 1])g(n)

κ (�[κ], x[κ − 1])d�[κ]dx[κ − 1], (4.3)

where, for all n≥ 3, g(n)
κ stands for the joint distribution of a pair

(
�

(n)
[κ], x(n)[κ − 1]

)
. With

the convention xκ =−∑κ−1
i=1 xi, the function g(n)

κ can be decomposed as follows:

g(n)
κ

(
�[κ], x[κ − 1]

)
:= ω(n, κ) h(1)

n (�[κ], x[κ − 1]) h(2)
n (x[κ − 1]), (4.4)

with

ω(n, κ)= n! sin (θκ )n−κ

P̃κ (n)

[
1√

2πκ+1mκ

κ3ne3n

4nn3n

] [(
κrκ
2wκ

)κ
r2n−κ
κ

]
1

nκ

√
n

κ

κ−1

, (4.5)

and

h(1)
n

(
�[κ], x[κ − 1]

)= 1

r2n−κ
κ

(
2wκ
κrκ

)κ
1{�[κ]∈nLκ

} κ∏
j=1

(
rκ − 1

n
clj(�[κ])

)d(2)
j (x[κ−1])

, (4.6)

h(2)
n (x[κ − 1])=

√
2πκ+1mκ

4nn3n

κ3ne3n

κ∏
j=1

1

d(1)
j (x[κ − 1])! · d(2)

j (x[κ − 1])!
, (4.7)

where

d(1)
j (x[κ − 1])= �n/κ +√n/κxj�, for all j ∈ {1, . . . , κ}, (4.8)

d(2)
j (x[κ − 1])= �2n/κ − 1+√n/κ(xj + xj+1)�, for all j ∈ {1, . . . , κ}. (4.9)

We have arranged the factors so that, as we will see, h(1)
n and h(2)

n converge to some probability
densities.

Note first that there exists η > 0 such that [0, η]κ ⊂Lκ , and thus we have nLκ −→
n→∞Rκ+.

Then, for every compact K ⊂Rκ+ and every ε > 0, there exists n0 ∈N such that for all
n≥ n0, K ⊂ nLκ , i.e. ||1{�[κ]∈nLκ−1

}|| = 0< ε, so that the map �[κ] �→ 1{�[κ]∈nLκ
} converges

uniformly to the constant function 1 on every compact set of Rκ+. Now by the standard

approximation
(
1− a

n

)nb −→
n→+∞ e−ab uniformly for (a,b) on every compact set, we get that

h(1)
n converges uniformly on every compact set of Rκ+ ×Rκ−1 towards h(1) with

h(1) (�[κ]
)=(2wκ

κrκ

)κ κ∏
j=1

exp

(
−2wκ
κrκ

�j

)
. (4.10)
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Now, thanks to Corollary 7, for x[κ − 1] fixed in Rκ−1 we have

h(2)
n (x[κ − 1]) ∼

n→+∞
√

2πκ+1mκ

4nn3n

κ3ne3n

(
κ

n

)n(
κ

2n− κ
)2n−κ

e3n−κ

×
κ∏

j=1

√
κe−x2

j /2

√
2πn

√
κe−(xj+xj+1)2/4

√
2π (2n− κ)

.

After simplifications, this actually can be rewritten as the convergence on every compact set of
Rκ−1 of h(2)

n towards h(2) where

h(2) (x[κ − 1])=
√

mκ

(2π )κ−1
exp

(
−1

2
xt�−1

κ x

)
. (4.11)

We have established the following uniform convergence on every compact set of Rκ+ ×Rκ−1:

1

ω(n, κ)
g(n)
κ (�[κ], x[κ − 1]) −→

n→+∞ gκ (�[κ], x[κ − 1]). (4.12)

This concludes Step 1 of our proof.
Step 2: We will apply Lemma 8 to the sequence of functions gn = 1

ω(n,κ) g(n)
κ , and to g= gκ ,

which is already known to be a density. We therefore need to check that we control the mass
of 1

ω(n,κ) g(n)
κ outside of a certain compact set.

For any compact K′ ⊂Rκ+, we have

1{�[κ]∈nLκ∩(K′)c
} ≤ 1{�[κ]∈nLκ

},
and with nLκ being a compact set of Rκ+, there exists some N ∈N such that when n≥N, we
have the following for all (�[κ], x[κ − 1]) ∈ (K′)c ×Rκ−1:

h(1)
n (�[κ], x[κ − 1])≤ 2h(1)(�[κ]). (4.13)

Now let ε > 0 be fixed for the rest of this proof, and let us build the compact set Kε outside
of which we control the mass of h(2)

n . We can reinterpret the map h(2)
n as follows: if M1,M2

are two independent multinomial variables, with M1 ∼M(n; 1
κ
, . . . , 1

κ
) and M2 ∼M(2n−

κ; 1
κ
, . . . , 1

κ
), for

P (x[κ − 1])= P

(
M1 = d(1)(x[κ − 1])[κ],M2 = d(2)(x[κ − 1])[κ]

)
,

we have

h(2)
n (x[κ − 1])=

√
2πκ+1mκ

κκ

4nn3n

e3nn!(2n− κ)!P (x[κ − 1])

≤ 2κ
√
π
κ−1√mκ

Bκκ
nκ−1P (x[κ − 1]) . (4.14)

For n large enough we have both n! ≥ 2−1/2√πnn+1/2e−n and the existence of a constant α
such that for all n, (2n− κ)2n−κ+1/2 ≥ α(2n)2n−κ+1/2, so, setting B := 2πeκ , we have
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n!(2n− κ)! ≥ B
4nn3n

e3nnκ−1
, for all n≥ 1.

Let Mk(i), for k ∈ {1, 2} and i ∈ {1, . . . , κ}, be the ith entry of the multinomial random variable
Mk. Recall that the entry M1(i) is a binomial random variable B(n, 1

κ
), and that, for i �= j, the

law of M1(i) conditioned on M1(j)= kj is a binomial distribution B(n− kj,
1
κ−1 ). Analogous

results hold for M2(i). Now, since these marginals are binomial random variables, they are con-
centrated around their mean. We will design a compact Kε such that Kc

ε contains the elements
x[κ − 1] whose ith entry (for at least one i) is far from its expected value (which will give us
exponential small bounds).

Let us rewrite by presenting the multinomial random variable as Markov chains of a sort.
We have

P (x[κ − 1])=
κ−1∏
i=1

P

(
M1(i)=

⌊
n

κ
+ xi

√
n

κ

⌋
,M2(i)=

⌊
2n− κ
κ
+ (xi + xi−1)

√
n

κ

⌋ ∣∣∣∣G1(x, i),G2(x, i)

)
(4.15)

where

G1(x, i) :=
i−1⋂
j=1

{
M1(j)=

⌊
n

κ
+ xj

√
n

κ

⌋}
and

G2(x, i) :=
i−1⋂
j=1

{
M2(j)=

⌊
2n− κ
κ
+ (xj + xj−1)

√
n

κ

⌋}
.

For all x[κ − 1] ∈Rκ−1 and i ∈ {1, . . . , κ − 1}, let Yi(x) be a binomial random variable with
the same law as M1(i)|G1(x, i), i.e.

Yi(x)∼B
(⌊

n

κ
(κ − i+ 1)−

√
n

κ
(x1 + . . .+ xi−1)

⌋
,

1

κ − i+ 1

)
.

A standard inequality for binomial distributions x∼B(m, q) with q ∈ [a, b], 0< a< b< 1,
[19, III.5.2], gives the existence of a constant C> 0 such that for all x,

P(x= x)≤ 1

C
√

m
. (4.16)

For n large enough, this implies the existence of a constant Cκ > 0 such that

P (x[κ − 1])≤
∏κ−1

i=1 P

(
M1(i)=

⌊
n
κ
+ xi

√
n
κ

⌋ ∣∣G1(x, i)

)
Cκ
√

nκ−1
. (4.17)

Controlling the map P allows one to control the map h(2)
n (recall (4.14)), and thus gn (recall

(4.4)). Define the sequence e[κ] as follows: e1 =√κ , and for all j ∈ {2, . . . , κ − 1},

ej =√κ + e1 + . . .+ ej−1

κ − j+ 1
. (4.18)
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We will use e[κ] to define an event of P that has small probability. Let M> 0 and t ∈
{1, . . . , κ − 1}. We define the set

B̂M(t)=
{

w[κ − 1] ∈Rκ−1 such that |wt|>Met and
∣∣wj
∣∣≤Mej, 1≤ j≤ t− 1

}
. (4.19)

Intuitively, forcing the multinomial variable Mk, k ∈ {1, 2}, to be in B̂M(t) is a huge condition
for M large, since this requires Mk to have a coordinate far from its mean. Since for all x[κ −
1] ∈ B̂M(t), by (4.18), we have√

n

κ

∣∣∣∣xt + x1 + · · · + xt−1

κ − t+ 1

∣∣∣∣>√ n

κ
M
√
κ =M

√
n,

we may write (making the small change of variables ti = n
κ
+ xi

√
n
κ

and then taking the

supremum on B̂M(t)), by (4.17),∫
B̂M(t)

κ−1∏
i=1

P

(
M1(i)=

⌊
n

κ
+ xi

√
n

κ

⌋ ∣∣∣∣G1(x, i)

)
dx

≤ sup
x∈B̂M(t)

[
t−1∏
i=1

P
(|Yi(x)−E[Yi(x)]| ≤M

√
n
)]

× P
(|Yt(x)−E[Yt(x)]|>M

√
n
) ⎡⎣ κ−1∏

i=t+1

P (|Yi(x)−E[Yi(x)]| ∈R)
⎤⎦ 1
√

nκ−1
. (4.20)

We bound the terms different from t in the product by 1, and we handle the term in t by
Hoeffding’s inequality [19, III.5.8], i.e.

P
(|Yt(x)−E[Yt(x)]|>M

√
n
)≤ 2 exp (−2M2), for all x[κ − 1] ∈ B̂M(t).

Let us check that there exists M := M(ε) large enough so that the integral of the map P outside
of Kε := [−M

√
κ,M
√
κ]κ−1 is controlled.

With the decomposition AM := Rκ−1\[−M
√
κ,M
√
κ]κ−1 =⊔κ−1

t=1 B̂M(t), we may write∫
AM

P(x[κ − 1])dx=
κ−1∑
t=1

∫
B̂M(t)

P(x[κ − 1])dx≤ 2(κ − 1)

Cκnκ−1
exp (−2M2), (4.21)

where we set dx=∏κ−1
i=1 dxi. With ε being fixed, we may now choose M := M(ε)> 0

sufficiently large so that

2κ
√
π
κ−1√mκ

Bκκ
2(κ − 1)

Cκ
exp

(
−2M2

)
<

1

2
ε. (4.22)

For such an M, we put Kε = [−M
√
κ,M
√
κ]κ−1. In this case, we have indeed∫

Kc
ε

h(2)
n ≤

2κ
√
π
κ−1√mκ

Bκκ
nκ−1

∫
AM

P(x[κ − 1])dx

≤ 2κ
√
π
κ−1√mκ

Bκκ
2(κ − 1)

Cκ
exp (−2M2)<

1

2
ε. (4.23)
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This completes the proof of Step 2. Indeed, if we sum up, we have uniform convergence of
1

ω(n,κ) g(n)
κ to gκ on every compact set, and we have built two compact sets K′ ⊂Rκ+ and Kε ⊂

Rκ−1 such that for all n≥N,∫
(K′)c×Kc

ε

1

ω(n, κ)
g(n)
κ =

1

ω(n, κ)

∫
(K′)c×Kc

ε

h(1)
n h(2)

n (4.24)

≤ 2
∫

(K′)c
h(1)

︸ ︷︷ ︸
≤1

∫
Kc
ε

h(2)
n < ε, (4.25)

where the first line comes from (4.4) and the second line comes from the bounds we gave in
(4.13) and (4.23).

