A THEOREM IN ASYMPTOTIC NUMBER THEORY

JACK P. TULL
(received 8 October 1964)

1. Introduction

Let a(n) be a multiplicative arithmetic function. H. Delange [1] has
proved that if |a(#)] =1 for all » and for a certain constant p,
> <z ®(p) ~prflog x as x > oo, where if p=1 then 3, (1—R«(p))/p = + o,
then 3, <, a(n) = o(x) as # — co. He applied this result to several problems
such as uniform distribution {mod 1) of certain types of sequences.

The present author found that the error term in Delange’s main lemma
can be improved from o(z) to O(xflog ). Delange suggested that we find
a O-theorem analogous to his o-theorem above. This paper presents such
a result.

In the text, the letter $ ranges over the primes while m and » range
over the positive integers.

plin means p|n but p2{ n.
K, K,, K,, - -+ are positive absolute constants.

6, 0,, 0,,- - are numbers with modulus < 1 which depend on s,
wor x, where s=w+4+1, 0 <w<land x> 1.
1) L= fz (1/1og t)dt.
(2) A(x) = Z “(”)’ ¢(x) = dja(x) = Z“(P)
n=zz p=a
) B(a) = 9.(¢) = 3 a(¢) log 5.
PSS

L,L,, L,and L, are slowly varying functions in the sense of J. Karamata
[3] (also called slowly oscillating; see [4]); i.e., functions on [#,, o) for some
x, > 0 which are positive-valued and continuous and satisfy

4) lim L (cz)/L(x) = 1

Z00

for every ¢ > 0. Such a function is characterized as asymptotically propor-
tional to a function of the form

(5) L(z) = exp ["t18(t)dt

196
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where 6 is bounded and measurable and

lim 6(z) = 0.

2500

For a slowly varying function L we define
(6) L*(z) = L wL(u)du, L,()=expK L t1L (¢")dt

where K is a suitable positive constant.
With the aid of I'Hospital’s rule we have

(M L*(z) 7s slowly varying.
(8) L(z) = o[L*(%)]

as ¢ — o0, and for « > 0

9) L WL (w)du ~ o< L(z)|x
as & — 0.

If L(z) - 0 then L, is slowly varying by (5).

Note that products, powers and quotients of slowly varying functions
are slowly varying. If L and M are slowly varying and M is non-decreasing
with M(z) = %, eventually, then L(M(zx)) is slowly varying. Logz is
slowly varying and so is explog®z if —1 <a << 1.

2. The theorems

Consider the hypotheses

(H1) a(n) s multiplicative.

(H2) For all n =1, |a(n)] = 1.

(H3) For a certain constant p + 1 either

(a) ®,(x) = 3 a(p) = p i o+0[xL (z) log 2]
Lz
or ’
(b) @, (x) = pxflog z+O[zxL (x)/log x],
where L is a monotonic slowly varying function and
Lz)—>0
as & — ¢,

(H4) For a certain real B all values of a(n) lic in the right angle region
B = argz < B+n[2 with vertex at the origin.

THEOREM 1. Under hypotheses (H1), (H2) and (H3a or b) we have for
z =6
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198 Jack P. Tull [3]
(cn) > a(n) = O[zL*(x)/log ]+ O[pxflog log z].
nse

THEOREM 2. Under hypotheses (H1), (H2), H3a or b) and (H4), for
x=e

(C2) > a(n) = O(x (log «)*~1 L (log ))+ O (x/log x)

nse

where the K in Lx is not greater than the O-constant in (H3) (see (1.6)).

3. The Lemmas

Lemma 1 is our improvement of Delange’s main lemma.

