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1. Introduction

Let a.(n) be a multiplicative arithmetic function. H. Delange [1] has
proved that if |a(»)[ 52 1 for all n and for a certain constant p,
2»sx K(£) ~p#/loga; asx-+ao, where if p = 1 then^(l—tftct.{p))lp — + °o,
then 2»s»! a(w) = °(z) a s x "*" °°- He applied this result to several problems
such as uniform distribution (mod 1) of certain types of sequences.

The present author found that the error term in Delange's main lemma
can be improved from o(x) to 0(a/log a:). Delange suggested that we find
a O-theorem analogous to his o-theorem above. This paper presents such
a result.

In the text, the letter p ranges over the primes while m and n range
over the positive integers.

p\\n means p\n but p* \ n.
K, Klt K2, • • • are positive absolute constants.
0i 0i > ̂ 2 > ' ' ' a r e numbers with modulus ^ 1 which depend on s,
cu or x, where s = eo+1, 0 < <w < 1 and x > 1.

(1) li x == f (I/log 0* .

(2) il (*) = 2 «(»). *(*) = *«(*) = I «W-

(3) *(*)=#.(*)= 2 atf) log #.

L, Lx, L2 and L3 are slowly varying functions in the sense of J. Karamata
[3] (also called slowly oscillating; see [4]); i.e., functions on [x0, oo) for some
x0 > 0 which are positive-valued and continuous and satisfy

(4) \imL(cx)jL(x) = 1
x-»oo

for every c > 0. Such a function is characterized as asymptotically propor-
tional to a function of the form

(5) L(z) = expj't-1d(t)it
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[2] A theorem in asymptotic number theory 197

where d is bounded and measurable and

lim<5(a;) = 0.

For a slowly varying function L we define

(6) £*(*)= / ' u-^L [u)du, £.» (*) = exp K j " t^L (e')dt

where K is a suitable positive constant.

With the aid of l'Hospital's rule we have

(7) L*(z) is slowly varying.

(8) L(x)=o[L*(x)]

as x -> oo, and for K > 0

(9) J" W-^L {u)du ~ xKL (X)IK

as x -*• oo.
If L(x) -> 0 then L* is slowly varying by (5).
Note that products, powers and quotients of slowly varying functions

are slowly varying. If L and M are slowly varying and M is non-decreasing
with M(x) ^ x0 eventually, then L(M(x)) is slowly varying. Log x is
slowly varying and so is exp log" a; if — 1 < a < 1.

2. The theorems

Consider the hypotheses

(HI) a(«) is multiplicative.
(H2) For all n ^ 1, |a(»)| < 1.
(H3) For a certain constant p ̂  1 either

(a) *.(*) = J *<p) = /»K *+O[a;L(x)/log *]

or
(b) 0a{x) = /.x/log a;+0[a;2:(a;)/log as],

where L is a monotonic slowly varying function and

L(x) ->0
as x -*• oo.

(H4) For a certain real ft all values of a(«) lie in the right angle region
P =̂ arg z ^ ^+TT/2 ze/M rerfea; a< the origin.

THEOREM 1. Under hypotheses (HI), (H2) and (H3a or b) «>e A«»« /or
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198 Jack P. Tull [3]

(Cl) 2 «(•») = O[ZL* (z)/log *] +0[pxll0g log *] .

THEOREM 2. Under hypotheses (HI), (H2), H3a or b) and (H4), for
x ^ e

(C2) 2 «(») = O(* (log*)<-i£

Ae i£ t» L* is not greater than the O-constant in (H3) [see (1.6)).

3. The Lemmas

Lemma 1 is our improvement of Delange's main lemma.

LEMMA 1. / / a(n) is bounded and multiplicative then as x -> oo

(1) ^ «(«) = (l/log x) 2 x(n)&a(x/n) +O(a;/log *).

is defined in (1.3).

PROOF OF LEMMA 1. Using both hypotheses we have

2 *{m)&a{x{m) = 21 *(»lP)*(j>) ^ g p

= 2 «(») log w - 2 «(«
n ^ x n ^ x

where #(») = Iljiiin^- In particular, if oc(») = 1 identically

and (2) says

2 #(*/») = 2 log « -

Hence, since

where

we have

«(«) log [»/*(«)] | ^ Xj 2 log [*»/?(»)]

-Ki 2 *(*

= 0(x).
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Substituting in (2) we have

(3) 2 <*(»)*„(*/») = J «(») log n+O(x).
n ^x n ^x

Now if A(x) = 2ns* a(w) t n e n

4 (a) log x— J «(«) log « = 2 «(«) log (*/»)

= 2 «(») {"t'Ut = f Y M (*)<« = 0(3!)

since a(«) is bounded. Hence by (3)

2 a(»)0B(*/«) = 4(*) log «+0(«),
n gx

which is equivalent to (1).

LEMMA 2. (a) Hypothesis (H3a) implies that for x 2; 2

(b) Hypothesis (H3b) implies for x ^ 2

PROOF. Let & = &x, 0 = &a. Then as in (4) we have

(5) &(x) = <Z>(x) log a;- J* trHp(t)dt.