We may now conclude: we apply Lemma 8, so that there exists a (unique!) sequence nor-
malizing 1

ω(n,κ) g(n)
κ into a density. Since g(n)

κ is already a density, this sequence is nothing but
ω(n, κ); hence we have

ω(n, κ) −→
n→∞ 1. (4.26)

This also proves that g(n)
κ converges pointwise to gκ , or, by definition, that

(�
(n)

[κ], x(n)[κ − 1])
(d)−→
n

(�[κ], x[κ − 1]).

Now, since ∣∣∣x(n)[κ − 1]− x(n)[κ − 1]
∣∣∣ (P)−→

n
0,

by Slutsky’s lemma we have

(�
(n)

[κ], x(n)[κ − 1])
(d)−→
n

(�[κ], x[κ − 1]).

This ends the proof. �
Theorem 1 actually turns out to be a nice corollary of Theorem 7.

Proof of Theorem 1. We saw in (4.26) that the sequence ω(n, κ) introduced in (4.5) satisfies
ω(n, κ) −→

n→+∞ 1. This allows us to determine P̃κ (n). Indeed, Stirling’s formula yields

P̃κ (n) ∼
n→+∞

1

πκ/2
√

mκ

√
κ
κ+1

4κ (1+ cos (θκ ))κ
e2nκ3nr2n

κ sin (θκ )n

4nn2n+κ/2 .

Having P̃κ (n) ∼
n→+∞ Pκ (n) by Lemma 4, we obtain the expected result. �

5. Fluctuations around the limit shape

5.1. Basic brick fluctuations

Notation. We say that a point z is the α-barycenter of (a, b) if z= αa+ (1− α)b; in this case,
α is called the barycenter parameter.

Basic building bricks of a z[n]-gon. For any z[n] with distribution D(n)
κ , we have provided

an alternative geometric description of the z[n]-gon in terms of its ECP(z[n]), and more
specifically in terms of the following:
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• the boundary distances �(n)[κ] of this ECP,

• the tuple s(n)[κ] counting the vectors in the corners of the ECP, and

• the fragmentation of the sides c(n)[κ] into side-partitions u(1)[N(n)
1 ], . . . , u(κ)[N(n)

κ ],

where N(n)
j = s(n)

j + s(n)
j+1 − 1 for all j ∈ {1, . . . , κ}.

Notice that the contact points cp(n)[κ] and the vertices b(n)[κ] of the ECP(z[n]) can be
recovered using these three data. Indeed, �(n)[κ] determines the ECP and thus its vertices
b(n)[κ].

In (3.15), we see that, conditional on the jth side length c(n)
j = cj and on the size vector

s(n)[κ], the side-partition
(

u(j)
1 < . . . < u(j)

Nj

)
has the law of a reordered Nj-tuple of i.i.d. uniform

random variables drawn in [0, cj]. The contact point cp(n)
j is placed on the jth side of the

ECP (on the segment [b(n)
j−1, b(n)

j ]), at the coordinate u(j)

s(n)
j

for all j ∈ {1, . . . , κ}. This means

that conditional on (�(n)[κ], s(n)[κ]), the tuple cp(n)[κ] has independent entries, and cp(n)
j is a

β
(n)
j -barycenter of

(
b(n)

j−1, b(n)
j

)
, where β

(n)
j is β-distributed with parameters

(
s(n)

j , s(n)
j+1

)
.

For j ∈ {1, . . . , κ}, the random variable

δ
(n)
j :=

√
n

κ

(
β

(n)
j − 1/2

)
, for all j ∈ {1, . . . , κ}, (5.1)

provides the fluctuations of the barycenter parameter and thus encodes the fluctuations of the
contact point cp(n)

j on the jth side c(n)
j of ECP(z[n]).

Fluctuations of basic bricks. We have proved that the boundary distances �(n)[κ] behaved
as 1

n times an exponential distribution, and we will prove in the sequel that the contact points
cp(n)[κ] are typically at distance 1√

n
around their limit (this is visible in (5.1)). So in order to

describe the fluctuations of the z[n]-gon around its limit, we will state a theorem describing
the joint distribution of all basic bricks taken together, rather than providing the fluctuations
in 1√

n
of a complicated object for the whole process, which would crush the behavior of some

of the bricks. A comprehensive picture of the fluctuations would rely on the concatenation of
all the corners’ fluctuations, adjusted to take into account the contact points; we believe that
presenting such a picture would not bring any new insight, so we leave it to the interested
reader as an exercise.

The -convex chains. Recall Lemma 1 and its notation. Consider for all j ∈ {1, . . . , κ} the
convex chain CC(n)

j =CC(n)
j (z[n]) lying in the jth corner of ECP(z[n]), defined as an element

of Chains(n)
j

(cornerj(z[n])) (this accounts for the decomposition of z[n] into convex chains).

In order to understand the fluctuations of the jth corner, we will use the normalized version of
each of these convex chains:

CC(n)
j =Affj(CC(n)

j ) where Affj =Affcornerj(z[n]), (5.2)

where, for a given non-flat triangle ABC, the mapping AffABC is the unique map that sends A,
B, C to (0, 0),(1, 0),(1, 1), as introduced in Lemma 2. The law of CC(n)

j depends only on s(n)
j ,
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but the affine mapping Affj depends on the coordinates of ECP(z[n]). However, determining

the fluctuations of CC(n)
j amounts to looking at those of CC(n)

j .
Recall that a generic -normalized convex chain CCm of size m is a random variable

whose law is that of a convex chain taken uniformly in Chainm( ). Therefore, a consequence
of Lemma 1 and Lemma 2 is the following lemma.

Lemma 9. Conditional on (�(n)[κ], s(n)[κ], δ(n)[κ]), the convex chains CC(n)[κ] are inde-
pendent. Furthermore, for all j ∈ {1, . . . , κ}, the distribution of CC(n)

j is that of a generic

-normalized convex chain of size s(n)
j , i.e. CC(n)

j
(d)= CCs(n)

j
.

Thanks to this lemma, it should be clear that we can work on each convex chain separately
when s(n)[κ] is fixed. We introduce some processes in order to describe these fluctuations.

5.2. A parametrization of the normalized convex chains

Let m≥ 0, and let CCm = ((0, 0), z1, . . . , zm−1, (1, 1)) be a generic -normalized con-
vex chain of size m. Rather than considering the tuple of points ((0, 0), z1, . . . , zm−1, (1, 1)),
we consider the m vectors composing the convex chain. Recall that these vectors are obtained
by forming the tuples u[m], v[m] of increments of two elements taken uniformly (and inde-
pendently) in the simplex P[1,m− 1]. Then the vectors (ui, vi), i ∈ {1, . . . ,m}, are reordered
by increasing slope to form this chain.

In order to use the toolbox of stochastic processes, it is convenient for us to see CCm as a
linear process. For this we will need a suitable parametrization (several choices are possible).
For technical reasons, we choose the local slope of CCm as the time parameter, and apply
the arctan function in order to remain in a compact set.

Consider the point (xm(u), ym(u)) for u ∈ [0, 1], corresponding to the contributions of the
previous vectors whose slope are smaller than tan

(
π
2 u
)
, and the process Cm defined as

Cm(u) := (xm(u), ym(u)) for u ∈ [0, 1]. Hence, we have

xm(u)=
m∑

i=1

ui1{ vi
ui
≤tan( π2 u)

} and ym(u)=
m∑

i=1

vi1{ vi
ui
≤tan( π2 u)

}, (5.3)

where we set tan
(
π
2 · 1

)=+∞ so that xm(1)= ym(1)= 1. Note that the tuple CCm (seen as
a set) coincides with the (finite) set {Cm(u), u ∈ [0, 1]}.

Define further the curve C∞(u) := (x(u), y(u)) for all u ∈ [0, 1], where

x(u) := 1− 1(
1+ tan

(
π
2 u
))2 and y(u) := tan

(
π
2 u
)2(

1+ tan
(
π
2 u
))2 . (5.4)

We have once more x(1)= y(1)= 1. This curve is actually the parametrization of the parabolic
arc lying in , tangent at (0, 0) and (1, 1). It is not surprising to encounter C∞ here, since
the convergence in distribution of Cm to C∞ that will be stated in Theorem 9 can be seen as a
consequence of Bárány’s work on affine perimeters (not a direct consequence, however).

For all j ∈ {1, . . . , κ}, we let C(n)
j be the parametrization in terms of the slope of the jth

-normalized convex chain CC(n)
j . So now by Lemma 9, we have

L
(
C(n)

j , 1≤ j≤ κ | s(n)[κ]
)
=L

(
Cs(n)

j
, 1≤ j≤ κ

)
,
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and conditional on s(n)[κ], the C(n)
j , j ∈ {1, . . . , κ}, are independent.

Theorem 9 will also include the convergence in distribution of the fluctuation process Ym :=√
m(Cm −C∞) to a Gaussian process. This convergence is actually the key that will help

us understand the fluctuations of the convex chain CC(n)
j around its limit CC∞. Indeed,

conditional on (�(n)[κ], s(n)[κ]), the processes

Y(n)
j :=

√
n

κ

(
C(n)

j −C∞
)
, 1≤ j≤ κ, (5.5)

describe the successive fluctuations of the -convex chain in their corners. We are now able to
state the most important result of this section (in which we borrow the notation of Theorem 7).

Theorem 8. (0) Conditional on (�(n)[κ], s(n)[κ]), the processes C(n)[κ] are independent and
have the same distribution. For all j ∈ {1, . . . , κ}, the process C(n)

j converges in D([0, 1],R),
which we endow with the Skorokhod topology for the rest of this paper, to the deterministic
process C∞ introduced in (5.4).

Furthermore, the ‘fluctuation’ tuple
(
�

(n)
[κ], x(n)[κ − 1], δ(n)[κ],Y(n)[κ]

)
converges in

distribution in Rκ ×Rκ−1 ×Rκ ×D([0, 1],R)κ (equipped with the corresponding product
topology) to a tuple

(
�[κ], x[κ − 1], δ[κ],Y[κ]

)
with the following properties:

(1) The variables
(
�[κ], x[κ − 1]

)
and their fluctuations are as already described in

Theorem 7.

(2) Conditional on
(
�[κ], x[κ − 1]

)
, the variables δ1, . . . , δκ are independent, and for all

j ∈ {1, . . . , κ}, δj is a normal random variable with mean (xj − xj+1)/4 and variance
1/8.

(3) The tuple Y(n)[κ] converges in distribution in D([0, 1]) to the tuple Y[κ], where the
processes Y1, . . . ,Yκ are i.i.d., and their common distribution is that of Y∞, a Gaussian
process whose law will be detailed in Theorem 9.

This convergence theorem contains the fluctuations of every basic brick of ECP(z[n]).