LemMmA 1. If a(n) is bounded and multiplicative then as x — o©

1) 2 a(n) = (1/log x)ﬂgxa(”)ﬂa (¢/n)+0 (z/log x).

nse
#, is defined in (1.3).
Proor oF LEMMA 1. Using both hypotheses we have

méca(m)ﬁa(x/m) > Za(n/{) a(p) log p

ns2 pin

@) =3a ”),,%. log p+0( 3 ’%log ?)
= 3 a(n) log n— 3 a(n) log [n/g(n)]+0(z),

n<ga n<sx

where g(n) = [I,» #. In particular, if a(n) = 1 identically

Pa(z) = Do) = S log
and (2) says
3 8(aim) = 3 log #— 3 log [nlg(n)1+0(@).

nse
Hence, since
2logn =3 pla/n),
nsx ng2
where
p() =X A(n) = 3 logp,
n<z P

we have

l 2 x(n) log [nig(n) n)l| = K, 3 log [n/q(n)]

=K, z logn—K, 2 B (x/n)+0(x)

nse

=K1“§”W(x/" —19(90/")]4-0( ) = O(x).
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Substituting in (2) we have

(3) S «(n)d,(e/n) = 3 a(n) log n+0(@).

nse n=x

Now if A(x) =3, <, «(n) then

Alz)log z— z a(n)logn =

> a(n) log (z/n)
(4) n=e

=2 «f

nSz

L t1dt = f:t'lA ()t = O(z)

since a(n) is bounded. Hence by (3)

2 a(n)d,(z/n) = A(x)log z+0(z),
nse

which is equivalent to (1).

Lemua 2. (a) Hypothesis (H3a) implies that for x = 2

9,(z) = pz+O0(L (@)).
(b) Hypothesis (H3b) implies for & = 2
&, (x) = px+O[zL (x)]+O[zflog ].

ProOF, Let ¢ = 3,, ® = @,. Then as in (4) we have
(5) d(z) = D(z) log z— f; 1D (8)dt.
Hypothesis (H3a) gives

[fero@at=p [frrutato] [Z @w@nog nat].

Substitute % ¢ = [; log~ udu and invert the order of integration and apply
(1.9) with « = 1 to the error term to yield

(6) [; ()t = p i 2 1og v—pa+O[aL () log z].

(6) combined with (5) and (H3a) yields lemma 2(a).
Under hypothesis (H3b)

[Jero)at = pliz+0[ [ (L(t)log £)dt]
= Ofz/log ]+ O0[zL (x)[log x].
Combine (7), (5) and (H3b) to yield lemma 2(b).

()

LemMa 3. Suppose L, is slowly varying, a(n) is bounded and multiplicative
and as & — o0
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® 3 a(n)jn = O[L,(@)].
Then we have the following.

(@) If L, is slowly varying and decreasing and

(9) B, (x) = pr+0[xLy(z)]
as x — oo, then as € —

(10) 2 () = O[zLy(x)/log ],
where nE

Ly(x) = max [pL,(x), Ly (z)].

If p=0 then (10) follows without (8).
(b) If all values of a(n) lie in a right angle region f < argz < f+=n/2
then as £ — oo

> a(n) = O[zL,(x)/log 2]+ O[z[log z].
nse

Proor. By (9) and the boundedness of «(#n)
3 amd(afn) = pz 3 aln)/n-+0[ 3(aln)Lylafn)]

n<z n
= O[pxL,(z)]+0[zL] ()]

by (8) and by approximating the sum in the O-term by an integral. Sub-
stitution into lemma 1 yields (10) since LJ is increasing. If p = 0 then (8)
is irrelevant. In this case theorem 1 follows immediately with the aid of
lemma 2(a).

Now if for all #, 8 < arg a(n) < f+=/2, let o;(n) = Z[e~#a(n)] and
ay(n) = Fle~*#a(n)] so that for j =1 or 2 and all » = 1, oy(n) = 0 and

g a(n)n < [ﬂg:(”)/”f = O[L,(»)].

n

Hence since #(x) = O(x) then
2 a,(n)d(x/n) = 0[”2: a;(n)[n] = OlzL,(2)].

nES

T #m0(eln) = I 3 o (1)D(eln) i S malr) /)]
B — OfeL, (2)].

Thus

By lemma 1 this completes the proof of lemma 3.

