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Abstract

The BFGS formula is arguably the most well known and widely used update method for
quasi-Newton algorithms. Some authors have claimed that updating approximate Hessian
information via the BFGS formula with a Cholesky factorisation offers greater numerical
stability than the more straightforward approach of performing the update directly. Other
authors have claimed that no such advantage exists and that any such improvement is
probably due to early implementations of the DFP formula in conjunction with low accuracy
line searches.

This paper supports the claim that there is no discernible advantage in choosing factorised
implementations (over non-factorised implementations) of BFGS methods when approx-
imate Hessian information is available to full machine precision. However the results
presented in this paper show that a factorisation strategy has clear advantages when approx-
imate Hessian information is available only to limited precision. These results show that a
conjugate directions factorisation outperforms the other methods considered in this paper
(including Cholesky factorisation).

1. Introduction

Quasi-Newton algorithms are used to solve the local optimisation problem
min f (x)
xeR”

iteratively, where f : R" — R and gradient information is available. The solution is
attained when V f (x) = O, but in practice the usual requirement is that | V f (x)|| < z,
for some (typically small) positive constant t,.

Throughout this paper the convention of writing f (x,) as f, and V f (x;) as g;
is used. At iteration k of a quasi-Newton method a search direction p, is found by
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solving the system of equations
Bipe= —8k (L.1)

where B, approximates, in some sense, the Hessian matrix V2f (x;). A line search
is then performed along x; 4+ ap,, @ € Rto find a new iterate x;,; = x; + aup, for
some «; that satisfies the line search criteria. Information at this new point is used
to generate a new approximate Hessian matrix By,,. If B, is positive definite then
plg: < 0so that p; is a descent direction for f . 4

The use of Cholesky factors of the approximate Hessian matrices By was introduced
in [7] and is now in widespread use. Proponents of this implementation claim it avoids
the computational instability of using the inverses of the approximate Hessian matrices
and allows the efficient calculation of the search direction in O(n?) operations by using
both forward and back substitution. The standard Cholesky factorisation implemen-
tation of the BFGS method uses the modified Cholesky factorisation B, = LkaLI
where L, is unit lower triangular and D, is diagonal. The modified implementation
allows the easy detection (and subsequent correction) of loss of positive definiteness
of the approximate Hessian matrices (due to rounding errors in finite precision arith-
metic) with little extra computational effort. As the theory of Cholesky factorisations
is well established (see for example [1, 8, 13]) it is not discussed further here.

This paper examines the performance of a selection of BFGS implementations on
a suite of ill-conditioned test problems across a range of dimensions and line search
criteria as the precision of second-order information varies from 16 to two digits.
The results presented in this paper support those in [9], specifically that there is no
numerical evidence to support the claim that a Cholesky factor implementation of the
BFGS formula offers any improvement in performance, as is popularly believed, over
more straightforward implementations when second-order information is available to
full precision. Furthermore, this paper extends these results to show that a factorisation
strategy has clear advantages when second-order information is only available to
limited precision. However a Cholesky factorisation is not necessarily the best one to
use.

2. BFGS formula

The BFGS update formula can be written as

T T
yy Bss'B
By =|B+ = — 2.1
k+1 [ ST)‘ STBS ]k ( )
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where s, = x4 — x; and y, = giy1 — g If the inverse of B, is denoted by H, then
application of the Sherman-Morrison-Woodbury formula gives

THy\ ss¥ syTH + Hys'
Heo = |H + (1 + yT—y) — (—yT—y) . 22)
sTy ) sTy sTy 5

Equation (2.2) allows the direct calculation of the search direction without the need
to solve the system of equations (1.1). The implementations discussed in this paper
fall into three categories:
s Updates of the approximate Hessian matrices using (2.1).
o Updates of the inverses of the approximate Hessian matrices using (2.2).
o Factorisations: either Cholesky factorisations of the approximate Hessian ma-
trices, or conjugate factorisations of their inverses.

2.1. Conjugate factorisation The method of conjugate factorisation used in this
paper is based on [4], however the idea is not new (see for example [5, 11, 12]). A
brief description follows, but see [4] for more details.