Proof. We start with the proof of Part 2. Recall (5.1). Conditional on (�(n)[κ], s(n)[κ]),
the cp(n)[κ] are independent, which provides the independence of the δ(n)[κ] (given
(�(n)[κ], s(n)[κ])). It suffices then, to prove the convergence of the marginals; by symmetry,

we will prove only the convergence of δ
(n)
j =

√
n
κ

(
β j(n)− 1

2

)
.

According to the Skorokhod representation theorem, up to a change of probability space,
we may assume that

s(n)
j − n

κ√
n/κ

(a.s.)−−→
n

xj

for all j ∈ {1, . . . , κ}. We may then assume that s(n)
j = n

κ
+ xj

√
n
κ
+ o(
√

n). In the sequel we

drop the o(
√

n) since it provides only negligible contributions.

Since β(n)
j is β-distributed with parameters (s(n)

j , s(n)
j+1), we have β(n)

j
(d)= Tj

Tj+Tj+1
where Tj

(resp. Tj+1) is a random variable that is gamma-distributed with parameter s(n)
j (resp. s(n)

j+1),
these variables being independent.
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By the central limit theorem, we have(
Tj − n

κ√
n/κ

,
Tj+1 − n

κ√
n/κ

)
(d)−→
n

(
xj + q1, xj+1 + q2

)
,

for q1, q2 two i.i.d. standard Gaussian random variables N (0, 1). Hence√
n

κ

(
β

(n)
j −

1

2

)
(d)=
√

n

κ

(
Tj

Tj +Tj+1
− 1

2

)
(5.6)

(d)= n/κ

2(Tj +Tj+1)

(
Tj − n

κ√
n/κ
− Tj+1 − n

κ√
n/κ

)
(5.7)

(d)−→
n

1

4

(
xj − xj+1 + q1 − q2

)
. (5.8)

This gives the expected result.
Notice now that Part 3 implies Part 0. Indeed, the weak convergence of the processes

C(n)
1 , . . . ,C(n)

κ to C∞ is a consequence of that of Y(n)
1 , . . . ,Y(n)

κ to Y∞. This latter conver-
gence will be the main object of the rest of this section. This is by far the most complicated
proof, and we will need to introduce quite a lot of tools to achieve it. We will come back to this
proof later. �

5.3. Convergence of the normalized convex chain

In order to prove the convergence of Y(n)[κ], a new parametrization is required.

Notation. Define the maps g : t ∈ [0, 1] �→ tan
(
π
2 t
)

and h : t ∈ [0, 1] �→ 1

1+ g(t)
. Let us intro-

duce the following mappings for all (s, t) ∈ [0, 1]2:

f (s, t)= h(s)− h(t), (5.9)

e1(s, t)= h(s)2 − h(t)2, (5.10)

e2(s, t)= (g(t)h(t))2 − (g(s)h(s))2 , (5.11)

v1(s, t)= 2
(

h(s)3 − h(t)3
)
− e1(s, t)2, (5.12)

v2(s, t)= 2
(
(g(t)h(t))3 − (g(s)h(s))3

)
− e2(s, t)2. (5.13)

In the following, we will denote by
(
Z(1), Z(2)

)
the coordinates of any process Z taking values

in R2.
Recall the definition of the process Ym given in (5.5).

Theorem 9. The convergence in distribution

Cm
(d)−→
n

C∞ (5.14)

holds in D([0, 1])2.
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The sequence of processes (Ym) converges in distribution to a centered Gaussian process
Y∞ in D([0, 1])2, whose coordinates can be represented as

Y(1)∞ (t)=Y
(1)

(t)+ g1 · x(t)+ (g1 − g2) · 2

π

tan
(
π
2 t
)

1+ tan
(
π
2 t
)2 · x′(t), (5.15)

Y(2)∞ (t)=Y
(2)

(t)+ g1 · y(t)+ (g1 − g2) · 2

π

tan
(
π
2 t
)

1+ tan
(
π
2 t
)2 · y′(t), (5.16)

and where the following hold:

(i) The mappings x’,y’ are the derivatives of t �→ x(t)=C(1)∞ (t), t �→ y(t)=C(2)∞ (t) (they are
deterministic processes).

(ii) The random variables g1, g2 are independent standard Gaussian variables N (0, 1).

(iii) The process Y is a centered Gaussian process with variance function

V

[
Y

(p)
(t)
]
= f (0, t)vp(0, t)+ f (0, t)(1− f (0, t))ep(0, t)2 ∀p ∈ {1, 2} (5.17)

and with covariance function determined, for (s< t) ∈ [0, 1]2, by

cov
(
Y

(p)
(s),Y

(q)
(t)−Y

(q)
(s)
)
=−f (0, s)f (s, t)ep(0, s)eq(s, t) ∀(p, q) ∈ {1, 2}2.

(5.18)

(iv) The processes Y
(1)
,Y

(2)
are independent from g1 and g2.

The reason why the functions f , ep, vp appear will be revealed in Proposition 3. Notice that

lim
t→1

2

π

tan
(
π
2 t
)

1+ tan
(
π
2 t
)2 · x′(t) and lim

t→1

2

π

tan
(
π
2 t
)

1+ tan
(
π
2 t
)2 · y′(t)

are finite, so the process Y∞ is also well-defined at t= 1.
Once more, the first assertion (5.14) is a consequence of the second; we will prove only the

second one.

Remark 4. (Back to Theorem 8.) The proof of Part 4 of Theorem 8 is an immediate
consequence of Theorem 9! Indeed, for all j ∈ {1, . . . , κ} we have

Y(n)
j =

√
n/κ

s(n)
j

√
s(n)

j

(
Cs(n)

j
−C∞

)
. (5.19)

By Theorem 9, the term
√

s(n)
j

(
Cs(n)

j
−C∞

)
converges in distribution to Y∞, and we know

furthermore that
s(n)
j

n/κ
(d)−→
n

1. Slutsky’s lemma allows us to conclude.

Remark 5. An immediate consequence of Theorem 9 is that the curve Cm = {(t,Cm(t)), t ∈
[0, 1]}, seen as a compact set, converges in distribution to C∞ = {(t,C∞(t)), t ∈ [0, 1]}, for
the Hausdorff distance, as m→+∞. Furthermore, the term

√
mdH(Cm, C∞) converges in

distribution to a non-trivial random value.
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5.4. Proof of Theorem 9

The parametrization of Cm in terms of the variables (u[m], v[m]) is tricky, since these vari-
ables are interconnected (they sum to 1), paired, and then sorted by increasing slope (even if
the parametrization in terms of the indicator of the slope allows one to get rid of this difficulty).

Exponential model. Let ζ [m], ξ [m] be two m-tuples of random variables exponentially
distributed with mean 1, all these variables being independent. Set α

(1)
m =∑m

i=1 ζ i, α
(2)
m =∑m

i=1 ξ i. The following equalities in distribution are classically used to represent order statis-
tics by exponential random variables (a more general result can be found in [14, Theorem 3]):

u[m]
(d)= 1

α
(1)
m

ζ [m] and v[m]
(d)= 1

α
(2)
m

ξ [m]. (5.20)

Lemma 10. Let g1, g2 be two independent standard Gaussian variables. The following
convergence in distribution holds in R3:

√
m

[(
m

α
(1)
m

− 1

)
,

(
m

α
(2)
m

− 1

)
,

(
α

(2)
m

α
(1)
m

− 1

)]
(d)−→
m

[
g1, g2, g1 − g2

]
. (5.21)

Proof. Let us write

√
m

(
m

α
(j)
m

− 1

)
= m

α
(j)
m

× m− α
(j)
m√

m
for all j ∈ {1, 2}.

As for the third marginal in the left-hand side of (5.21), write

√
m

(
α

(2)
m

α
(1)
m

− 1

)
= m

α
(1)
m

×
[

m− α
(1)
m√

m
− m− α

(2)
m√

m

]
.

Now, in all these cases, Slutsky’s lemma together with the central limit theorem gives the
expected convergence. �

We now build an object Cm close to Cm whose convergence is easier to prove. We
pair the tuples ζ [m], ξ [m] to form m vectors wi = (ζ i, ξ i) for all i ∈ {1, . . . ,m}. When
ordered by increasing slope and summed one by one, these vectors form the boundary of
a convex polygon, whose vertices form a convex chain in the triangle Tri(m) of vertices
(0, 0), (α(1)

m , 0), (α(1)
m , α

(2)
m ). If we renormalize the x-coordinates of these vectors by α

(1)
m and

the y-coordinates by α
(2)
m , we obtain a convex chain in whose law is that of a generic -

normalized convex chain. However, we want to study the convex chain before renormalization.
Hence, to obtain the analogous process before normalization, we consider the contribution
Cm(u) of the vectors (ζ i, ξ i) with slope smaller or equal than u ∈ [0, 1],

Cm(u) := 1

m

m∑
i=1

(
ζ i, ξ i

)
1{ ξ i

ζ i
≤tan( π2 u)

}. (5.22)

We will eventually send Cm to Cm by sending Tri(m) to ; in order to control the induced slope
modification, we introduce the function αm defined in [0, 1] by

αm(u)= 2

π
arctan

(
α

(2)
m

α
(1)
m

tan
(π

2
u
))

, (5.23)
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and such that tan
(
π
2 αm(u)

)= α
(2)
m

α
(1)
m

tan
(
π
2 u
)

.

By what we just explained, the link between Cm and Cm is the following:

Cm
(d)=
(

m

α
(1)
m

C
(1)
m

(
αm(u)

)
,

m

α
(2)
m

C
(2)
m

(
αm(u)

)
, u ∈ [0, 1]

)
. (5.24)

Indeed, for the example of the first coordinate,

m

α
(1)
m

C
(1)
m

(
αm(u)

)= 1

α
(1)
m

m∑
i=1

ζ i1{ α
(1)
m ξ i

α
(2)
m ζ i
≤tan( π2 u)

},
which takes into account the dilatation of the vectors composing the boundary of the convex
chain, as well as the normalization of the slope that is effected by an affine dilatation of .

Decomposition of Ym according to the exponential model. Let us now decompose the
process Ym into several processes that are easier to manipulate. Let u ∈ [0, 1]; for the pth
coordinate, p ∈ {1, 2}, we have

Y(p)
m (u)=√m

[
m

α
(1)
m

(
C

(p)
m

(
αm(u)

)−C(p)∞
(
αm(u)

))+ m

α
(1)
m

(
C(p)∞

(
αm(u)

)−C(p)∞ (u)

)

+
(

m

α
(1)
m

− 1

)
C(p)∞ (u)

]
. (5.25)

Consider g1, g2, the two independent standard Gaussian variables of Lemma 10, and let us
handle the last two terms of (5.25). Notice first that

C(1)∞
(

α
(2)
m

α
(1)
m

u

)
−C(1)∞ (u)(

α
(2)
m

α
(1)
m
− 1

) (d)−→
m

2

π

tan
(
π
2 u
)

1+ tan
(
π
2 u
)2 · x′(u),

where we have used α
(2)
m

α
(1)
m

(d)−→
n

1 by (5.21). This means that with Lemma 10 we have

√
m

[
m

α
(1)
m

(
C(1)∞

(α
(2)
m

α
(1)
m

u
)
−C(1)∞ (u)

)
+
(

m

α
(1)
m

− 1

)
C(1)∞ (u)

]
(d)−→
m
(g1 − g2) · 2

π

tan
(
π
2 u
)

1+ tan
(
π
2 u
)2 · x′(u)+ g1 · x(u). (5.26)

For the second coordinate, we get a similar convergence of the two last terms:

√
m

[
m

α
(1)
m

(
C(2)∞

(α
(2)
m

α
(1)
m

u
)
−C(2)∞ (u)

)
+
(

m

α
(1)
m

− 1

)
C(2)∞ (u)

]
(d)−→
m
(g1 − g2) · 2

π

tan
(
π
2 u
)

1+ tan
(
π
2 u
)2 · y′(u)+ g1 · y(u), (5.27)
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where the convergence of (5.26) and (5.27) has to be thought of as a joint convergence includ-
ing the same Gaussian standard random variables g1, g2. This allows us to recover the last two
processes mentioned in Theorem 8. For the first one, corresponding to the first term of the
decomposition of (5.25), we first need to prove an intermediary lemma.

