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THE AUTOMORPHISM GROUP OF THE FRAÏSSÉ LIMIT
OF FINITE HEYTING ALGEBRAS

KENTARÔ YAMAMOTO

Abstract. Roelcke non-precompactness, simplicity, and non-amenability of the automorphism group
of the Fraı̈ssé limit of finite Heyting algebras are proved among others.

In the present article, we examine the Fraı̈ssé limit L of (nontrivial) finite
Heyting algebras. The existence of the model-completion T ∗ of the theory T of
Heyting algebra stems from the uniform interpolation theorem for propositional
intuitionistic logic, in which the interpolant of two sentences depends on only one of
the two sentences [8, 15]. The Fraı̈ssé limit L is the prime model of T ∗ and was used
to derive an axiomatization of T ∗ by Darnière [5]. The results in the present article
complement existing literature on the automorphism groups of ultrahomogeneous
lattices, e.g., the countable atomless Boolean algebra [1, 11, 17] and the universal
distributive lattice [7], as our ultrahomogeneous structure is not �-categorical.

The article is organized as follows: In the first section, we recall relevant definitions
and fix notation. In the second section, we compare the automorphism of L with
those of better-known ultrahomogeneous structures, especially that of the countable
atomless Boolean algebra B. It will be proved that Aut(L) is not Roelcke precompact
and thus is not realized as the automorphism group of any �-categorical structure.
Having established that, we will construct continuous embeddings of Aut(L) into
Aut(B). In the last section, we will see that Aut(L) is not amenable and that Aut(L) is
simple. The argument used to prove the last claim is applicable to other Fraı̈ssé classes
of lattices with the superamalgamation property, which is of an independent interest
as it characterizes the validity of the Craig interpolation theorem for nonclassical
logics [13, 14].

It is an important future task to investigate the combinatorics of the age Age(L) of
L, in particular about the existence of order expansion of Age(L) with the Ramsey
property and the ordering property, and the metrizability of Aut(L).

§1. Preliminaries. We review an important construction of Heyting algebras (this
material appears in, e.g., [4]). For an arbitrary poset P, the poset of upward closed
sets, or up-sets, of P ordered by inclusion has a Heyting algebra structure. We call
this Heyting algebra the dual of P. Conversely, if H is a finite Heyting algebra, then
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FRAÏSSÉ LIMIT OF FINITE HEYTING ALGEBRAS 1311

one can associate with H the poset P of join-prime elements of H with the reversed
order. One can show that the dual of P is isomorphic to H.

Suppose that H andH ′ are the duals of P andP
′, respectively, and thatf : P → P

′

is p-morphic, i.e., f is monotonic with

∀u ∈ P ∀v ≥ f(u) ∃ w ≥ uf(w) = u,

then the function f∗ defined on H ′ that maps each up-set with its inverse image
under f is a Heyting algebra homomorphism H ′ → H . We call f∗ the dual of f as
well. If f is injective, then f∗ is surjective; if f is surjective, then f∗ is a Heyting
algebra embedding.

Henceforth, L is the Fraı̈ssé limit of all finite nontrivial Heyting algebras, which
exists [9]. This structure is ultrahomogeneous in the sense that every isomorphism
between finitely generated substructures, or members of the age Age(L) of L, extends
to an automorphism on L. (Throughout the paper, Heyting algebras are structures
in the language {0, 1,∧,∨,→} unless otherwise stated.) The strong amalgamation
property of the theory T of Heyting algebras was proved by Maksimova [14]; in
fact, her construction establishes the superamalgamation property for the class of
finite Heyting algebras. Recall that a Fraı̈ssé class K of poset expansions has the
superamalgamation property if for every diagramA1 ←↩ A0 ↪→ A2 of inclusion maps
in K, the amalgamation property of K is witnessed by a diagram A1 ↪→ A←↩ A2 of
inclusion maps in such a way that A1 |�A0

A2, where |� is the ternary relations for
subsets of A defined as

S |�
U
T ⇐⇒ ∀a ∈ S ∀b ∈ T

{
a ≤ b =⇒ ∃c ∈ U a ≤ c ≤ b
b ≤ a =⇒ ∃c ∈ U b ≤ c ≤ a

}
.

