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The authors gave an example showing an error in [2, Lemma 3.3], and below
offer at least a partial correction for that error under the unimodularity
assumption. This makes all of the remaining results in [2] valid.

Consider the three-dimensional solvable non-unimodular Lie algebra &:

S =R?x, R, whereo(t)= [é ﬂ :

This Lie algebra has a faithful matrix representation as follows:

s 00 a
0 s 0 b
00 0 s
00 0O

We can choose an ordered (linear) basis for &:

000 1 00 0 0 100 0
000 0 000 1 010 0
Pi=10 0 0 o|’ b2=10 0 0 o]’ Ps=10 0 0 1
00 0 0 00 0 0 00 0 0
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They satisfy [by, be] = 0, [bs, b1] = by and [bs, bs] = ba. The connected and
simply connected solvable Lie group S associated with the Lie algebra & is

L0 o0

et

S = z,y,t R

—_ e 8

e
0
0
0

o = O

0
0
Let g = ((x, y), t) denote an element of S. Because Ad(g) : & — & is given by

Ad(g)(A) = gAg~! for A € &, a simple computation shows that the adjoint
of g is given by

et 0 —=x
Ad(g)= |0 ¢ —y
0 0 1

Let ¢ be a Lie algebra homomorphism on &. Since [S, &] is generated
by e; and es, we have
¢(b1) = m11b1 + ma;ba,
@(bg) = mi2by + masboy,
¢(b3) = pby + gba +mbs
for some m;;, p, ¢, m € R. Since ¢ preserves the bracket operations [bs, bi] =
by and [bs, ba] = b, it follows easily that
mi1(m —1) =0, mia(m — 1) =0,
mgl(m—l):o, mgg(m—l)zo.
Therefore, with respect to the basis {bj, be, b3} of &, ¢ is one of the
following:
mip Mmi2 p

Type (I) |m21 mo ¢
0 0 1

00 p
Type (II) |0 0 ¢ with m # 1.
0 0 m

Now we can easily check that

0 when ¢ is of type (I),
m — 1 when ¢ is of type (II);

det(p —I) = {
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0 when ¢ is of type (I),

det(¢ — Ad(g)) =
et(p (9)) {e2t(m —1) when ¢ is of type (II).

This example shows that [2, Lemma 3.3] is not true in general. We remark
also that S is not unimodular, and hence, as can be expected, det(Ad(g)) =
e?t £ 1 for all t #0. We prove, however, that the lemma is true under the
unimodularity assumption of the connected Lie group. That is, the following
theorem.

THEOREM 1. Let S be a connected and simply connected solvable Lie
group, and let D : S — S be a Lie group homomorphism. If S is unimodular,
then for any x € S,

det(I — D,) = det(I — Ad(z)D.).

REMARK 2. It is known that if a Lie group admits a lattice (discrete
cocompact subgroup), then it is unimodular. Consequently, the remaining
results of [2] are valid.

LEMMA 3. Let S be a connected and simply connected solvable Lie group,
and let D:S — S be a Lie group homomorphism. Then, for any z €S,
I — D, is an isomorphism if and only if I — Ad(z)D, is an isomorphism.

Proof. Because I — Ad(z~')Ad(x)D, = I — D, it suffices to show the
only if.

Let G =[S, S]; then G is nilpotent, and S/G = R¥ for some k. Then we
have the following commutative diagram:

1 G S > RF 1
O ER
1 G S RF > 1

This induces the following commutative diagram:

1 & S R* 1
lI—D; lI—D* lI—D*
1 & S RF 1

For x €S, we denote by 7, the inner automorphism on S whose
differential is Ad(x). This induces an automorphism on G, and we still
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denote it by 7, and its differential is Ad’(x). Then we can express I — D,
and I — Ad(z)D, as

I—-D, 0
I—D*—[ " [_D;]’
I—-D, 0
[—Ad(IE)D*_[ % I—Adl(x)DJ

with respect to some linear basis for &.

Assume that I — D, is an isomorphism. We claim that I — D/ is an
isomorphism if and only if I — Ad’(x)D’, is an isomorphism.