Lemma 11. Suppose that we have the following convergence in distribution:

√
m
[
Cm −C∞

]
(d)−→
m

Y, (5.28)

in D([0, 1])2, for some process Y. Then, for all u ∈ [0, 1], we have

√
m

[
Cm(u)−C∞(u),

m

α
(1)
m

(
Cm
(
αm(u)

)−C∞
(
αm(u)

))] (d)−→
m

[
Y(u),Y(u)

]
. (5.29)

In words, the limiting processes of the two processes on the left-hand side are equal.

Proof. By the strong law of large numbers we have m
α

(1)
m

(a.s.)−−→
n

1, as well as α
(2)
m

α
(1)
m

and thus

αm(u)
(a.s.)−−→

n
u for all u ∈ [0, 1]. By (5.28), the sequence of processes

(√
m
(
Cm −C∞

))
is

tight in D([0, 1]2). The map F:u �→ tan
(
π
2 u
)

is a continuous non-decreasing surjective map
from [0, 1] to [0,+∞] (where [0,+∞] is seen as a compact set). Let (Xn) be a sequence of
processes (with values in R) that converges in distribution to X in D([0,+∞]) (where, for
all n ∈N, limt→+∞ Xn(t) is finite, as is limt→+∞ X(t)). This implies that Xn ◦ F converges in

distribution to X ◦ F in D([0, 1]). We claim that if (an, bn)
(a.s.)−−→

n
1, then

(
anXn(bnF(u)), u ∈ [0, 1]

) (d)−→
n

(
X(F(u)), u ∈ [0, 1]

)
for the same topology. A proof runs as follows: by the Skorokhod representation theorem,
there exists a probability space in which are simultaneously defined some copies (an, bn,Xn)

of (an, bn,Xn) (and X̄ a copy of X) such that (an, bn,Xn ◦ F)
(a.s.)−−→

n
(a, b,X ◦ F).

Set λn : u �→ 2
π

arctan
(
tan
(
π
2 u
)
/bn
)
, which is a sequence of strictly increasing continuous

functions mapping [0, 1] to itself, with λn(0)= 0 and λn(1)= 1. In particular, Xn(bnF(λn(u)))=
Xn(F(u)). Hence

sup
u

∣∣∣Xn(bnF(λn(u)))−X(F(u))
∣∣∣→ 0,

since (Xn ◦ F) converges to (X ◦ F) in D([0, 1]) (and this holds ω by ω). Furthermore, λn(u)→
u uniformly in [0, 1], and then, according to Billingsley [4, p. 124], we may conclude that the
claim holds true. �

Notation. In order to prove Theorem 9 (and thus Theorem 8), it remains to prove (5.28). We

set Ym := √m
(
Cm −C∞

)
.

Lemma 12. The process Ym converges in distribution to Y in D([0, 1],R2), where the process
Y is the process introduced in Theorem 9.
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The proof of this lemma is in two steps, including first the convergence of the finite-
dimensional distributions (FDDs) and the tightness of the process. Therefore, we need a
suitable parametrization to complete this proof.

Parametrization in the exponential model. Fix some k≥ 1 and (0= u0 < u1 < . . . < uk−1 <

uk = 1). We will prove the convergence of Ym(ui) for all i ∈ {1, . . . , k} (recall that Ym(u0)= 0
a.s.). Fix, for the moment, i ∈ {1, . . . , k}. The random variable

n(ui)= ni :=
∣∣∣∣∣
{

j; tan
(π

2
ui−1

)
<

ξ j

ζ j
≤ tan

(π
2

ui

)}∣∣∣∣∣
counts the number of vectors whose slope is in the interval

(
tan
(
π
2 ui−1

)
, tan

(
π
2 ui
)]

. We

denote by
(

w(i)
1 , . . . ,w(i)

ni

)
the sequence of these vectors taken in their initial order. We have

Cm(ui)= 1

m

i∑
s=1

ns∑
j=1

w(s)
j , (5.30)

since Cm(ui) is obtained by taking the sum of vectors with slopes smaller than or equal to
tan
(
π
2 ui
)
. For this i, the variables w(i)

j are independent and distributed as the law of a pair

(ζ , ξ ) conditioned on
{

tan
(
π
2 ui−1

)
<

ξ
ζ
≤ tan

(
π
2 ui
)}

, where ζ , ξ are independent exponential

variables with mean 1. Denote by w(i) = (ζ (i), ξ (i)) a generic random value with this conditional

law. Note that the vectors of the sequence
(

w(i)
1 , . . . ,w(i)

ni

)
have the same distribution as w(i).

By setting the non-decreasing mapping

q : u ∈ [0, 1] �→ P

(
ξ

ζ
≤ tan

(π
2

u
))
= 1− 1

1+ tan
(
π
2 u
) , (5.31)

we may then set

pi := q(ui)− q(ui−1),

so that the tuple n[k] has a multinomial distribution M(m, p[k]).

Proposition 3. Recall the mappings introduced from (5.9) to (5.13). The following properties
of ζ (i)and ξ (i) hold:

1. pi = f (ui−1, ui);

2. E
[
ζ (i)
]= e1(ui−1, ui)/pi, and E

[
ξ (i)
]
= e2(ui−1, ui)/pi;

3. V
[
ζ (i)
]= v1(ui−1, ui)/pi, and V

[
ξ (i)
]
= v2(ui−1, ui)/pi;

4. for all s ∈N, E
[∣∣ζ (i)

∣∣s]≤ s! and E

[∣∣∣ξ (i)
∣∣∣s]≤ s!.

Proof. The first three statements come from standard integral computations. As an illustra-

tive example, let us compute E

[
ξ (i)
]
:
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E

[
ξ (i)
]
= 1

pi

∫
(R+)2

ye−x−y1{tan( π2 ui−1)<
y
x≤tan( π2 ui)}dxdy

= 1

pi

∫ +∞
0

ye−y
∫ y

tan( π2 ui−1)
y

tan( π2 ui)

e−xdxdy

= 1

pi

∫ +∞
0

ye
−(1+ 1

tan( π2 ui)
)y

dy−
∫ +∞

0
ye
−(1+ 1

tan( π2 ui−1)
)y

dy

= 1

pi
e2(ui−1, ui). (5.32)

The fourth statement comes from the fact the sth moment of an exponential random variable
of mean 1 equals s!. �

The following proposition establishes the link between our parametrization and the limit
parabola.

Proposition 4. For all u ∈ [0, 1], we have, for all m≥ 1,

E

[
Cm(u)

]
=C∞(u), (5.33)

where C∞(u) is given in (5.4).

Proof. We have

Cm(u)= 1

m

m∑
j=1

(
ζ j, ξ j

)
1{ ξ j

ζ j
≤tan( π2 u)

}.

By linearity of the expectation, it suffices to prove that

C∞(u)=E

[
(ζ , ξ) 1{ ξ

ζ ≤tan( π2 u)
}] .

Standard integral computations very similar to (5.32) allow us to compute

E

⎡⎣ζ j1{ ξ j
ζ j
≤tan( π2 u)

}
⎤⎦= x(u) and E

⎡⎣ξ j1{ ξ j
ζ j
≤tan( π2 u)

}
⎤⎦= y(u)

for all j ∈ {1, . . . ,m}, which is (5.4). It also follows that

C∞(ui)=
i∑

s=1

E

[
(ζ , ξ) 1{

tan( π2 us−1)<
ξ
ζ ≤tan( π2 us)

}]= i∑
s=1

psE

[
w(s)
]

. (5.34)
�

We may now come back to the proof of Lemma 12.
Proof of Lemma 12. We start by proving the convergence of the FDDs of Ym to those of Y.

FDDs. Let us split Ym(ui) in order to make more visible the convergence result we want to
prove. For i ∈ {1, . . . , k}, we have

Ym(ui)= 1√
m

⎛⎝ i∑
s=1

ns∑
j=1

(
w(s)

j −E

[
w(s)

j

])⎞⎠+( 1√
m

i∑
s=1

nsE

[
w(s)
]
−√mC∞(ui)

)
.

(5.35)
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We decompose the process as suggested by (5.35):

Ym(ui)=Am(ui)+Bm(ui), (5.36)

where Am(ui) is the first contribution of the right-hand side and the second one is rewritten as

Bm(ui)=
i∑

s=1

(
ns −mps√

m

)
E

[
w(s)
]

. (5.37)

From the fact that n[k]∼M(m, p[k]) and (5.34), a standard consequence of the central limit
theorem is that (

ns −mps√
m

, s ∈ {1, . . . , k}
)

(d)−→
m→∞ (bs, s ∈ {1, . . . , k}) , (5.38)

where (bs, s ∈ {1, . . . , k}) is a centered Gaussian vector with covariance function

cov(bk, b�)=−pkp� + pk1{k=�}.

Using a concentration result for ns around mps (for example the Hoeffding inequalities), by
the central limit theorem,⎛⎝ ns∑

j=1

w(s)
j −E

[
w(s)

j

]
√

m
, s ∈ {1, . . . , k}

⎞⎠ (d)−→
m→∞

(√
psGs, s ∈ {1, . . . , k}) , (5.39)

where, for all s ∈ {1, . . . , k}, the random variable Gs := (G(1)
s ,G(2)

s ) is such that the ran-
dom variables G(1)

s and G(2)
s are independent, and G(1)

s (resp. G(2)
s ) is a centered Gaussian

random variable with variance V
[
ζ (s)
]

(resp. V
[
ξ (s)
]
), these variables being independent

of bs. These considerations also allow us to prove that the families of random variables
(G(p)

s , s ∈ {1, . . . , k}) and (bs, s ∈ {1, . . . , k}) are independent for all p ∈ {1, 2}.
This proves that the FDDs of Ym converge to those of Y, where

Y(ui) :=
i∑

s=1

(√
psGs + bsE

[(
ξ (s), ζ (s)

)])
, i ∈ {1, . . . , k}. (5.40)

Tightness. Proving the tightness of the sequence (Ym)m≥0 in D([0, 1]) is the tough part of this
section. The key point is the following lemma.

Lemma 13. Let (Xm)m≥0 be a sequence of processes taking their values in D([0, 1]). Assume
that for any m, Xm =X(1)

m +X(2)
m where X(1)

m is a continuous process and X(2)
m is a càdlàg pro-

cess. If X(1)
m converges in distribution to X(1) in C([0, 1]), and if sup

∣∣∣X(2)
m

∣∣∣ (d)−→
m

0, then (Xm)

converges in distribution to X(2) in D([0, 1]).