The BFGS update formula (2.2) can be written in product form [1] as

He = [ —pg)HU —pg)7],,
where

9 = Y + g :|
Py J-pTepTy/e ],
If the inverse Hessian approximation matrices are factored so that H, = C,C], then
the columns of C, are B,-conjugate and the search direction is given by p, = —CGd;

where elements of d;, = C,fgk are the directional derivatives of f at x, in the directions
of the columns of C,. The updated conjugate factors can be written as

' T T

z d

ck+1=[C—”T F ——— ] 23)
py -pl'gp'yla],

where z; = C,fyk is the difference between the directional derivatives at x;; and x;.
Then diy1 = C[,,8k+1 can be written as

Pr 812k Pr gi+1ds

F ,
Pk N

where d, = C,ngﬂ. Equations (2.3) and (2.4) can be written in terms of the new
variables d and z so that

dipr = di — 24)

T T

z d
Ck+l=|:c+p_:F d :|
k

dz  /-dTdd"z/a
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and

- d'dz d'dd
dk+1 =|d-— T + .
d'z  /-d"dd"z/a |,

There are two obvious implementations, one for each of the +/— signs in (2.3).
After limited numerical trials (see [3]) both implementations were found to perform
very similarly. The implementation presented in this paper uses the + sign from (2.3).

2.2. Implementations There are many ways to implement the BFGS formulae
presented in (2.1) and (2.2). The four implementations considered in this paper were
selected as a representative sample from the 12 BFGS implementations considered
in [3]. As all the numerical results were produced using MATLAB, MATLAB’s built-in
functions were used where convenient. Typewriter font is used to emphasize
MATLAB code. The initial Hessian approximation (or its inverse) was set to the identity
matrix for each of the implementations.

Bupdate Uses (2.1) to update the sequence of B, matrices. The search direc-
tion is calculated by using the MATLAB matrix inverse function via the equation
Px = —inv(By) * gx. Note that direct inversion of the B; matrices is not recom-
mended in practice due to computational expense and inferior numerical stability. It
is used here to provide a guideline for the worst performance that would be expected
from this type of implementation. However limited numerical trials showed that
it performed almost identically to more preferred implementations, using Gaussian
elimination, for example.

Hupdate Uses (2.2) to update the sequence of H, matrices. The search direction
is calculated directly via pxy = —Hx * gx.

Cholesky Uses a sequence of Cholesky factors L; which are updated (rather than
recomputed from scratch) at each iteration. The particular implementation presented
here uses MATLAB’s Cholesky factor update command cholupdate. The search
direction is calculated with forward and back substitution via py, = —LI\(Lk\gk).

Conjugate Conjugate factorisation of the inverse approximate Hessian matrices
using the plus sign from (2.3). The search direction can then be obtained by direct
calculation.

The implementation Bupdate requires O(n®) operations at each iteration to update
the second-order information and compute the new search direction whereas the re-
maining implementations require only O(n?) operations. Additionally, the (modified)
Cholesky factorisation implementation allows the easy detection of loss of positive
definiteness of the approximate Hessian matrices. The other implementations do not
have this feature. However with a conjugate factorisation it is extremely unlikely that
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the inverse approximate Hessian matrices will lose positive definiteness. The worst
that can happen is that they may become positive semi-definite. In fact Powell makes
the comment in [12] that:

We even find that, if we let Z [the conjugate factorisation matrix] be
singular initially, then in practice the rounding errors of a sequence of
updating calculations remove the singularity very successfully.

Thus if positive definiteness of the inverse approximate Hessian matrices is lost
then it is extremely likely it will be restored at the next iteration—or the other way
around—it is extremely unlikely that loss of positive definiteness will be maintained
for any length of time if conjugate factors are used. Even the unlikely loss of positive
definiteness can be detected in a computationally efficient way by using triangular
conjugate factors. Such factors could be generated and updated at each iteration using
a QR-factorisation for example.