Hypothesis (H3a) gives

= p JV 1 /»t dt+O [J* (L(0/log 0*] •

Substitute # < = J| log"1 udu and invert the order of integration and apply
(1.9) with K = 1 to the error term to yield

(6) J* t~10(t)dt = plix log x—px+O[xL (x) /log ar].

(6) combined with (5) and (H3a) yields lemma 2(a).
Under hypothesis (H3b)

(7) j*t~i0(t)dt = p Ux+O[j* (L(0/log 0*]

= O[a;/loga:]+0[x£(a;)/loga;].

Combine (7), (5) and (H3b) to yield lemma 2(b).

LEMMA 3. Suppose Lx is slowly varying, x(n) is bounded and multiplicative
and as x -*• oo
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(8) 2 «(»)/» =

Then we have the following.

(a) If Lz is slowly varying and decreasing and

(9) &a(x) = px+O[xL2{x)]

as x -> oo, then as x ->• oo

(10) 2«(*)

z) = max [pL^x), Lj(ar)].

/ / p = 0 *Aew (10) /o#ote« without (8).
(b) 1/ a# values of «(«) /«<? *» a rigAf a»g/e region § sS arg2 <i /S+Jr/
as x -> oo

PROOF. By (9) and the boundedness of <x(w)

by (8) and by approximating the sum in the O-term by an integral. Sub-
stitution into lemma 1 yields (10) since L* is increasing. If p = 0 then (8)
is irrelevant. In this case theorem 1 follows immediately with the aid of
lemma 2(a).

Now if for all n, 0 ^ arg a(») ^ P+n/2, let ax(n) = 3t[e-*'x(n)] and
a.2(n) = J[e-ifia.(n)~\ so that for ; = 1 or 2 and all n ^ 1, a,(n) ^ 0 and

Hence since «?(#) = O(x) then

2«i(»)*(*/») =
Thus

2 a(»)#(*/»)
nfia;

By lemma 1 this completes the proof of lemma 3.

LEMMA 4. Under hypotheses (HI), (H2) and (H3a or b) for 0 < a> < 1

fx) = expK Jf r1!(e«)*, i? being the O-constant in (HZ).
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We remark that p is a complex number and due to the prime number
theorem since |<x(w)| ^ 1 we have |p| ^ 1. Since p ^ l then 01 p < 1. In
a O-term involving a complex valued function we always take the absolute
value. Thus /(«) = 0{m-") means |/(<w)| ^K2<o-*p.

PROOF OF LEMMA 4. As in [1] § 4.2.5 we have for Ms > 1

(11) 1 «(n)/»» = g(s)£(s) exp [ - 2 ( ! -

where g(s) is bounded in the neighborhood of 1. In fact g(s) is analytic
for Sts > log 2/log 3.

By the simplest 0-type prime number theorem

n(x) = lix+O(zllog*z) = xjlogx+Oixjlog^x).

Let B(x) =n(x)—®(x). Then (H3a) implies

(12) B(x) = (1-/>)/» x+K01xL(x)/log x+0[a:/log2 *]

and (H3b) implies

(13) B(x) = (l-P)x/log x+K0txL(x)/]oS x+O^/log2 *] .

Under (12), if s = w+1 > 1, by partial summation

(14) X il-*U>))lP' = « f ° V - ^ ( u j i u
p J2

(15) = ( l -p)s f °°u—1 It udu+sK03 f °° ( £ ( «

since J~ «~* log"3 M̂ M ^ J~ « - 1 log~2 «i« < +oo. In the first term in
(15) substitute li u = Jj (I/log £)<& and invert the order of integration.
For the second term since L is non-increasing and o(l)

(16) j " / a {L(u)IW*+l log u)du ^

and

f'"" {L(u)lu«+ilogM)^M ^ feI/<° (L(«)/«log«)i« =

We are led to

2 (!-«(*))/#• = (i-p) f
(17) * J

+K6iL'
Similarly (13) leads to (17) and so (17) is valid under either (H3a)

or (H3b).

https://doi.org/10.1017/S1446788700026768 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026768


202 Jack P. Tull [7]

Now substituting e* for t

(18) J2°° {t-'/log t)dt = j^t^e^dt+Oil).

By integrating e~uz\z over the contour made up of the real interval
[I, R], the quarter circle |z| = R from R to t\R, the straight segment from
iR to i and the quarter circle \z\ = 1 from i to 1 and letting R -H>- oo we
find that

(19) j™t-1e-atdt = - log w+0(l) for 0 < w < 1.

Thus by (17), (18) and (19) for 0 < w < 1

We remark that we can also derive

2(l-
(21) j>

uniformly for 0 < co < 1, —K3w ^ T ̂  K3co.
Since f(co+l) ~ 1/w as <w->0 then (11) and (20) lead us to the

conclusion of lemma 4.