From this point, the proof is broken into three steps:

1. We consider the decomposition Ym =Ym +
(
Ym −Ym

)
, where Ym is a continuous pro-

cess and Ym −Ym is a càdlàg process (on [0, 1]). We want to apply Lemma 13 to
X(1)

m =Ym and X(2)
m =Ym −Ym.
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2. We prove the convergence in distribution of the sequence (Ym) to Y in C([0, 1]).

3. We prove that supt∈[0,1]

∣∣∣Ym −Ym

∣∣∣ (d)−→
m

0 to conclude that (Ym) converges in distribution

to the same limit Y as does (Ym).

Step 1: Let us define the process Ym properly. Recall the mapping q introduced in (5.31),
and for each j ∈ {0, . . . ,m} define the ‘jth m-tile’

vj(m)= inf

{
u; q(u)≥ j

m

}
, (5.41)

as well as the interval

Ij(m)= [vj(m), vj+1(m)). (5.42)

Recall the definition of Am,Bm in (5.37), which satisfies Ym(ui)=Am(ui)+Bm(ui) for any
generic point ui ∈ [0, 1]. We define Ym as

Ym =Am +Bm, (5.43)

where for all j ∈ {0, . . . ,m},
Am(vj(m))=Am(vj(m)), (5.44)

Bm(vj(m))=Bm(vj(m)), (5.45)

and Am,Bm are interpolated between the points vj(m), in order to embed them in the space of
continuous processes C([0, 1]), and thus, so is Ym. We have replace the generic points ui by
the m-tiles vj(m), which are more suitable for proving the tightness of Am,Bm (and thus that
of Ym).

Step 2: By construction, the FDDs of Ym are the same as those of Ym on the m-tiles vj(m),
j ∈ {1, . . . ,m}, so that it remains to prove only the tightness of (Ym) to prove its convergence
in distribution towards Y. By Lemma 14 above (see [16, Lemma 8]), it suffices to prove the
tightness of Am and that of Bm separately. In fact this establishes the convergence of the FDDs

in the sense that
(
Ym

( �mui�
m

)
, 1≤ i≤ k

)
converges, that is, at the discretization points. The

tightness allows us to see that

sup

∣∣∣∣Ym

(�mui�
m

)
−Ym (ui)

∣∣∣∣ (P)−→
m

0

(the argument is direct from (5.54)).

Lemma 14. Let
(
Z(1)

m , Z(2)
m

)
m≥0

be a sequence of pairs of processes in C([0, 1])2. The tight-

nesses of both families
(
Z(1)

m

)
m≥0

and
(
Z(2)

m

)
m≥0

in C([0, 1]) imply that of
(
Z(1)

m , Z(2)
m

)
m≥0

in

C([0, 1])2.

A criterion for tightness in C([0, 1]) is the following [4, Theorem II.12.3].

Lemma 15. Let (Xm)m≥0 be a sequence of stochastic processes in C ([0, 1],R). If there exist
some positive numbers α > 1, β ≥ 0 and a non-decreasing continuous function F on [0, 1]
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such that, for all m ∈N and (s, t) ∈ [0, 1]2 with 0≤ s≤ t≤ 1,

P
[|Xm(t)−Xm(s)| ≥ λ]≤ 1

λβ
|F(t)− F(r)|α (5.46)

for all λ> 0, then (Xm)m≥0 is tight in C ([0, 1]).

Note that by Markov’s inequality, it suffices to prove that E

[
|Xm(t)−Xm(s)|β

]
≤

|F(t)− F(r)|α .

We are working in R2, so we will apply this criterion twice, one on every coordinate Y (p)
m ,

p ∈ {1, 2}. We shall prove that for both processes, β = 4, α = 2 does the job, together with
the continuous non-decreasing map F= q introduced in (5.31), which we extend by setting
F(1)= q(1)= 1.

Let (s, t) ∈ [0, 1]2 be such that 0≤ s< t≤ 1. There exist j1 < j2 ∈ {0, . . . ,m} such that s ∈
Ij1 (m) and t ∈ Ij2 (m), and we assume that j1 �= j2 (the case j1 = j2 will be treated afterwards).
We may write, for all p ∈ {1, 2},

E

[∣∣∣B(p)
m (t)−B(p)

m (s)
∣∣∣4]≤Cste

(
E

[∣∣∣B(p)
m (t)−B(p)

m (vj2 (m))
∣∣∣4]

+E

[∣∣∣B(p)
m (vj2 (m))−B(p)

m (vj1+1(m))
∣∣∣4]+E

[∣∣∣B(p)
m (vj1+1(m))−B(p)

m (s)
∣∣∣4] ). (5.47)

Notation. For the sequel, we introduce the random variable N[s,t] for (s≤ t) ∈ [0, 1]2, which
is binomial-(m, q(t)− q(s))-distributed. If j ∈ {0, . . . ,m} and s= vj(m) (or t), we will abuse
notation and write N[j,t] =N[vj(m),t]. Notice that q(vj(m))= j

m , so that N[j,j+1] is binomial-

(m, 1
m )-distributed.

Recall (5.37). We have the following equalities in distribution:

B(1)
m (vj2 (m))−B(1)

m (vj1+1(m))
(d)= N[j1+1,j2] − (j2 − j1 − 1)√

m
E[ζ (j1,j2)], (5.48)

B(2)
m (vj2 (m))−B(2)

m (vj1+1(m))
(d)= N[j1+1,j2] − (j2 − j1 − 1)√

m
E[ξ (j1,j2)]. (5.49)

where w(j1,j2) = (ζ (j1,j2), ξ (j1,j2)) is a random variable distributed as the law of a pair (ζ , ξ )
conditioned on {

tan
(π

2
vj1+1(m)

)
<

ξ

ζ
≤ tan

(π
2

vj2 (m)
)}
,

where ζ , ξ are independent exponential variables with mean 1.
Note that for any random variable x that is binomial-(m, p)-distributed,

E

[
|x−mp|4

]
=mp(1− p)+ (3m− 6)mp2(1− p)2 ≤mp+ 3m2p2. (5.50)

Since mp≤m2p2, for p≥ 1/m (and here q(vj2 (m))− q(vj1+1(m))≥ 1/m), we obtain

E

[∣∣∣B(p)
m (vj2 (m))−B(p)

m (vj1+1(m))
∣∣∣4]=Cste

∣∣q(vj2 (m))− q(vj1+1(m))
∣∣2 , (5.51)
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where we have used Proposition 3 to bound E[
(
ξ (j1,j2))4]≤ 4!.

Now, by the definition of Bm,

Bm(t)−Bm(vj2 (m))= [Bm(vj2+1(m))−Bm(vj2 (m))
] · t− vj2 (m)

vj2+1(m)− vj2 (m)
, (5.52)

and since

t− vj2 (m)

vj2+1(m)− vj2 (m)
≤ q(t)− q(vj2 (m))

q(vj2+1(m))− q(vj2 (m))

because t �→ q(t) is convex on [0, 1], using also (5.51), we reach

E

[∣∣∣B(p)
m (t)−B(p)

m (vj2 (m))
∣∣∣4]≤Cste

∣∣q(t)− q(vj2 (m))
∣∣2 . (5.53)

In the end, using (5.51) and (5.53) twice in (5.47), we obtain

E

[∣∣∣B(p)
m (t)−B(p)

m (s)
∣∣∣4]≤Cste |q(t)− q(s)|2 . (5.54)

We may now work on the sequence (Am)m≥0, so again fix (s, t) ∈ [0, 1]2 such that 0≤
s< t≤ 1. Recall (5.37) and let w(j1,j2)

1 , . . . ,w(j1,j2)
N[j1+1,j2]

be a sequence of i.i.d. random variables

having the same distribution as w(j1,j2). We have the equality in distribution

Am(vj2 (m))−Am(vj1+1(m))
(d)=

N[j1+1,j2]∑
i=1

w(j1,j2)
1 −E[w(j1,j2)]√

m
, (5.55)

so that

E

[∣∣Am(vj2 (m))−Am(vj1+1(m))
∣∣4]=

m∑
r=0

1

m2
E

⎡⎢⎣
∣∣∣∣∣∣

r∑
j=1

w(j1,j2)
1 −E[w(j1,j2)]

∣∣∣∣∣∣
4
⎤⎥⎦ P

(
N[j1+1,j2] = r

)
. (5.56)

If H(j1,j2) is a random variable having the law of w(j1,j2)
1 −E[w(j1,j2)], then for all r ∈

{1, . . . ,m},

1

m2
E

⎡⎢⎣
∣∣∣∣∣∣

r∑
j=1

w(j1,j2)
1 −E[w(j1,j2)]

∣∣∣∣∣∣
4
⎤⎥⎦≤ rE

[
(H(j1,j2))4

]
m2

+ r2E
[
(H(j1,j2))2

]
2m2

.

Therefore,

E

[∣∣Am(vj2 (m))−Am(vj1+1(m))
∣∣4]≤ E

[
N[j1+1,j2]

]
E
[
(H(j1,j2))4

]
m2

+
E

[
N2

[j1+1,j2]

]
E
[
(H(j1,j2))2

]
2m2

. (5.57)
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In the same spirit as in Part 4 of Proposition 3, we may see that for all s ∈N, we have
E
[
(H(j1,j2))s

]≤ s!. For any random variable x that is binomial-(m,p)-distributed, we have

E [x]≤m2p2 and E

[
x2
]
≤ 2m2p2

as soon as p≥ 1/m (and here q(vj2 (m))− q(vj1+1(m))≥ 1/m); hence

E

[∣∣∣Ap
m(vj2 (m))−A(p)

m (vj1+1(m))
∣∣∣4]≤Cste

∣∣q(vj2 (m))− q(vj1+1(m))
∣∣2 . (5.58)

We can treat the other terms A(p)
m (t)−A(p)

m (vj2 (m)) and A(p)
m (vj1+1(m))−A(p)

m (s) exactly as we
did for the process Bm in (5.53) and finally find that

E

[∣∣∣A(p)
m (t)−A(p)

m (s)
∣∣∣4]≤Cste |q(t)− q(s)|2 . (5.59)

In the case j1 = j2, we may immediately write, in both cases Am,Bm (we take Bm here as
an example), just as in (5.52),

Bm(t)−Bm(s)= [Bm(vj2+1(m))−Bm(vj2 (m))
] · t− s

vj2+1(m)− vj2 (m)
, (5.60)

so that

E

[∣∣∣B(p)
m (t)−B(p)

m (s)
∣∣∣4]≤Cste |q(t)− q(s)|2 (5.61)

for every p ∈ {1, 2}, by the same arguments as before. This proves the tightnesses of the
sequences of processes (Am), (Bm).