3. Numerical results

+

Each of the four BFGS implementations described above were tested with two
different line searches on the suite of 25 test functions listed in Tables 1 and 2 as
the precision of the approximate Hessian information varied from 16 to two digits.
The varying levels of precision were achieved by truncating the elements of the
approximate Hessian matrices (possibly in factored form, or their inverses) to the
desired level. For example, the elements of the matrix X are truncated to n digits with
trunc(X) = 1079 10?X | where d = n — [log,o(max(|X|))]-

Each of the higher dimensional tests listed in Table 2 was carried out in 8, 12, 20,
40 and 60 dimensions. The column labelled Cond in Table 1 represents the condition
number (C = ||B|l2 - |B~'|l2) of the Hessian matrices at the solution. Since the
condition number is the ratio of the largest singular value to the smallest, all of the
Powell singular functions have infinite condition number. Increasing dimension does
not alter the condition number of the repeated Rosenbrock functions, and only slightly
increases that of the extended Rosenbrock function which has condition number
3.6 x 10 for the 60-d case. The condition numbers of the Hilbert quadratics on the
other hand are known to increase dramatically with increasing dimension. The 8-d
Hilbert quadratic has condition number 1.5 x 10'® which increases to 1.7 x 10' in
12 dimensions. More details on the test functions can be found in [9, 10].

A two-sided Wolfe line search was used so that at each iteration o; was chosen
50 that xx1 = X + axpy satisfies fiy1 < fi + paup]gr and | pigen| < ol pj gl
where the sufficient descent parameter p = 107* and the gradient parameter o was
set to 103 and 0.9 for what are referred to in the remainder of this paper as strict and
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TABLE 1. Low dimension test functions.

Function Dim. Initial point Cond.
Rosenbrock 2 (-1.2,1) 2.5x10°
Powell badly scaled o1 2.1x10%

2
Repeated Rosenbrock 4 (-1.2,1,-1.2,1) 25x10°
Extended Rosenbrock 4  (-1.2,1,-1.2,1) 3.2x10°
Powell singular 4 3,-1,0,1 o0

TABLE 2. Test functions for 8, 12, 20, 40 and 60 dimensions.

Function Initial point

Repeated Rosenbrock (—1.2,1,-1.2,1,...)
Extended Rosenbrock (—-1.2,1,-1.2,1,...)
Powell singular 3,-1,0,1,...)
Hilbert quadratic 0,0,0,0,...)

standard line searches. The Wolfe line search was implemented using an iterative
safeguarded parabolic interpolation scheme.

" For each test problem the number of function evaluations, final function value and
execution time (in seconds) was recorded. The overall performance of each implemen-
tation was determined using the following ranking system. First the implementations
were sorted by the number of test functions that were successfully solved. A test
problem was deemed to have been successfully solved if the termination criterion
IVSf ) < 107 was met. If necessary the algorithms were then subsorted by the
mean number of function evaluations. Any ties were subsorted by the mean accuracy
of the approximations to the minimum function values. The accuracy was measured
using log,,(f — f*) where f* represents the minimum of the function and f is the
final function value. Note that f* = O for each of the test problems in Tables 1
and 2. As algorithm execution time depends on the computing environment as well
as the implementation, the mean execution times presented here are indicative only,
and are not used in the ranking scheme. Only data for the problems that were solved
successfully were used in the sorting process.

Practical BFGS implementations may safeguard the positivity condition s}y, > 0
and only update the approximate Hessian information if 5] y; > € for some (generally
small) € > 0. However, as it is the “raw” performance of each implementation that is
being investigated, the algorithms were terminated whenever they ran into difficulty
rather than applying some sort of safeguarding or corrective procedure.

The implementations were deemed unsuccessful and thus terminated if more than
10° function evaluations were required, a descent direction was not found, a step of
zero length was calculated, the function values became unbounded (as a result of
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TABLE 3. Number and type of failures.

Linesearch lore) No descent
Method (strict) (std) (strict) (std) (strict) (std)
Hupdate 105 108 1 - - -
Bupdate 69 71 20 15 - -
Cholesky - - 49 52 - -
Conjugate 29 40 14 2 - 2

TABLE 4. Strict line search and 16 digit second-order precision.