The superamalgamation property for the class K of finite Heyting algebras follows
from the superamalgamation property for T [14]. Indeed, let A0, A1, A2 ∈ K with
A0 ⊆ Ai (i = 1, 2). Consider the quantifier-free sentence φ with parameters from
A1 ∪ A2 that is the conjunction of

∧
Diag(A1),

∧
Diag(A2), and the quantifier-free

sentence expressing A1 |�A0
A2, where Diag(·) denotes the diagrams of structures.

By the superamalgamation property for T, we have a model of T ∪ {φ}. By the
stronger form of the finite model property for Heyting algebras that is applicable to
all quantifier-free formulas [6], φ has a model in K.

We introduce notation naming structures obtained by the superamalgamation
property: Let D be the diagram B ←↩ A ↪→ C in Age(L), where Age(L) the
age of L is regarded as a category whose morphisms are the embeddings. The
superamalgamation property for Age(L) gives rise to a subalgebra

⊔
D of L such

that there are embeddings �D←↩ : B ↪→
⊔
D and �D↪→ : C ↪→

⊔
D with �D←↩(B) |��D↪→(A)

�D↪→(C ). One can show that �D←↩(B) \ �D←↩(A) and �D↪→(C ) \ �D↪→(A) are disjoint.

§2. Comparison with known automorphism groups. In this section, we study the
automorphism group of L in relation to those of better-known ultrahomogeneous
structures. First of all, we find it interesting to see that Aut(L) is distinct from the
automorphism groups of better-known ultrahomogeneous structures. In particular,
we will later construct embeddings of Aut(L) into the automorphism group of the
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1312 KENTARÔ YAMAMOTO

countable atomless Boolean algebra, but the first result of this section implies that
they cannot be topological group isomorphisms.

Recall that a non-archimedean topological group G, such as Aut(L), is Roelcke
precompact if the set of double cosets {VxV | x ∈ G} is finite for every open
subgroup V ≤ G (see, e.g., [18, p. 534]).

Theorem 2.1. Aut(L) is not Roelcke precompact. A fortiori, Aut(L) cannot be
realized as the automorphism group of any countable �-categorical structure.

Proof. Tsankov [18] showed that a topological group is Roelcke precompact if
and only if it is the inverse limit of some inverse system of oligomorphic permutation
groups. The second part of the statement of this theorem follows from its first part
and this result.

Since L is ultrahomogeneous, Aut(L) is not Roelcke precompact if and only
if there are sequences (ai)i<�, (bi)i<� of elements of L such that tpL(ai/∅) =
tpL(bi/∅) = tpL(aj/∅) = tpL(bj/∅) for i, j < �, and that {tpL(aibi/∅)} is infinite.
Furthermore, since Th(L) eliminates quantifiers, types realized in L are in one-
to-one correspondence with quantifier-free types realized in L. Finally, as L is
locally finite, the latter are essentially isomorphism types of subalgebras of L with
distinguished generators.

With that in mind, let F1 be the free Heyting algebra whose generator is x.
For each term t(x) ∈ F1, write Lt for the quotient of F1 by the principal filter �t
generated by t. Furthermore, let L∗

t be the Heyting algebra obtained by adding a
new minimum element 0L

∗
t below 0Lt . For a term t(x), we define t∗(x, y) to be

the term obtained by replacing every occurrence of 0 with y. One can check that
(t∗)L

∗
t ([x]t , 0Lt ) = [t(x)]t ∈ L∗

t , where [·]t denotes the congruence class with respect
to �t . Therefore, L∗

t is generated by 0Lt and [x]t . We have obtained 2-generated
subalgebras of L of infinitely many isomorphism types. On the other hand, we have
〈[x]t〉L

∗
t = 〈0Lt 〉L∗t is a 3-chain for all t. �

It is well known that Aut(M ) for a countable �-categorical M is not locally
compact [12].

Proposition 2.2. The topological group Aut(L) is not locally compact.