Step 3: In the next step, we prove that

sup
t∈[0,1]

∣∣∣Y(p)
m (t)−Y (p)

m (t)
∣∣∣ (P)−→

m
0

for every p ∈ {1, 2}. Since

sup
t∈[0,1]

∣∣∣Y(p)
m (t)−Y (p)

m (t)
∣∣∣= sup

j∈{0,...,m−1}
sup

t∈Ij(m)

∣∣∣Y(p)
m (t)−Y (p)

m (t)
∣∣∣ , (5.62)

and for all j ∈ {0, . . . ,m− 1},

sup
t∈Ij(m)

∣∣∣Y(p)
m (t)−Y (p)

m (t)
∣∣∣≤ sup

t∈Ij(m)

∣∣∣Y(p)
m (t)−Y

(p)
m (vj(m))

∣∣∣
+ sup

t∈Ij(m)

∣∣∣Y (p)
m (vj(m))−Y (p)

m (t)
∣∣∣ , (5.63)

the proof of this part consists in showing that both processes (Y
(p)
m ), (Y (p)

m ) admit fluctuations
larger than ε > 0 on an interval Ij(m) with probability o(1/m). Fix j ∈ {0, . . . ,m− 1} for the

rest of the proof. Since (Y (p)
m ) is linear on every interval Ij(m), we have, first,

sup
t∈Ij(m)

∣∣∣Y (p)
m (vj(m))−Y (p)

m (t)
∣∣∣≤ ∣∣∣Y (p)

m (vj(m))−Y (p)
m (vj+1(m))

∣∣∣ , (5.64)
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and second, for all ε > 0,

P

(∣∣∣Y (p)
m (vj(m))−Y (p)

m (vj+1(m))
∣∣∣≥ ε)≤ E

[∣∣∣Y (p)
m (vj(m))−Y (p)

m (vj+1(m))
∣∣∣4]

ε4
≤ Cste

ε4m2
,

where the last inequality comes from the combination of (5.53) and (5.59). By the union bound,
we obtain

sup
j∈{0,...,m−1}

sup
t∈Ij(m)

∣∣∣Y (p)
m (vj(m))−Y (p)

m (t)
∣∣∣ (P)−→

m
0.

Let us now handle the process (Y
(p)
m ). Recall its definition (on page 37): Y

(p)
m =√

m
(
C(p)

m −C(p)∞
)

. We can write

sup
t∈Ij(m)

∣∣∣Y(p)
m (t)−Y

(p)
m (vj(m))

∣∣∣≤ L(p)
1 (j,m)+ L(p)

2 (j,m), (5.65)

where
L(p)

1 (j,m) := sup
t∈Ij(m)

√
m
∣∣∣C(p)
∞ (t)−C(p)

∞ (vj(m))
∣∣∣

is deterministic since C∞(t)= (x(t), y(t)) (see (5.4)). This term is easily handled:

sup
j∈{0,...,m−1}

sup
t∈Ij(m)

L(p)
1 (j,m)≤ Cste√

m
−→

m
0.

So it suffices to prove that

L(p)
2 (j,m) := sup

t∈Ij(m)

√
m
∣∣∣C(p)

m (t)−C
(p)
m (vj(m))

∣∣∣ (P)−→
m

0. (5.66)

We return to the definition of Cm in (5.22). The term
∣∣∣Cm(t)−Cm(vj(m))

∣∣∣ preserves the

contribution of the vectors w[m] whose slopes are in the interval
[
tan
(
π
2 vj(m)

)
, tan

(
π
2 t
))

, i.e.

√
m(Cm(t)−Cm(vj(m)))= 1√

m

m∑
i=1

(ζ i, ξ i)1{tan( π2 vj(m))≤ ξ i
ζ i
<tan( π2 t)

}. (5.67)

In the right-hand side of (5.67), the sum is a sum of non-negative terms; it is thus immediate
that

sup
j∈{0,...,m−1}

L(1)
2 (j,m)≤ 1√

m
max{ζ i, 1≤ i≤m} max

j∈{0,...,m−1}N[j,j+1] (5.68)

(and a similar property holds for supj L(2)
2 (j,m)). By the union bound, P( max{ζ i, 1≤ i≤m} ≥

3 log m)≤ 1/m2. By Markov, the binomial random variable N[j,j+1] satisfies

P
(
N[j,j+1] ≥ �2 log (m)�)≤E

[
eN[j,j+1]

]
e−�2 log (m)� ≤ ee−1/m2.

These two bounds, together with (5.68), yield (5.66).
This completes Step 3 of the proof, as well as the proof as a whole. Indeed, by Lemma 13

and what we proved in Steps 2 and 3, the sequence of processes
(
Ym

)
converges in distribution

to the same limit as the sequence
(
Ym
)
. This limit has been proven to be Y.
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6. Random generation

In this section, given κ ≥ 3, we provide an algorithm to sample an n-tuple of points z[n]
with distribution D(n)

κ . In Figure 14, we plotted two drawings of κ-sampling in the cases κ = 5

and κ = 7. In the special cases κ = 3, 4 where we have D(n)
κ =Q

(n)
κ (recall the discussion on

pages 4 and 14), we will provide two alternative sharpened algorithms.

6.1. Algorithm of κ-sampling

The algorithm starts with the computation of the ECP. We will use the following notation

to express the side lengths with respect to �[κ]: put Pκ = κrκ/wκ with wκ := 1+ cos (θκ )

sin (θκ )
,

and recall that by Proposition 1, for �[κ] ∈Lκ and c̃[κ]= 1
wκ

(rκ − clj(�[κ]))j∈{1,...,κ} with c̃=∑κ
j=1 c̃j, we have

c̃+
κ∑

j=1

�j = Pκ .

Let us prove that this algorithm returns an n-tuple z[n] that is D(n)
κ -distributed, and that this

is done within a reasonable amount of time. The notation ∝ means that two quantities are
proportional.

Proof of Theorem 4. Denote by PAlg the probability of an event in our κ-sampling. The dis-
tribution induced in the first step of the algorithm (which is nothing but a rejection algorithm)
satisfies

PAlg

(
�(n)[κ] ∈

κ∏
i=1

d�i

)
∝ 1{�[κ]∈Lκ }

⎛⎝Pκ −
κ∑

j=1

�j

⎞⎠2n−κ
κ∏

j=1

d�j = 1{�[κ]∈Lκ }̃c
2n−κ

κ∏
j=1

d�j.

(6.1)

The second step (which is also a rejection algorithm working at �[κ] fixed) induces the
distribution

PAlg

(
s(n)[κ]= s[κ]

∣∣ �(n)[κ] ∈
κ∏

i=1

d�i

)
∝ 1{s[κ]∈Nκ (n)}

κ∏
j=1

(1/κ)sj

sj!
(̃cj/̃c)Nj

Nj!

∝ 1{s[κ]∈Nκ (n)}
κ∏

j=1

(̃cj/̃c)sj+sj+1−1

sj!(sj + sj+1 − 1)! . (6.2)

This gives the appropriate joint distribution for (�(n)[κ], s(n)[κ]) as computed in Theorem 6.
Now, given �[κ], c[κ], s[κ], and since, conditionally on the c[κ], the projections of the vectors
v[n] are uniform in the c[κ], the way we are constructing our vectors is valid and so is the
building of z[n].

We saw that the �[κ] behaves in c/n in Theorem 7, so that 1{�[κ]∈nLκ } → 1 pointwise and
thus the condition �[κ] ∈Lκ of Step 1 is satisfied with a probability going to 1 with n. This
step costs only the drawing of 2n uniform variates requiring O (n log (n)) operations. Notice
that to perfect the algorithm, one could reuse the unused uniform variates of Step 1 for the next
steps.
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Algorithm 1 κ-sampling

Step 1: Sample �[κ]; Construct c̃[κ];
do{

Draw a beta random variable S∼ Pκ · β(k+ 1, n) and draw k i.i.d. uniform random
variables (u1, . . . , uk) in [0,S];

Sort them in increasing order into (u(1), . . . , u(k));
�[κ]← (u(1), u(2) − u(1), . . . , u(κ) − u(κ−1));}

While{�[κ] /∈Lκ ;}
• Compute c̃[κ]= 1

wκ
(rκ − clj(�[κ]))j∈{1,...,κ};

Step 2: Sample s[κ];
do{

s[κ]←M(n, 1
κ
, . . . , 1

κ
)# sampling of multinomial random variable;

N[κ]←M(2n− κ, c̃1

c̃
, . . . ,

c̃κ
c̃

);}

while{∃j ∈ {1, . . . , κ},Nj �= sj + sj+1 − 1 and s[κ] /∈Nn(κ);}

Step 3: Compute z[n];
forj ∈ {1, . . . , κ}{

Draw Nj random variables i.i.d. uniform (u(j)
1 , . . . , u(j)

Nj
) in the segment [0, cj];

Sort them into (u(j)
(1), . . . , u(j)

(Nj)
);

Build �u(j)[Nj + 1]= (u(j)
(1), u(j)

(2) − u(j)
(1) . . . , u(j)

(Nj)
− u(j)

(Nj−1), cj − u(j)
(Nj)

);}

end for
forj ∈ {1, . . . , κ}{

Build the vectors v(j)
k = Aj(θκ )−1

(
�u(j−1)

sj−1+k

�u(j)
k

)
;

Sort them into (v(j)
(1), . . . , v(j)

(sj)
) by increasing slope;}

end for
• Gather all vectors into v[n]= (v(1)

(1), . . . , v(1)
(s1), . . . , v(κ)

(1) , . . . , v(κ)
(sκ ));

• Build the ECP at distance �[κ] from the sides of Cκ . The vectors v[n] form the boundary
of a unique convex polygon circumscribed in this ECP, whose set of vertices is an n-tuple
z[n] in Cκ (n);

As for the second step, the probability that the two multinomial samples coincide behaves
in n−κ/2. A standard efficient algorithm to simulate a multinomial distribution is the alias
method presented by Walker [27], the theoretical basis of which was provided by Kronmal
and Peterson [15]. In our case the complexity of the alias method is O (nκ log (κ)). (There
exists other efficient procedures, such as the two-stage method of Brown and Bromberg
[8]. For a discussion of the most suitable method of multinomial sampling, we refer
to [12].)
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(a)

5-sampling, = 200.

(b)

7-sampling, = 100.

FIGURE 14. Two examples of κ-sampling. The set of points is the set of vertices of a convex z[n]-gon,
whose boundary is very close to the limit shape drawn inside the κ-gon.

The last step includes several iterations of sampling and sorting 2n variates, which also has
a complexity in O (n log (n)).

The second step is obviously the most costly, and it implies a global complexity of
O
(
nκ/2+1κ log (κ)

)
. Despite considerable effort, we were not able to make any significant

progress in finding an efficient algorithm to reduce the cost of this step. �

6.2. Exact and fast algorithm of �-sampling

In the triangular case, the algorithm of
-sampling avoids the rejection-sampling steps 1 and
2 included in the algorithm of κ-sampling, which makes the sampling direct and immediately
implies a reasonable computation time. Indeed, it happens to be that in the case κ = 3, the joint
distribution of �(n)[3], s(n)[3] comes with simplifications (we will show this in Theorem 11)
and becomes

P

⎛⎝�(n)[3] ∈
3∏

j=1

d�j, s(n)[3]= (i, j, k)

⎞⎠= n! sin (θκ )n−3

P
(n)((n− 1)!)3
1{
�1+�2+�3≤

√
3

2 r3

}

×
(

r3 − 2√
3

(�1 + �2 + �3)

)2n−3 (
n−1

i

) (
n−1

j

) (
n−1

k

)
1{i+j+k=n}

3∏
j=1

d�j. (6.3)

In Figure 15, we plotted an example of 
-sampling. To draw (s1, s2, s3) according to

three binomial distributions B(n− 1,
1

2
) and conditioned on s1 + s2 + s3 = n, we may do the

following:

• Draw 3n− 3 Bernoulli( 1
3 ) random variables x[3n− 3].

• Set (s1, s2, s3)=
(∑n−1

i=1 xi,
∑2n−2

i=n xi,
∑3n−3

i=2n−1 xi

)
.