Rank Method Succ  Fent  Accy Time
1 Hupdate 25 3104 -—-138 26
2 Cholesky 25 3214 -—-138 28
3 Conjugate 25 3228 -—-14.1 27
4 Bupdate 25 3424 -—-140 3.1

TABLE 5. Standard line search and 16 digit second-order precision.

Rank Method Succ Fent  Accy Time
1 Cholesky 25 1549 -—-128 1.6
2 Bupdate 25 1564 -—-131 15
3  Conjugate 25 1573 -13.1 1.4
4 Hupdate 25 1579 -130 13

division by zero due to rounding errors in finite precision arithmetic), a factorisation
failed (where appropriate), or the line search failed. The line search failed if the global
limit of 10° function evaluations was reached, more than 10° parabolic interpolation
iterations were required, or a zero step was calculated. The number of times each type
of failure occurred as the precision of the second-order information varied from 16
to two digits for each of the implementations is presented in Table 3. The columns
labelled Linesearch, 0o and No descent represent the number of failures that occurred
as a result of failure of the line search, division by zero and failure to determine a
descent direction. No other types of failure occurred. Furthermore, all of the failures
in the line search were caused by the calculation of a zero-step.

All of the implementations presented in this paper were run in a MATLAB R12.1
environment on a Sun-Fire-880 multi-user machine with four 750MHz processors and
8GB of RAM running Solaris 8.

In each of the following result tables the columns labelled Succ, Fent, Accy and
Time represent the number of successfully solved test problems, the mean number of
function evaluations, the mean accuracy of the solutions and the mean execution time
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TABLE 6. Strict line search and 16-2 digit second-order precision.

Rank Method Succ Fcnt  Accy Time
1 Conjugate 332 3231 -139 24
2 Cholesky 326 3612 -138 28
3 Bupdate 286 3366 -—13.7 2.8
4 Hupdate 269 3130 -13.8 26

TABLE 7. Standard line search and 16-2 digit second-order precision.

Rank Method Succ Fcent  Accy Time
1 Conjugate 331 159.0 —-13.1 1.6
2 Cholesky 323 1714 -13.0 19
3 Bupdate 289 1521 -—12.7 L7
4 Hupdate 267 1506 -129 1.5

in seconds.

As can be seen from the results presented in Tables 4-7, when successful, all
implementations produced similarly accurate approximations to the solutions of the
test problems. Furthermore, although the strict line search implementations were
slightly more robust, they required nearly double the number of function evaluations
as the standard line search implementations. This is a major reason for the popularity
of lower accuracy line searches.

3.1. Full precision second-order information The performance of each imple-
mentation with full precision (16 digits) second-order information for the strict and
standard line searches is presented in Tables 4 and 5.

3.2. Limited precision second-order information The performance of the BFGS
implementations as the precision of the second-order information varied from 16 to
two digits with the strict and standard line searches is discussed in the following
sections. The results are presented in Tables 6 and 7.

Strictline search  The number of successfully solved test problems ranged from 332
for Conjugate down to 269 for Hupdate. The mean number of function evaluations
ranged from 313.0 for Hupdate through to 361.2 for Cholesky. Overall the mean
number of function evaluations was 337 £ 25 and the mean execution times ranged
from 2.4 to 2.8 seconds per test problem.

Standard line search The number of successfully solved test problems ranged
from 331 for Conjugate down to 267 for Hupdate. The mean number of function
evaluations ranged from 150.6 for Hupdate through to 171.4 for Cholesky. Overall
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# success
wn
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si] Bupdate | .............. O ............ e
—e— Cholesky : :
—e— Conjugate

OIS 14 12 10 8 A
Second-order digits

FIGURE 1. BFGS implementations with the standard line search and varying second-order precision.

the mean number of function evaluations was 161 & 11 and the mean execution times
ranged from 1.5 to 1.9 seconds per test problem.