Proof. It suffices to show that for every finite subset S ⊆ L there is an infinite
orbit in the action of Aut(L)(S) on L. Note that for every finite subalgebra A ⊆ L,
there exists a ∈ L \ A such that a is join-prime in 〈Aa〉L. Indeed, consider the dual
P of A and the disjoint union P

′ := P � {w}, where w is a fresh element, and let
a be the image of {w} under the embedding of the dual of P

′ into L that fixes
A pointwise. By repeatedly using this, take an �-sequence (ai)i<� of elements of
L such that ai ∈ L \ 〈Sa0a1 ... ai–1〉L is join-prime in 〈Sa0a1 ... ai〉L for i < �. By
construction, there exists an automorphism φi : L→ L fixing S pointwise such that
φi(ai) = ai+1 for i < �. Hence, the orbit of a0 under Aut(L)(S) is infinite. �

An obvious strategy to study Aut(L) is to relate it to Aut(B), where B is the
countable atomless Boolean algebra. The following lemma gives rise to a topological
embedding of the former into the latter. Recall that an interior operator on a Boolean
algebra B is a function from B to B that is decreasing, monotonic, idempotent, and
commuting over meets. We write interior operators in superscripts so that B◦ is the
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FRAÏSSÉ LIMIT OF FINITE HEYTING ALGEBRAS 1313

image of an interior operator ◦ : B → B . For every interior operator ◦ : B → B ,
the image B◦ with the induced order is isomorphic to some Heyting algebra (see,
e.g., [2]).

Lemma 2.3.

1. Let f : H → H1 be a Heyting algebra homomorphism between finite algebras.
There are finite Boolean algebras B(H ) and B(H1), interior operators ◦, ◦1

on B(H ), B(H1), respectively, and a unique Boolean algebra homomorphism
B(f) : B(H ) → B(H1) such that B(H )◦ ∼= H , B(H1)◦1 ∼= H1 and that B(f)
extends f. If f is injective, so is B(f); if f is surjective, so is B(f).

2. There is an interior operator ◦ on the countable atomless Boolean algebra B
such that B◦ is isomorphic to the universal ultrahomogeneous countable Heyting
algebra L.

Proof.

1. Let P and P1 be the dual posets of H and H1, respectively. There is a
p-morphism D(f) : P1 → P that is the dual of f. D(f) is surjective if f is
injective. Let B(H ) = P (P) and B(H1) = P (P1). D(f) induces a Boolean
algebra homomorphism B(f) : B(H ) → B(H1). B(f) is injective if D(f) is
surjective. Likewise, B(f) is surjective if f is. Let ◦, ◦1 be the operations that
take a subset to the maximal up-set contained by that set.

2. Let (Li)i<� be a chain of finite Heyting algebras used in the construction
of L; so

⋃
i Li = L. Let Bi = B(Li) as above and ◦i be an interior operator

such that Bi◦i ∼= Li . We may take Bi ⊆ Bi+1 for i < �. Then ◦i+1 extends ◦i .
LetB =

⋃
i Bi and ◦ =

⋃ ◦i . ThenB◦ =
(⋃
i Bi

) ◦ =
⋃
i Bi

◦i =
⋃
i Li = L. It

remains to show that B is atomless. Take an arbitrary a ∈ B that is nonzero.
Take i < � such that a ∈ Bi . Let Pi be the poset dual to Li ; then a is a
nonempty subset of Pi . Take some w ∈ a. Let P′ be the poset obtained from
Pi by replacing w with the 2-chain {w1 < w2}. Let 	 : P′ � Pi be the surjection
that maps the chain to {w} and is the identity elsewhere. This is a p-morphism,
and it induces � : Li ↪→ L′, where L′ is the dual of P′. Take k < � such that
there is an embedding �′ : L′ ↪→ Lk such that �′ ◦ � is the identity on Li . Let
b = (a \ {w}) ∪ {w1}. Then b ∈ Bk = B(Lk) ⊆ B and 0 < b < a. �

Theorem 2.4. An automorphism L→ L can be extended (as a function between
pure sets) to an automorphismB → B . This extension is unique. Moreover, this defines
an injective group homomorphism Aut(L) ↪→ Aut(B) that is a homeomorphism onto
its image.