• Correct x[3n− 3] to have
∑3n−3

i=1 xi = n.
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Algorithm 2 
-sampling

Step 1: Sample s[3];

• Draw (s1, s2, s3) as three binomial random variables B(n− 1,
1

2
) conditioned on

s1 + s2 + s3 = n.
• N[3]← (s1 + s2 − 1, s2 + s3 − 1, s3 + s1 − 1);

Step 2: Sample �[3];
• Draw 2n uniform (u1, . . . , u2n) in the segment [0, r3];
• Sort them into (u(1), . . . , u(2n));
• �[3]← (u(1), u(2) − u(1), u(3) − u(2)); # only the first 3u_(i) are used
• Compute c= r3 − (�1 + �2 + �3);

Step 3: Compute z[n];
for1≤ j≤ 3{

Pick uniformly Nj points among the u(j), j ∈ {4, . . . , 2n}, to form a partition of [0,c]:

(u(j)
(1), . . . , u(j)

(Nj)
);

Build �u(j)[Nj + 1]= (u(j)
(1), u(j)

(2) − u(j)
(1) . . . , u(j)

(Nj)
− u(j)

(Nj−1), c− u(j)
(Nj)

);}

end for
for1≤ j≤ 3{

Build the vectors v(j)
k = Aj(π3 )−1

(
�u(j−1)

sj−1+k

�u(j)
k

)
for 1≤ k≤ sj;

Sort them into (v(j)
(1), . . . , v(j)

(sj)
) by increasing slope;}

• Gather vectors into v[n]= (v(1)
(1), . . . , v(1)

(s1), . . . , v(3)
(1), . . . , v(3)

(s3));

• Build the equilateral triangle T of side length c at distance �[3] from the sides of C3;
• The vectors (v(1), . . . , v(n)), sorted by increasing slope, form the boundary of a convex
polygon circumscribed in T . The set of its vertices is an n-tuple z[n] in convex position.
end for

The binomial correction works as follows: if
∑3n−3

i=1 xi = n, then we have the right dis-
tribution. Otherwise, if

∑3n−3
i=1 xi < n, pick uniformly some j ∈ {i;xi = 0} and put xj = 1

until
∑3n−3

i=1 xi = n. If
∑3n−3

i=1 xi > n, pick uniformly some j ∈ {i;xi = 1} and put xj = 0 until∑3n−3
i=1 xi = n.
At the end we get that

PAlg

(
s(n)[3]= (i, j, k)

)
∝
(

n−1
i

) (1

2

)i (1

2

)n−1−i (
n−1

j

) (1

2

)n−1

×
(

n−1
k

) (1

2

)n−1

1{i+j+k=n},
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FIGURE 15. A 
-sampling, some z[n]-gon for n= 1000, close to the limit shape.

so that

PAlg

(
s(n)[3]= (i, j, k)

)
∝
(

n−1
i

) (
n−1

j

) (
n−1

k

)
1{i+j+k=n}. (6.4)

The analysis of the sampling of �n[3] is the same as in the general κ-sampling. In
the end, the algorithm of 
-generation admits a global complexity of O (n log (n)) (in
expectation).

6.3. Exact and fast algorithm of �-sampling

In the square case, a fast �-sampling can be proposed, which is slightly different from the

-sampling and from the κ-sampling. In Figure 16, we plotted an example of this �-sampling.

Indeed, in this case, no affine mapping intervenes in the proof since all corners are already
right triangles. We may thus consider the law of the positive x-components in = s(n)

4 + s(n)
1

and y-components jn = s(n)
1 + s(n)

2 of the vectors forming the boundary of a z[n]-gon. A quick
calculus allows us to obtain

P

⎛⎝�n[4] ∈
4∏

j=1

d�j, in = i, jn = j

⎞⎠= (n!)2

P�(n)((n− 1)!)4
1{�1+�3≤1}1{�2+�4≤1}

× (1− (�1 + �3))n−2 (1− (�2 + �4))n−2
(

n−1
i

) (
n−1
i−1

) (
n−1

j

) (
n−1
j−1

) 4∏
j=1

d�j. (6.5)
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Algorithm 3. �-sampling

Step 1: Sampling of i, j;
• For both i and j, draw two binomial random variables B(n− 1, 1

2 ) until their sum reaches n
and set i (or j) as the result of the first.

Step 2: Sampling of �[4];
• Draw n i.i.d. uniform random variables (u1, . . . , un) in the segment [0, 1] and sort them into
(u(1), . . . , u(n));
• (�1, �3)← (u(1), u(2) − u(1)) # use the two smallest
• Draw n i.i.d. uniform random variables (û1, . . . , ûn) in the segment [0, 1] and sort them into
(û(1), . . . , û(n));
• (�2, �4)← (û(1), û(2) − û(1));
• Compute c1 = 1− (�1 + �3) and c2 = 1− (�2 + �4);

Step 3: Compute z[n];
• Pick uniformly i points (x1 < . . . < xi) among the u(k), k ∈ {3, . . . , n}, and form
h+[i+ 1]= (x1, x2 − x1, . . . , c1 − xi) (positive increments). The n− 2− i points
(x̃1 < . . . < x̃n−2−i) remaining in u(k), k ∈ {3, . . . , n} are used to form
h−[n− 1− i]= (− x̃1,−x̃2 + x̃1, . . . ,−c1 + x̃n−2−i) (negative increments);
• Pick uniformly j points (y1 < . . . < yj) among the û(k), k ∈ {3, . . . , n}, and form
v+[j+ 1]= (y1, y2 − y1, . . . , c1 − yj) (positive increments). The n− 2− j points
(ỹ1 < . . . < ỹn−2−j) remaining in û(k), k ∈ {3, . . . , n} are used to form
v−[n− 1− j]= (− ỹ1,−ỹ2 + ỹ1, . . . ,−c1 + ỹn−2−j) (negative increments);
• h[n]=Merge(h+, h−) and v[n]=Merge(v+, v−);
• Pick uniformly in Sn a permutation σ and build for 1≤ i≤ n the vector wi = (hi, vσ (i));
• Sort them into (w(1), . . . ,w(n)) by increasing slope;
• Build the rectangle R of side lengths c1 (horizontally) and c2 (vertically) at distance �[4]
from the sides of C4;
• The vectors (w(1), . . . ,w(n)), sorted by increasing slope, form the boundary
of a convex
polygon inscribed in R. The set of its vertices is an n-tuple z[n] in convex position.

In particular, this proves that in, jn are independent, and their law is explicit. It is easier
to draw according to this distribution than to consider s(n)[4]. This approach is, once more,
inspired by Valtr’s paper [24].

The law of a random variable k described in the first step satisfies

P(k= k) ∝
(

n−1
k

) (
n−1

d

)
1{k+d=n} =

(
n−1

k

) (
n−1
k−1

)
.

The probability that two binomial samples are equal is typically 1√
n

. A binomial sampling

requires O (n) operations, and since this step is the most costly in the �-generation, the whole
algorithm has a global complexity of O(n3/2).
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FIGURE 16. A �-sampling, some z[n]-gon for n= 1000, close to the limit shape.

Appendix A. Proof of Lemma 4

We decompose Pκ (n) according to the number of sides of the ECP we are considering.
Let z[n] have distribution U

(n)
κ , and write

Pκ (n)= n!
∑

J⊂{1,...,κ}
|J |≥3

P (z[n] ∈ Cκ (n)∩NZS(z[n])=J ) .

We now borrow some considerations from Bárány ([2, 3]).

Definition 2. Given S a convex compact set (non-flat), let x1, . . . , xm, xm+1 = x1 be a subdivi-
sion of the boundary ∂S and let di be the line supporting S at xi for all i ∈ {1, . . . ,m}. Write
yi for the intersection of di and di+1 (if di = di+1 then yi can be any point between xi and
xi+1). Let Ti denote the triangle with vertices xi, yi, yi+1 and also its area. We define the affine
perimeter of the convex set S as

AP(S)= 2 lim
m∑

i=1

3
√

Ti,

where the limit is taken over all sequences of subdivisions x[m] with max1,...,m |xi − xi+1|→ 0.

Theorem 10. (Limit shape theorem, Bárány [2].) Let K be a compact convex domain of R2

with nonempty interior.

(1) There exists a convex domain Dom(K)⊂K such that AP(Dom(K))>AP(S) for all
convex sets S⊂K different from Dom(K).

https://doi.org/10.1017/apr.2024.63 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.63


Points in convex position in a κ-gon 53

FIGURE 17. For each of the cases κ = 3, 4, 6, the inner dashed curve is the boundary of the domain
Dom(Cκ ). By the limit shape theorem, it also represents the boundary of a z[n]-gon where z[n] is taken
under Q(n)

κ , when n→+∞.

(2) Let n≥ 3, and let z[n] have distribution Q
(n)
K . Then for all ε > 0,

lim
n→+∞ P (dH(conv(z[n]),Dom(K))< ε)= 1.

Definition 3. Define AP∗(K)=max{AP(S), S convex sets included in K}.
In the case of the regular κ-gons, the following result comes as a corollary of the properties

of the affine perimeter.

Lemma 16. Let p1, . . . , pκ be the midpoints of the consecutives sides of Cκ , and y1, . . . , yκ
the vertices of Cκ , so that pi is the middle of the segment [yi, yi+1] (modulo κ). Let Ci be the
unique parabola tangent to piyi+1 at pi and tangent to yi+1pi+1 at pi+1. The convex domain
Dom(Cκ ) is the subset of Cκ whose boundary is formed by the parabolas (Ci)1≤i≤κ . The set
Dom(Cκ ) is thus tangent to Cκ in the κ points p1, . . . , pκ .

In Figure 17, we represented 3 instances of the convex set Dom(Cκ ) in the cases κ = 3, 4, 6,
which boundary is the dashed curve contained in Cκ .

Proof. Theorem 10 indicates that Dom(Cκ ) is the convex domain contained in Cκ which
maximizes the affine perimeter. By the definition of the affine perimeter, we have AP(Cκ )= 0,
so that Dom(Cκ ) lies within the interior of Cκ . In this case (by Bárány [2]), the boundary
of Dom(Cκ ) is composed of finitely many arcs of parabolas. In order to maximize the affine
perimeter, Dom(Cκ ) has to be tangent to at least three sides of Cκ , and the symmetry of Cκ
forces these tangency points to be the κ midpoints of the sides of Cκ . Hence between two
consecutive midpoints lies an arc of a parabola. �
Lemma 17. For all κ ≥ 3, the supremum of affine perimeters AP∗(Cκ ) is

AP∗(Cκ )=AP(Dom(Cκ ))= κ
(

r2
κ sin (θκ )

) 1
3

. (A.1)

Proof. Using the notation of Lemma 16, we have of course, by symmetry,

AP(Dom(Cκ ))=
κ∑

i=1

AP(Ci)= κAP(C1).

Let T1 be the area of the triangle with vertices p1, y2, p1. We claim that

AP(C1)=Area (T1)
1/3 . (A.2)
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FIGURE 18. Blaschke’s property for arcs of parabolas.

This property comes from the following fact, due to Blaschke [6, p. 38]. Consider a triangle T
with vertices a, b, c and with subtriangles (both with dotted areas) T (1) (with vertices a, d, f )
and T (2) (with vertices f , e, c) defined so that (d, e) ∈ [a, b]× [b, c] and the segment [d, e] is
tangent to the arc of the parabola C at f , just as in Figure 18.

In this case, we have

Area (T)1/3 =Area
(

T (1)
)1/3 +Area

(
T (2)
)1/3

.