LEMMA 4. Under hypotheses (H1), (H2) and (H3a or b) for 0 < o < 1

S a(n) e+t = 0w Ly (1))

no=l

where Ly (x) = exp K [] t71L(¢*)dt, K being the O-constant in (H3).
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We remark that p is a complex number and due to the prime number
theorem since |x(#)] =1 we have |p] < 1. Since p £ 1 then %#p < 1. In
a O-term involving a complex valued function we always take the absolute
value. Thus f{w) = O{w™*) means [f{w)] < K,0™ %,

PROOF OF LEMMA 4. As in [1] § 4.2.6 we have for %Zs > 1

oo

(1) 2 a(n)/n® = g(s)(s) exp [— 3 (1—a(p))/#’]

n=1

where g(s) is bounded in the neighborhood of 1. In fact g(s) is analytic
for #s > log 2/log 3.
By the simplest O-type prime number theorem

n(z) = Ui x40 (z/log? 2) = z/log 10 (x/log? x).
Let B(x) = n(x)—P(x). Then (H3a) implies
(12) B(z) = (1—p)li x+ K8, 2L (2) [log 4 O[z/log? x)
and (H3b) implies
(13) B(zx) = (1—p)z[log x+Kb,zL (z)/log z--O[z[log? z].
Under (12), if s = w—+1 > 1, by partial summation
(14) S (1—alp)ipt = s [ " wrBlujdu

(15) = (l—p)Squ"'l /3 udu—l—sKG:,foo (L () [u®+ log w)du+O0(1)
2 e

since [P u*log2udu < [P ullog~?udu < +oo. In the first term in
(15) substitute liu = [} (1/log t)dt and invert the order of integration.
For the second term since L is non-increasing and o(1)

(16) f:;.., (L () [+ log w)dw < L (/%) j o W = L(ee)et = o(1),
and

[ (@) uer log w)du < [ @) wioguyan = [ 1 Lietat=L' (o).
We are led to

3 (1-ap)ip = (1—p) [~ (*hog )

+KO,L' (L) +0(1).

Similarly (13) leads to (17) and so (17) is valid under either (H3a)
or (H3b).

(17)
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Now substituting e* for ¢
(18) [ (¢ pog ydt = [~ e e art-0(1).

By integrating e—“?/z over the contour made up of the real interval
[1, R], the quarter circle [z| = R from R to 7R, the straight segment from
iR to 7 and the quarter circle |z} = 1 from 7 to 1 and letting R — oo we
find that

(19) Lm tle=vtdt = ~log w+0(1) for 0 < < 1.
Thus by (17), (18) and (19) for 0 < w < 1

(20) % (1—a(p))/p*+* = —(1—p) log
+0KL' (1)) +0(1).

We remark that we can also derive

- S (1—-a(p))fp1+7 = —(1—p) log &
+6'KL' (1/w)+0(1)

uniformly for 0 < w <1, — Ko 7 = Ko
Since {(w+1) ~ 1l/w as @~ 0 then (11) and (20) lead us to the
conclusion of lemma 4.

LemMMA 5. If f(t) = 0 and ©(t) 7s non-decreasing for t = 0 and if
F(o) = [ et ()
converges for w > 0, then for x > 0
[PHeast) < e F1fa).
PrOOF. For 0 £t <2, e~ =1 and so
[T Hwan) < [Tea-rpeane) < [ a-ep@an).

The following lemma 6 was proved by G. Freud [2] using polynomial
approximations. It is a Tauberian theorem with error term.

LEMMA 6. Under the hypotheses of lemma 5 if « < 1 and
F(o) = 0 14+ 0(0™*)

as w — 0%, then as z — o©

[Z He)dz () = 2+0(alog ).
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4. Proof of theorem 2

Suppose for all #, 8 < arg a(n) < f+n/2 and let ay(#) = Z[e~Pa(n)],
ay(n) = FleBa(n)] so that a;(n) Z0 (f=1,2). Given 7 let f(¢) =1,
7(t) = X<t #;(n)/n. Then lemma 5 applies and

..g,?’(")/” = fo dv(t) < eF(l/z)

(1) =e E o;(n)[ni+1e < ¢ | § a(n) /n1+1/’=,
O Ly @) ~
by lemma 4. Since a(rn) = e*#[a, (1) +7ix,(n)] upon substituting log = for
z in (1)
@ 2 a(n)[n = O[log? z Ly (log z}]

nsx

since |a(n)/n| < 1/n < 1flog n = (log n)®°.
We can now apply lemma 3(b) with

L,(x) = log®" xL,(log z)

and we have conclusion C2.