Proof. Letf : L→ L be an automorphism. Letfk : Lk → L′
k be the restriction

of f to Lk where L′
k = f(Lk). Each fk is an isomorphism. By the fact above, fk

induces a Boolean algebra isomorphism B(fk) : B(Lk) → B(L′
k) for each k < �;

and by construction B(fj) extends B(fk) for each k < j < �. Let f̂ =
⋃
k B(fk).

Then f̂ is an isomorphism B → B .
Let g : L→ L be another isomorphism. We have f̂ ◦ ĝ = (f ◦ g )̂ because each

side of the equation extends f ◦ g.
Let � : Aut(L) → Aut(B) be the map f �→ f̂. The map � is a group homomor-

phism as seen above, and it is clearly injective.
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Next, we prove that � is continuous. Let b̄ be a tuple in B. It suffices to show
that for an automorphism f : L→ L the value of f̂(b̄) is determined by the value
of f(ā) for a tuple ā in L. There exists k < � such that b̄ is in Bk = B(Lk). Let
fk : Lk → L′

k be an isomorphism that is a restriction of f. Then f̂(b̄) = B(fk)(b̄).
Let ā be an enumeration of the finite algebra Lk ; then ā is what we needed.

Finally, we show that the image �(U ) is open in ran � ⊆ Aut(B) for an arbitrary
basic open set U of Aut(L). Indeed, let U be the set of f : L→ L fixing the values
of f at ā ∈ L; then ĝ ∈ �(U ) if and only if ĝ � B0 = f̂ � B0 for g : L→ L, where B0

is the Boolean subalgebra of B generated by ā. �
Note that the structure L is not interpretable in B because the latter is ℵ0-

categorical whereas the former is not.
There is another way Aut(B) and Aut(L) can be related. Recall that a relativized

reduct is a special kind of interpretation where the domain of the interpreted
structure is a 0-definable subset of the domain (as opposed to powers thereof)
of the interpreting structure.

Lemma 2.5. There is an atomless Boolean algebra which is a relativized reduct B
of L, where every element L is a finite join of elements of B.

Proof. The set B of fixed points of ¬¬ in L is a Boolean algebra by setting
a ∨B b = ¬¬(a ∨L b) and the remaining operations of B the restrictions of the
corresponding operations of L. (Note that B is not a substructure of L.) By [9,
Proposition 4.28(ii)], B is atomless.

Let a ∈ L be arbitrary. Take a finite subalgebra H ⊆ L such that a ∈ H , and let
P be the dual poset of H so we may identify an element of H with an up-set of P.
Possibly by replacing L by another finite Heyting algebra into which L embeds,
we may assume that P is a forest. Furthermore, without loss of generality, we may
assume that a is principal as an up-set in P, generated by x ∈ P. If x is a root,
then a itself is in B, so there remains nothing to be shown. Suppose not, and let
x– be the predecessor of x. Let P1,P2 be disjoint posets isomorphic to that induced
by a ⊆ P. Let P

′ := (P \ a) � P1 � P2 whose partial order is the least containing
those of the summands and x– ≤ P1, x– ≤ P2. Consider the surjective p-morphism
P
′ � P that collapses {minP1,minP2} to x, and let i : H ↪→ H ′ be the Heyting

algebra embedding it induces. (See also Figure 1.) Note that Pi ∈ H ′ is in B for
i = 1, 2 and that i(a) = P1 ∨ P2. Let Hr(a) be a subalgebra of L such that there is
an isomorphism φ : H ′ → Hr(a) that extends the identity map on H. Let r1(a) :=
φ(P1) and r2(a) := φ(P2). We have a = r1(a) ∨ r2(a) and ri(a) ∈ B(i = 1, 2) as
promised. �

Proposition 2.6. Let h¬¬ : Aut(L) → Aut(B) be the continuous homomorphism
induced by the interpretation of the lemma above. This is injective and is a
homeomorphism onto its image. However, h¬¬ is not surjective, and its image is a
non-dense non-open subset of Aut(B).