Therefore, for any integer m, any tuple of points x[m] ∈ C1, and triangles Ti, i ∈ {1, . . . ,m}
(both defined as in Definition 2), the quantity limx[m]

∑m
i=1 Area (Ti)

1/3 is constant; hence

AP(C1) := Area (T1)
1/3 .

Now, from easy computations, one gets

Area (T1)
1/3 = 1

2

(
r2
κ sin (θκ )

)1/3
,

which is (A.1). �
Proof of Lemma 4. For an n-tuple z[n] that is U(n)

κ -distributed, Bárány’s Theorem 10 states
that for all ε > 0,

P
(
dH(conv(z[n]),Dom(Cκ ))> ε | z[n] ∈ Cκ (n)

) −→
n→+∞ 0,

which implies immediately that

P
(
NZS(z[n])= {1, . . . , κ} | z[n] ∈ Cκ (n)

)= P̃κ (n)

Pκ (n)
−→

n→+∞ 1.

Appendix B. Valtr’s results

The surprising simplicity of Valtr’s formulas in the cases of the parallelogram and the tri-
angle can be seen as a consequence of the fact that the sets L4 and L3 are easily computable.
Let us recover these results with Theorem 6.
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B.1. The triangle

Theorem 11. (Valtr [25].) For all n≥ 3, we have

P
(n)= 2n(3n− 3)!
(2n)!((n− 1)!)3

.

We propose a new proof of Valtr’s result.

Proof. In the case κ = 3, the side length of C3 is r3 = 2/31/4. Pick c1, c2, c3, �1, �2, �3
satisfying the equations (Cj)1≤j≤3. Since the only equiangular polygon with three sides is the
equilateral triangle, we have c1 = c2 = c3 = c. This forces

(C1)= (C2)= (C3) : c+ 2√
3

(�1 + �2 + �3)= r3.

We thus understand that

L3 =
⎧⎨⎩(�1, �2, �3) ∈

[
0,

√
3

2
r3

]3

with �1 + �2 + �3 ≤
√

3

2
r3

⎫⎬⎭ .

We also have N3(n)= {(i, j, k) ∈ {0, . . . , n− 1}3, i+ j+ k= n
}
, so that we have D(3)

n =Q(3)
n ,

and combining this with

∑
s[3]∈N3(n)

∫
R3

f (3)
n (s[3], �[3]) d�1d�2d�3 = 1,

we obtain

P
(n)= n! sin (
π

3
)n−3

∑
s[3]∈N3(n)

∫
�[3]∈L3

3∏
j=1

csj−1+sj−1

sj!(sj−1 + sj − 1)!d�1d�2d�3.

Put (i, j, k)= s[3] and perform the substitution �= 2√
3

(�1 + �2 + �3) to get

P
(n)= n! sin (
π

3
)n−3

∑
(i,j,k)∈N3(n)

∫ r3

0

1

2
�2 (r3 − �)i+j−1

i!(i+ j− 1)!
(r3 − �)j+k−1

j!(j+ k− 1)!
(r3 − �)k+i−1

k!(k+ i− 1)!

(√
3

2

)3

d�

= n!
⎡⎣ 1

((n− 1)!)3

∑
i+j+k=n

(
n−1

i

) (
n−1

j

) (
n−1

k

)⎤⎦(√3

2

)n ∫ r3

0

1

2
�2(r3 − �)2n−3d�

= n!
((n− 1)!)3

(
3n−3

n

) (2n− 3)!
(2n)!

(√
3

2

)n

r2n
3

= 2n(3n− 3)!
(2n)!((n− 1)!)3

. �
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B.2. The square

Theorem 12. (Valtr [24].) For all n≥ 3, we have

P�(n)= 1

(n!)2

(
2n−2
n−1

)2
.

Again, we propose a new proof of Valtr’s result.

Proof. Consider a square (i.e. the case κ = 4) of side length r4 = 1. Pick c1, c2, c3, c4 and
�1, �2, �3, �4 satisfying the equations (Cj)1≤j≤4. Since the only equiangular polygons with four
sides are rectangles, we have c1 = c3 and c2 = c4. This implies

(C1 = C3) : c1 + �1 + �3 = 1,

(C2 = C4) : c2 + �2 + �4 = 1.

This means in particular that

L4 =
{
(�1, �2, �3, �4) ∈ [0, 1]4 with �1 + �3 ≤ 1 and �2 + �4 ≤ 1

}
.

Just as before, we have D(4)
n =Q(4)

n , so that∑
s[4]∈N4(n)

∫
R4

f (4)
n (s[4], �[4]) d�1d�2d�3d�4 = 1,

from which we deduce

P�(n)= n!
∑

s[4]∈N4(n)

∫
�[4]∈L4

4∏
j=1

c
sj−1+sj
j

sj!(sj−1 + sj)!d�1d�2d�3d�4,

where N4(n)= {(s1, s2, s3, s4) ∈N4 such that s1 + s2 + s3 + s4 = n and sj + sj+1 ≥ 1
}
. Put

(h, i, j, k)= s[4] and perform the substitutions c1 = 1− (�1 + �3), c2 = 1− (�2 + �4) to get

P�(n)= n!
∑

(h,i,j,k)∈N4(n)

∫ 1

0

∫ 1

0

(1− c1)ch+i−1
1

h!(h+ i− 1)!
(1− c2)ci+j−1

2

i!(i+ j− 1)!

× cj+k−1
1

j!(j+ k− 1)!
ch+k−1

2

k!(h+ k− 1)!dc1dc2.

This leads to

P�(n)= n!
( ∫ 1

0
(1− c)cn−2dc

)2

×
∑

(h,i,j,k)∈N4(n)

1

h!(h+ i− 1)!
1

i!(i+ j− 1)!
1

j!(j+ k− 1)!
1

k!(h+ k− 1)! . (B.1)

The integral is a standard beta-integral, so that

n!
( ∫ 1

0
(1− c)cn−2dc

)2

= n!
(

(n− 2)!
n!

)2

.
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It remains to compute the big sum S that appears separately in (B.1):

S= 1

(n− 2)!((n− 1)!)2

∑
(h,i,j,k)∈N4(n)

(
n−1
h+i

) (
n−1
j+k

) (
h+i

h

) (
j+k

k

) (
n−2

i+j−1

)

= 1

(n− 2)!((n− 1)!)2

n−1∑
r=1

(
n−1

r

) (
n−1
n−r

) (
2n−2
n−1

)
= 1

n!((n− 2)!)2

(
2n−2
n−1

)2
,

which is Valtr’s formula. �

Appendix C. Computation of mκ

In this section, we aim to prove that the determinant mκ of the matrix�−1
κ of size (κ − 1)×

(κ − 1), defined in Theorem 7 as

�−1
κ := 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 4 3 · · · · · · 3 2

4 8 5 4 · · · 4 3

3 5
. . .

. . .
. . .

...
...

... 4
. . .

. . .
. . . 4

...

...
...

. . .
. . .

. . . 5 3

3 4 · · · 4 5 8 4

2 3 · · · · · · 3 4 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for κ large enough,

is indeed

mκ = κ

3 · 2κ
(

2(−1)κ−1 + (2−√3)κ + (2+√3)κ
)
,

as given in Theorem 1.

Proof. We define the matrix Dκ as

Dκ := 2�−1
κ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

4/3 0 · · · 0

0 1

. . .
. . .

. . .
...

... 1 0

0 · · · 0 4/3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 5 3 · · · · · · 3 8/3

16/3 8 5 4 · · · 4 4

4 5
. . .

. . .
. . .

...
...

... 4
. . .

. . .
. . . 4

...

...
...

. . .
. . .

. . . 5 4

4 4 · · · 4 5 8 16/3

8/3 3 · · · · · · 3 5 8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where, the factor 2 aside, we have just multiplied by 4
3 the first and last columns of �−1

κ . This
means of course that

det (Dκ )= 2κ−1(4/3)2mκ .
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We now decompose Dκ as Dκ := Qκ + Eκ with

Qκ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3 · · · · · · 3

4 · · · · · · 4
...

...

4 · · · · · · 4

3 · · · · · · 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and Eκ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 1 0 · · · · · · 0 −1/3

4/3 4
. . . 0 · · · 0 0

0 1
. . .

. . .
. . .

...
...

... 0
. . .

. . .
. . . 0

...

...
...

. . .
. . .

. . . 1 0

0 0 · · · 0
. . . 4 4/3

−1/3 0 · · · · · · 0 1 5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We first claim that

det (Eκ )= 4

9

(
2(−1)κ−1 + (2−√3)κ + (2+√3)κ

)
. (C.1)

To prove this, notice first that taking two Laplace expansions of the determinant of the (m×m)
matrix

Lm :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 1 0 · · · 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
gives a constant-recursive sequence of order 2 for its determinant:

det (Lm)= 4 det (Lm−1)− det (Lm−2),

which can be solved immediately to get

det (Lm)= 1

2
√

3

[
(2+√3)m+1 − (2−√3)m+1

]
, m≥ 1.

Taking several Laplace expansions of det (Eκ ) along the first column allows one to either
deal with diagonal matrices (leading to the term 8

9 (−1)κ−1)), or with Lκ−2 and Lκ−3 to
ultimately get (C.1).

How do we compute det (Dκ )= det (Qκ + Eκ )? In general, since the determinant is a mul-
tilinear alternating map of the columns of the matrix, for two (m×m) matrices A= (Ai)1≤i≤m

and B= (Bi)1≤i≤m, (where Ai is the ith column of A), we can write

det (A+ B)= det (A1 + B1, . . . , Am + Bm)

=
∑

I�J={1,...,m}
det ((Ai1{i∈I} + Bi1{i∈J})i∈{1,...,m}),

where I � J = {1, . . . ,m} means that I,J forms a partition of {1, . . . ,m}.
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In the case where all columns of B are the same, the sum above only keeps the partitions
(I,J) of {1, . . . ,m} where either |J| = 0 (hence we retrieve det (A)), or |J| = 1. We therefore
introduce the matrix E(i)

κ , for all i ∈ {1, . . . , κ − 1}, which is the matrix Eκ with its ith column
replaced by (3 4 · · · 4 3)t. By the previous argument we have

det (Dκ )= det (Eκ )+
κ−1∑
i=1

det (E(i)
κ ). (C.2)

We now make the following claim. �
Lemma 18 For all κ large enough, we have the following:

1. det (E(i)
κ )= 2

3 det (Eκ ) for all i ∈ {2, . . . , κ − 2},
2. det (E(1)

κ )= det (E(κ−1)
κ )= 1

2 det (Eκ ).

This lemma allows us to conclude, since by (C.2), we now have

det (Dκ )= det (Eκ )

(
1+ 2

3
(κ − 3)+ 1

)
= 2

3
κ det (Eκ ).

Proof of Lemma 18. The proof relies on some determinant-preserving column manipula-
tions on E(i)

κ , which provide matrices equal to Eκ up to a constant factor.
Pick i ∈ {2, . . . , κ − 2}, and consider the matrix E(i)

κ where the ith column is multiplied
by 3/2. Then subtract all other columns from the ith. Then add −1/4 times the first and last
columns to the ith column, to obtain Eκ . This gives the first part.

If i= 1 or κ − 1 the same reasoning works: multiply the ith column by 2, and then there
exists a linear combination of the columns other than i that can be added to the ith column to
retrieve Eκ . �
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