LEMMA 5. If f(t) ^ 0 and r(i) is non-decreasing for t ^ 0 a»rf */

FH = JJV
converges for co > 0, tfAew for x > 0

PROOF. For 0-£t^,x, ex-lix ^ 1 and so

The following lemma 6 was proved by G. Freud [2] using polynomial
approximations. It is a Tauberian theorem with error term.

LEMMA 6. Under the hypotheses of lemma 5 *'/ #c < 1 and

F{co) = a>

as co -*• 0+, Âe« as a; -^- oo

j*f(t)dr(t)=x+O{xllogx).
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4. Proof of theorem 2

Suppose for all n, /? ^ arg a(») ^ /S+rc/2 and let OĈ M) = «[«-"«(»)],
o^w) = y[e-^a.(n)] so that a,(») ^ 0 (j = 1, 2). Given / let /(*) = 1,
t(t) — 2n<«« ai(M)/M- Then lemma 5 applies and

n<e*

n i l n = l

by lemma 4. Since <X(M) = eiP[a.x(n)-\-icf.i{n)~\ upon substituting log a; for
x in (1)

(2) 2 «(»)/» = 0[log' * I * (log «)]

since |«(«)/»| ^ l/» < I/log « ^ (log »)a".
We can now apply lemma 3(b) with

and we have conclusion C2.

5. Proof of theorem 1

Let ax(») and a2(w) denote the real and imaginary parts of a(w). Given
/ (= 1 or 2) let f(t) = 1, x{t) = 2»<^(1+a/(n)) /w- T h e n f o r 0 < w < 1

(i)

where 0 < e < l—0lp, due to lemma 4, since

n - 1

Lemma 6 is applicable with K = @p+e < 1. We have

2 (l+a,(*))/» = f"it(O = a;+0(a;/loga;).
sfif" Jo

»<» l/n = Iogy+O(l) and so

(2) 2 «*(*)/« = O(Iog «//loglog y).
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As before we can drop the subscript ; and include the term with n = y
if it exists. Thus we can apply lemma 3 (a) with

Lt(x) = log a;/loglog x
by (2) and

L2(x) = max [L(x

by lemma 2, where r\ = 0 under (H3a), TJ = 1 under (H3b). Since

| (t log t)~xdt = loglog x = 0(log a;/loglog a;)

we have conclusion Cl.

6. A generalization

Now suppose in place of hypothesis (H2) we have

(H2, K) | a (» ) |g«*

where K > — 1. Then we can derive from the prime number theorem that

r ~««(*)=r
Thus suppose

(H3, K) 2 «tf) = /» K (x)+0[xK+lL(x)llog x]

where £(#) is slowly varying and decreasing to 0. Then we readily find
by partial summation that

(2) 2 *{p)lp< = P li x+O[xL(a;)/log x]

and thus if p ^ 1 a.{n)jnK satisfies the hypotheses of theorem 1. Hence

2 a{n)ln' = 0 [at* (a?) /log *]+0[>c/loglog * ] .

By partial summation, we easily find 2n£ita(w) m terms of this last sum
and we have

THEOREM 3. Under hypotheses (HI), (H2, K) and (H3, K), if K > — 1
and p =£ 1, £fee» as a; -»• oo

2o(») = O[«'+1L*(!r)/logar]+O[/»«lf+1Aogloga!].

Similarly we have
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THEOREM 4. Under hypotheses (HI), (H2, *), (H3, K) and (H4) if
K > — 1 and p ^ l then as x -> oo

Ja (» ) = O^+J log''-1 asZ

7. Remarks on applications

In Delange's paper one can find applications of his theorem to several
general classes of arithmetic functions. If we insert error terms into his
hypotheses we easily derive results similar to his but with error terms.

For example, let g(n) be an additive integer-valued function and let
s/ be a set of natural numbers whose characteristic function %^ is multi-
plicative. Suppose si has density D > 0, in fact suppose

where Lt(x) is slowly varying and o(l). Suppose for 0 < 0 < 2at there
is a p ^ 1 with

(2) 2 x*(PWm = P H *+0[xL(*)/log as].

Then for 0 ^ r < q, we have

(3) 2 1 = Dxlq+0[xL2(x)]

n%x

ff(«) = r(mod c)

with
L2(x) = max [L^x), L*(x)/logx, 1/loglogx].

This results from the fact that the sum in (3) is equal to

(4) - f 2
q 3=0

By taking 8 = 2mj/q in (2) for 1 ^ / ^ g-— 1 and multiplying by
exp {—Or}, theorem 1 gives

(5) 2 XA») ^ P [i — fe(») - r ] ] = O[asL,(x)].

The term in (4) with / = 0 is equal to l/q times the left hand side of (1).
Thus we have (3).
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[Added in proof: 18 March 1965]. Professor Delange has improved
Theorem 1 in the following two ways. First he observes that L(x) need not
be slowly varying. It suffices thatZ(a;) be non-increasing. Second he replaces
the term O[pa;/log log x] in (Cl) by

0 ipx log"-1* r L*(t)l(t log*"* H)dt\.

Delange's original theorem [ 1] is now a special case of this improved theorem.
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