Proof. The first claim is immediate. We show that h¬¬ is not surjective.
Consider the three-element chainC3, which can be regarded as a Heyting algebra,

and let a ∈ C3 be such that 0 < a < 1. Note that a does not have ¬¬a = a and a
principal up-set in the dual finite poset of C3. Let D be the diagram C3 ←↩ 2 ↪→ C3,
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Figure 1. Construction ofH ′.

a01, a02 a11, a12 a21, a22

H H H

C3 C3

2

∈ ∈ ∈

� a

Figure 2. Construction by amalgamation.

where 2 is the two-element Heyting algebra. Let a0 = �D←↩(a), a1.5 = �D↪→(a), andH =
Hr(a1.5). Next, let D′ be the diagram H ←↩ �D←↩(C3) ↪→ H . Let a1i = �D

′
←↩(ri(a1.5)),

a2i = �D
′
↪→(ri(a1.5)), and a0i = ri(a0) for i = 1, 2. Refer to Figure 2 for this

construction.
The Boolean subalgebra B6 generated by aji (0 ≤ j ≤ 2, 1 ≤ i ≤ 2) in B has six

atoms, each permutation of which extends to an automorphism of B. Consider the
permutation aji �→ a(j+1 mod 3)i , which extends to an automorphism of B6, which in
turn extends to φ ∈ Aut(B) by ultrahomogeneity of B. By construction,

∨
L

φ({a11, a12}) �=
∨
L

φ({a21, a22}),

showing that φ is not in the image of h¬¬.
The last paragraph also shows that the image of h¬¬ is not dense. To see that

ran h¬¬ is not open, let b be an arbitrary tuple in B, and we prove that Aut(B)(b) \
ran h¬¬ �= ∅. Take a finite subalgebra K of L such that K generates 〈b〉B as a Boolean
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algebra. Let D′′ be the diagram1 K ←↩ 2 ↪→
⊔
D′ such that the image ran �D

′′
↪→

generates a copy B ′
6 of B6. Take an automorphism 
0 on

⊔
D′′ such that 
0 � B ′

6

is as constructed in the preceding paragraph and that 
0 � ran �D
′′

←↩ is the identity.2

The automorphism 
0 extends to another φ ∈ Aut(B), which is in Aut(B)(b) \
ran h¬¬. �

§3. Amenability and simplicity. We now proceed to showing the non-amenability
of Aut(L).

Definition 3.1. Let H be a finite nondegenerate Heyting algebra. For b ∈ H,
we write I (b) for the set of join-prime elements below or equal to b. Let ≺ be an
arbitrary linear extension of the partial order on I (1) induced from H. We define a
total order ≺alex on H extending ≺ by the following:

a ≺alex a′ ⇐⇒ max
≺

(I (a) � I (a′)) ∈ I (a′).

This is clearly a total order, which is known as the anti-lexicographic order. We call
this a natural ordering on H.

An expansion of a finite nondegenerate Heyting algebra H by a natural total
order is called a finite Heyting algebra with a natural ordering.

It is easy to check that if (H,≺) is a finite Heyting algebra with a natural ordering,
and H happens to be a Boolean algebra, then (H,≺) is a finite Boolean algebra with
a natural ordering in the sense of Kechris, Pestov, and Todorčević [10]. Recall from
the same paper that an order expansion C∗ of a Fraı̈ssé class C is reasonable if there
exists some admissible order ≺2 onM2, i.e., an order such that (M2,≺2) ∈ C∗, which
extends ≺1 wheneverM1,M2 ∈ C withM1 a subalgebra ofM2, and ≺1 is admissible
onM1.

Proposition 3.2. The class K∗ of finite Heyting algebras with a natural ordering
is a reasonable Fraı̈ssé expansion of Age(L).

Proof. We show that K∗ is reasonable and that K∗ has the amalgamation
property. (Other claims are clear.) In what follows, for a totally ordered set (X,<)
and Y,Z ⊆ X , we write Y < Z to mean that y < z whenever y ∈ Y and z ∈ Z.