The results in Table 7 are presented graphically in Figure 1. The plot for the strict
line search is not presented as it looks very similar. Differences in the BFGS im-
plementations are not noticeable until the precision of the second-order information
falls below eight digits. Although not presented here, the equivalent DFP implemen-
tations also produced similar results with the strict line search. However, as shown
in Figure 2, the equivalent DFP implementations produced noticeably different re-
sults with the standard line search. In this case the factorisation implementations
produced noticeably better results at single precision (8 digits) than the non-factored
implementations [3].

3.3. Quadratic termination For any member of the Broyden family of quasi-
Newton methods B,,; = G for any n-dimensional quadratic function with (constant)
Hessian matrix G when exact line searches are used [6, pp. 64—65]. Although it is
not possible to carry out exact line searches in practice, this result can be used to see
how closely each of the above implementations get to the actual Hessian matrix after
n + 1 iterations. Figure 3 shows log,, || H.e1 — G~'ll, where || - || represents the
Frobenius norm, for the 4-d Hilbert quadratic and an accurate line search (o = 107'0)
using the BFGS implementations Bupdate, Cholesky and Conjugate. Note that since
the line searches use parabolic interpolation they are exact, except for the errors due
to finite precision arithmetic. The difference in norm of the inverse Hessian rather
than the Hessian has been used as the inverse Hessian allows the direct calculation
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# success
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—a— Hupdate
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Second-order digits

FIGURE 2. DFP implementations with the standard line search and varying second-order precision.

of the search direction, whereas a system of equations must be solved if the Hessian
is used. The inverse Hessian is exact but the approximate inverse Hessian matrices
H, are truncated depending on the level of second-order precision. The results for
Hupdate clutter the figure somewhat and have been omitted. However if included, the
plot for Hupdate would oscillate between the lines for Cholesky and Conjugate.

Note that as the precision of the second-order information falls below about five
digits there is a plateau in Figure 3 with a height of about four. The height of this
plateau coincides with the norm of the inverse Hessian of the 4-d Hilbert quadratic
(log,, |G| F = 4.0146). Presumably once the precision of the second-order infor-
mation falls below a certain level there is insufficient information to approximate the
inverse Hessian to any significant level. Similar results are produced with Hilbert
quadratics of different dimensions. In higher dimensions the height of the plateau
matches the norm of the inverse Hessian but the plateau starts at higher levels of
second-order precision. In lower dimensions the plateau effect is lost and the differ-
ences in the performances of the implementations are reduced.

4. Discussion and summary

The performance of four BFGS quasi-Newton implementations on a suite of 25 test
functions with two line searches (strict and standard) as the precision of second-order
information varied from 16 to two digits have been presented. Although the BFGS
implementations with the strict line search were slightly more robust than the BFGS
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gz Bupdate
—e— Cholesky

—o— Conjugate

10 H . i H -

10 8 L. 4 2
Second-order digits

FIGURE 3. Difference in norm after n + 1 iterations with varying second-order precision for the 4-d
Hilbert quadratic.

implementations with the standard line search they required nearly double the number
of function evaluations. When second-order information is available to at least single
precision (8 digits) there is no real advantage in any particular implementation.

Cholesky factorisation and triangular conjugate factorisation implementations en-
able second-order information to be updated and a new search direction computed in
O(n?) operations per iteration as well as allowing the easy detection of loss of positive
definiteness of the second-order matrices. However the use of conjugate factorisa-
tions eliminates the possibility of negative definiteness or indefiniteness of the inverse
approximate Hessian matrices whilst maintaining O(n?) operations efficiency at each
iteration. _

The conjugate factorisation implementation produced better approximations to the
inverse Hessian matrices of n-dimensional Hilbert quadratics when terminated after
n + 1 iterations than the other methods. Furthermore as the precision of the second-
order information was reduced the conjugate factorisation implementation was able
to maintain accurate approximations to the inverse Hessian longer than the other
methods.

Figures 1-3 and Tables 6-7 clearly show the importance of a factorisation strategy
as the precision of second-order information is reduced. The conjugate factorisation
implementation successfully solved more test problems in significantly fewer function
evaluations than any of the other implementations, including Cholesky factorisation.
It is shown in [2] that grids based on conjugate directions have useful practical and
theoretical properties, as such conjugate factorisations should also be of practical
importance in a wider optimisation context.
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