Since I — D is an isomorphism on R*, fix(D) =ker(I — D) is a trivial
group. For any x € S, we consider the exact sequence of the Reidemeister
sets R A

Rl D'] - R[r D] 25 R[D] — 1;

- —

is surjective, and (%)~ ([1]) =im(:*). If 7*([g1]) = i®([go]) for soirlle

p
g1, 92 € G, then by definition there is y € S such that g = yg1(72D(y))
The image in S/G is then go = 7g1D(y) !, which yields that 3 € fix(D) =
{1}, and so y € G. This shows that 7% is injective for all 2 € S. Because
there is a bijection between the Reidemeister sets R[D] and R[r, D] given
by [g] = [gx~1], it follows that R(D’) = R(7,D’). On the other hand, by [1,

Lemma 3.4], since I — D, is an isomorphism, R(D) < oo, and

I — Ad'(z) D, is an isomorphism <= R(7,D') < o0,

I — D/, is an isomorphism <= R(D’) < cc.

This proves our claim.

Now assume that I — D, is an isomorphism. Then it follows that I — D,
and I — D/, are isomorphisms. By the above claim, I — Ad’(z) D/, and hence
I — Ad(z)D, are isomorphisms. [

Proof of Theorem 1. 1If S is Abelian, then Ad(z) is the identity and
hence there is nothing to prove. We may assume that S is non-Abelian.
Further, by Lemma 3, we may assume that I — D, is an isomorphism. Hence,
I — D, and I — Ad(x)D, are isomorphisms for all z € S.

Denote G =[S, S] and Ag = S/G. Then G is nilpotent, and Ag = R for
some kg > 0. Consider the lower central series of G:

G=1061(G)D0(G) D - D0:(G) Det1(G) =1,

https://doi.org/10.1017/nmj.2016.6 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2016.6

CORRIGENDUM 211

where 6;11(G) = [G, §;(G)]. Let A; = 6;(G)/8;+1(G). Then A; = R¥ for some
k; > 0. For each x € S, the conjugation 7, by x induces an automorphism on
G. Since each 6;(G) is a characteristic subgroup of G, 7, € Aut(G) restricts
to an automorphism on 6;(G), and hence on A;. Now, if x € G, then we
have observed that the induced action on A; is trivial. Consequently, there
is a well-defined action of Ag =S/G on A;. Hence, there is a well-defined
action of Ag on A;. This action can be viewed as a homomorphism p; : Ag —
Aut(A;). Note that ug is trivial. Moreover, for any x € S denoting its image
under S — Ag by Z, the differential of conjugation 7, by x can be expressed
as a matrix of the form

I 0 0
* T 0
Ad(@)(= o) = | “1:( ) o
* * s pe(T)

by choosing a suitable basis of the Lie algebra & of S.

The homomorphism D :S — S induces homomorphisms D;: 0;(G) —
9;(G) and hence homomorphisms D; : A; — A;, so that the following diagram
is commutative:

o a o
1 —— 6z+1(G) _— (51(G) > Ai 0

Hence, the differential of D can be expressed as a matrix of the form

Dy 9 0

* D1 0

D* = . .
* * D,

with respect to the same basis for & chosen as above.
Furthermore, the above commutative diagram produces the following
identities:

Dzoul(j):/‘l(DO(i‘))oDla Vi'EAO, Vizoyla"'ac'

Let x € S with € Ag =Rk, Since I — Dy : R¥0 — R*0 is invertible, we
can choose 3 € Ag so that (I — Dy)(7) = Z. Now, using the above identities,
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we observe that

det(! — pi(%)Dy) = det(ui (§)mi(y) ™" — (@) i (Do(y)) Diges(5) ")
= det (i () ()~ — pi(@ + Do () Dipea(y) ")
()i (§) " — i () Diapes () ™)
(Y) D;)

Consequently, we have

det(I — Ad(x)D,) = det(I — Do) ﬁ det(I — p;(2)D;)

=1

C
= det(I — Do) [ [ det(I — D;) = det(I — D).
i=1
This completes the proof of our theorem. 0
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