Let H1 ⊆ H2 be finite Heyting algebra, and let ≺alex
1 be an arbitrary admissible

total order on H1. We show that there exists an admissible order on H2 extending
≺alex

1 . Let 	 : P2 � P1 be the surjective p-morphism dual to the inclusion map
H1 ↪→ H2. Note that with I (1Hi ) and Pi identified as pure sets, an admissible total
order of Hi extends the order-theoretic dual of the order of Pi for i = 1, 2.

Suppose that for p, q ∈ P1 we have p ≺1 q. Since ≺alex
1 is admissible, p �≤ q.

Take arbitrary p′, q′ ∈ P2 such that 	(p′) = p and that 	(q′) = q. Since 	 is order-
preserving a fortiori, we have p′ �≤ q′.

LetR = (≤ \ Δ) ∪ {(p′, q′) | 	(p′) ≺2 	(q′)}be a binary relation onP2 = I (1H2 ),
where Δ is the diagonal relation. It can be shown by induction from the fact in the

1To be more precise, one can replace
⊔
D by an appropriate copy by the weak homogeneity of L.

2The existence of such an automorphism can be proved in terms of the concrete representation of the⊔
D′′.
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preceding paragraph that R contains no cycle. Therefore, R can be extended to a
total order ≺2. Furthermore, for p, q ∈ P1, we have 	–1(p) ≺2 	

–1(q); a fortiori,
	–1(p) ≺alex

2 	–1(q). This shows that ≺alex
2 extends ≺alex

1 .
Next, we prove the amalgamation property for K∗. Let D be the diagram H1 ←↩

H0 ↪→ H2 in Age(L) and let ≺alex
i be an arbitrary admissible ordering on Hi for

i = 1, 2. Recall the dual poset P of
⊔
D is a sub-poset of the product order P1 × P2,

where Pi is the dual ofHi (i = 1, 2) [14]. Take a total order ≺ on P so it extends the
product order of ≺1 and ≺2.

We first show that ≺ extends the dual of the order of P. Assume that (p1, p2) ≤
(q1, q2) for (pi , qj) ∈ P and 1 ≤ i, j ≤ 2. (Recall that pi , qi ∈ Pi .) Since the order
of P is induced by the product of those of P1 and P2, we have pi ≤ qi for i = 1, 2.
Because ≺i extends the dual of the order of Pi , we have pi �i qi (i = 1, 2). By the
construction of ≺, we have (p1, p2) � (q1, q2) as desired.

We then prove that (
⊔
D,≺alex) witnesses the amalgamation property. Because of

the strong amalgamation property of Age(L), it suffices to show that ≺alex extends
�D←↩(≺alex

1 ) and �D↪→(≺alex
2 ). Takep, p′ ∈ P1, and assume thatp ≺ p′ (the other case can

be handled in a similar manner). Since �D←↩ is induced by the projection 	1 : P � P1,
it suffices to show that 	–1(p) ≺alex 	–1(p′). Now, it is easy to see that, in fact,
	–1(p) ≺ 	–1(p′) by the construction of ≺. �

Corollary 3.3. Aut(L) is not amenable.

Proof. We will make use of the following proposition:

Proposition [11, Proposition 2.2]. Let C be a Fraı̈ssé class and C∗ a Fraı̈ssé order
expansion of C that is reasonable and has the ordering property. Moreover, suppose
that there are A,B ∈ C and an embedding �< : A→ B for each admissible ordering <
on A with the following properties:

(i) There is an admissible ordering <′ on B such that for every admissible ordering
< on A, the function �< does not embed (A,<) into (B,<′);

(ii) For any two distinct admissible orderings<1,<2 on A, there exists an admissible
ordering <′ on B such that at least one of �<1 and �<2 fails to embed (A,<1) or
(A,<2), respectively, into (B,<′).

Then, the automorphism of the Fraı̈ssé limit of C is not amenable.