5. Proof of theorem 1

Let a,(n) and a,(#) denote the real and imaginary parts of «(n). Given
j(=1or 2) let f(t)=1, t(t) = X, cn(1+a,(n))/n. Then for 0 <w <1

-2}

F(w) = 3 (14a,(n))/ne+

nel
W = Lot + 3 o r)fne
= o+0(w )
where 0 < ¢ < 1—%#p, due to lemma 4, since
L, () = 0(°).
Lemma 6 is applicable with « = Zp-+¢ < 1. We have

3 (1+a,(n))/n = f:dt(t) — 2+0(/log ).

nse¥®
But 3., 1/n =logy+0(1) and so
(2) S «;(n)/n = O(log y/loglog ¥).
n<y
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As before we can drop the subscript § and include the term with » =y
if it exists. Thus we can apply lemma 3(a) with

L,(x) = log z[loglog 2
by (2) and
Ly(z) = max [L(z), nflog(a+1)

by lemma 2, where # = 0 under (H3a), # = 1 under (H3b). Since
f: (¢ log £)tdt = loglog z = O(log =/loglog z)

we have conclusion Cl1.

6. A generalization

Now suppose in place of hypothesis (H2) we have
(H2, «) ja(n)] = n*

where x > —1. Then we can derive from the prime number theorem that

(1) Spr~U, () = fm (¢*log t)dt ~ x*t1[(xk+-1) log .
ps 2

Thus suppose

(H3, «) 3 a(p) = p i (2) +0lz L (z)log 2]

where L(x) is slowly varying and decreasing to 0. Then we readily find
by partial summation that

(2) S «(p)/p* = p li 2+ OfwL () flog =)

psz

and thus if p 5% 1 a(n)/n* satisfies the hypotheses of theorem 1. Hence
> a(n)/n* = OfzL*(z)/log z]+O[pzfloglog z].

ngz
By partial summation, we easily find 3, ., «(») in terms of this last sum

and we have

THEOREM 3. Under hypotheses (H1), (H2, ) and (H3, k), if « > —1
and p # 1, then as z — o

> «(n) = O[z~+ L*(z)/[log x]+O0[pz*+'/loglog =].

n<az

Similarly we have
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THEOREM 4. Under hypotheses (H1), (H2, «), (H3, «) and (H4) if
k> —1 and p#~ 1 then as x - ©

> a(n) = O[x**+! logP~! 2L, (log x)]+O[x~+/log =].

nsax

7. Remarks on applications

In Delange’s paper one can find applications of his theorem to several
general classes of arithmetic functions. If we insert error terms into his
hypotheses we easily derive results similar to his but with error terms.

For example, let g(n) be an additive integer-valued function and let
& be a set of natural numbers whose characteristic function y, is multi-
plicative. Suppose &/ has density D > 0, in fact suppose

(1) 2 Xu(n) = Da+0[zL,(z)]

nsx

where L,(z) is slowly varying and o(1). Suppose for 0 < 6§ < 2x there
is a p 1 with

2 D X (P)e®) = p i x4 OfzL (z)/log x].

PSS

Then for 0 =7 < ¢, we have

®) 3 1 = Dajg+0[sLy(z)]
ne—d
g(n) = r(mod ¢)

with
L,(x) = max [L,(z), L*(z)/log z, 1/loglog z].
This results from the fact that the sum in (3) is equal to

5 SexpiZ tat ).

ne o

1
(4) 7

j=

By taking 6 = 2xidj/g in (2) for 1 <j < ¢—1 and multiplying by
exp {—0r}, theorem 1 gives

®) Sratesp (127 15 —rl) = OBLyte))

The term in (4) with 7 = 0 is equal to 1/g times the left hand side of (1).
Thus we have (3).
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[Added in proof: 18 March 1965]. Professor Delange has improved
Theorem 1 in the following two ways. First he observes that L(x) need not
be slowly varying. It suffices that L(x} be non-increasing. Second he replaces
the term Ofpz/log log ] in (C1) by

o [px log? 'z j L*@)/(¢ log"’”t)dt].
2

Delange’s original theorem [ 1] is now a special case of this improved theorem.
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