Consider the following construction appearing in [10, Remark 3.1]. Let A be the
finite Boolean algebra with the atoms a and b and B with x, y, and z. For the order
<1 which extends a <1 b, define

	<1(a) := x, 	<2(b) := y ∨ z.
Moreover, for the order <2 which extends b <2 a,

	<2(a) := y, 	<2(b) := x ∨ z.
Let <′ be defined as extending z <′ y <′ x. The objects defined above witness the
conditions (i) and (ii). We conclude that Aut(L) is not amenable. �

Finally, we study the aspects of the combinatorics of Age(L) pertaining to the
extreme amenability of Aut(L). The Kechris–Pestov–Todorčević correspondence
concerns order expansions of the ages of ultrahomogeneous structures with the

https://doi.org/10.1017/jsl.2022.43 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.43


1318 KENTARÔ YAMAMOTO

ordering property [10]. One can make an empirical observation that many arguments
establishing the ordering property of an order expansion of a Fraı̈ssé class fall into
two categories: one based on a lower-dimensional Ramsey property and the other
rather trivially using the order-forgetfulness of the expansion. The former is applied
to many classes of relational structures such as graphs, whereas the latter is used
with the countable atomless Boolean algebras and the infinite-dimensional vector
space over a finite field. Our structure L is similar to the latter classes of structures.
However, we see the following.

Proposition 3.4. There is no Fraı̈ssé order class of isomorphism types that expands
the class of finite Heyting algebras and is order-forgetful.

Proof. Suppose that such a class K∗ exists. Let H be an arbitrary finite Heyting
algebra, and consider the action of Aut(H ) on the set of binary relations on H.
Since K∗ is closed under isomorphism types, the set of admissible orderings AH on
H is a union of orbits. Since K∗ is order-forgetful, AH consists of a single orbit.

Now consider the poset P
′ that is the disjoint union of two 2-chains, with its

quotient P obtained by collapsing one of the 2-chains into a point. The canonical
surjection P

′ � P is p-morphic, which induces a Heyting algebra embedding H ↪→
H ′. Let a, b ∈ H ′ correspond to the two 2-chains. Clearly, H is rigid whereas there
is an automorphism φ : H ′ → H ′ under which a and b are conjugates. Consider
an admissible ordering ≺ on H ′; without loss of generality, we may assume a ≺ b.
Writing the action of Aut(H ′) by superscripts, we have b ≺φ a. Since K∗ is a Fraı̈ssé
class, the restrictions of ≺ and ≺φ to H, respectively, are admissible orderings on
H. Now, we have ≺ ∩H 2 �= ≺φ ∩H 2, as witnessed by (a, b) ∈ H 2. These cannot
belong to the same orbit of AH as H is rigid. �

From this point on, we study Aut(L) as an abstract group, and show that it
is simple. Our argument is based on the technique by Tent and Ziegler [16]. Our
ternary relations are reminiscent of the stationary independence relation on the
random poset defined in [3], but note that our setting is different as our language is
algebraic.

Lemma 3.5. If M is a countable ultrahomogeneous structure with Age(M ) having
the superamalgamation property, then M has an automorphismg :M →M that moves
almost maximally with respect to |� in the sense of Tent and Ziegler [16, Lemma 5.3].

Proof. A back-and-forth construction. Enumerate M as (ai)i<� and all the
realized 1-types over all finite subsets of M as (pi)i<� . We construct g as the union
of the chain ∅ = g0 ⊆ g1 ⊆ ··· , each of which is a partial isomorphism with a finite
domain. Along the way, we construct a chain ∅ = S0 ⊆ S1 ⊆ ··· of realized 1-types.
Suppose that gj has been constructed. To construct gj+1, one does the following:

If j = 3i . If ai is in dom gj , then gj+1 := gj . Otherwise, let gj+1 extend gj so
gj+1(ai) may be a realization of gj(p) outside ran gj , which exists due to the strong
amalgamation, where p is the type of ai over dom gj .

If j = 3i + 1. Similar as above, but switch the roles of images and domains.
If j = 3i + 2. Let k be the least such that pk is over X, that X ⊆ dom gj ,

and that pk �∈ Si . (There may not be such k, in which case gj+1 := gj and
Si+1 := Si , but there will be such k for infinitely many i because of the other
two kinds of stages.) Let Si+1 := Si ∪ {pk}. If all realizers of pk are in dom gj ,
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then gj+1 := gj . If not, apply the strong amalgamation to obtain infinitely many
realizers of pk . Since dom gj is finite, there exists a |= pk outside dom gj . Let
D be the diagram 〈aXgj(X )〉 ←↩ 〈Xgj(X )〉 ↪→ 〈aXgj(X )〉, and let the diagram

〈aXgj(X )〉 incl.
↪→ A �←↩ 〈aXgj(X )〉, where A ⊆M , witness the superamalgamation

property for D. Now let gj+1 := gj ∪ {(a, �(a))}. (Replace �(a′) by something
else if need be so �(a′) �∈ ran gj by considering an amalgam with more copies of
〈aXgj(X )〉.) By the superamalgamation property, we have a |�X gj+1(a). �

For the next theorem, recall that structuresM1 andM2 sharing the same domain
M but of possibly different languages are definitionally equivalent if subsets ofMn

are 0-definable inM1 if and only if it is 0-definable inM2 for every n < �.

Theorem 3.6. Let M be a countable ultrahomogeneous structure with Age(M )
having the superamalgamation property with respect to a 0-definable partial order ≤
on M. Moreover, suppose that M andM � L0 are definitionally equivalent, where L0

is a language containing ≤ and finitely many constants naming elements of M. Then
there exists g ∈ Aut(M ) such that every element of Aut(M ) is the product of at most
16 conjugates of g. A fortiori, the abstract group Aut(M ) is simple.

Proof. By the superamalgamation property of Age(M ), one can prove that the
relation |� is a stationary independence relation in the sense of Tent and Ziegler
[16]. In fact, the invariance of |� follows from the ultrahomogeneity of M. The
monotonicity and the symmetry of |� are obvious by the shape of the definition of
|�. To show transitivity, assume thatA |�BC D and thatA |�B C . To seeA |�B D,

take an arbitrary a ∈ A and d ∈ D. Suppose a ≤ d . (The case of d ≤ a can be
handled in a similar way.) Since A |�BC D, there is b ∈ BC such that a ≤ b ≤ d .
If b ∈ B , we are done. Otherwise, b ∈ C , so by A |�B C , there is b′ ∈ B such that
a ≤ b′ ≤ b. Now we have a ≤ b′ ≤ d . To show the existence property of |�, let p
be a realized type over a finite set B and C a finite set. Let a be a tuple realizing p.
Now consider the diagram D:

〈aB〉 ←↩ 〈B〉 ↪→ 〈BC 〉.

Let the diagram 〈aB〉 �
↪→ A incl.←↩ 〈BC 〉, where A ⊆M , witness the super-

amalgamation property for D. It is clear that �(a) |�B C . Finally, to show the
stationarity of |�, we may assume the original signature M is L0 without loss
of generality. Take two realizations a, a′ |= p where p is over a finite set A. We
may further assume that A contains all constants in L0 without loss of generality.
Consider an arbitrary finite set A′ ⊇ A such that aa′ |�A A′. The order types of
aA′ and a′A′, respectively, are determined by the order types of aA, a′A, and
A′. By the hypothesis Aut(M ) = Aut(M � L0), the first-order types of aA′ and
a′A′ are determined by the order types of aA, a′A, and A′. We conclude that
tpM (a/A′) = tpM (a′/A′). Therefore, for g constructed in the preceding lemma,
every element of Aut(M ) is the product of 16 conjugates of g by Corollary 5.4
of [16]. �

Corollary 3.7. There is g ∈ Aut(L) such that every element of Aut(L) is the
product of at most 16 conjugates of g. In particular, Aut(L) is simple.
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By the result by Maksimova, our argument shows the simplicity of the
automorphism group of the Fraı̈ssé limit of all finite members of each of the
seven nontrivial subvarieties of Heyting algebras with the (super-)amalgamation
property.

Acknowledgments. The author benefited from discussions with (in no particular
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