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Abstract. Let V be n-dimensional complex vector space. The aim of this paper is to give an
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Introduction

In their paper [K-S3], M. Kashiwara and P. Schapira make the Laplace transform
act on the tempered cohomology associated with conic R-constructible sheaves,
and obtain an inversion formula. More precisely, the Laplace transform on an
n-dimensional complex vector space V (or more generally a complex vector bundle)
is formally defined by the formula

FE -7 = / £ exp((z D)z, ©.1)

where (z) denotes the complex coordinates on V and ({) the dual coordinates on V*.
In order to describe this formula in the framework of algebraic D-modules, the
authors consider the projective compactification j: V<>P and set, for F a
R-constructible, and R*-conic sheaf on V,

THom(F, Oy) = RI'(P; THom(jF, Op)),

where THom(-, O) denotes the functor of moderate cohomology introduced in [K2].
Then, they obtain in particular the following Laplace isomorphism

THom(F, Oy) < THom(F"[n], Oy-),

where F” denotes the Fourier-Sato transform of F.

As an application, they define the conic sheaf Of of tempered holomorphic
functions (tempered at zero and at infinity) associated with the conic presheaf
Ui— THom(Cy, Oy) and show it is invariant by Laplace transform. In fact, the
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Laplace kernel quantizes the Fourier-Sato transform, giving an isomorphism of
conic sheaves

(O4) " [n] = .. 02)

Moreover, this isomorphism is linear over the Weyl algebra D(V) (via the Fourier
isomorphism D(V) ~ D(V*)).

Their proof is rather intricate and is based on the theory of algebraic D-modules.
The aim of this paper is to give an elementary proof of the isomorphism (0.2). Our
proof is based on the observation that isomorphism (0.2) is well known when applied
to convex tubes (see e.g. Faraut [F]). More precisely, let V' be a n-dimensional real
vector space, V = C ®g V its complexification and 4 be a subanalytic proper convex
closed cone in V. One has the isomorphism of conic presheaves

C(S(V) = 0"4(Inti° + iV*), (0.3)

where I';(S'(V)) is the space of tempered distributions supported by 4 and
O™4(Int)° +iV*) is the space of holomorphic functions on the dual tube
IntA° 4 iV with growth conditions along the boundary of the tube and at infinity.

We recall the definition of the conic sheaf Db!, of [K-S3]. The sections of the
Fourier-Sato transform (Db%,)" on a subanalytic convex open cone of V* are
the tempered distributions on ¥ supported by the polar cone.

We define the conic sheaf OF, associated with the conic presheaf y i— O"(y 4 iV).
From (0.3), we obtain an isomorphism of conic sheaves (Db/,)" = OY.. The general
case may be deduced from this situation, using basic tools of sheaf and D-module
theory.

As an application, we recover a theorem of Brylinski-Malgrange—Verdier and
Kashiwara—Hotta on the solutions of monodromic holonomic D-modules: if N
is a monodromic D(V)-module and N” its Fourier transform, then there exists
an isomorphism of conic sheaves

RHOWZD(V)(N, O\y)/\[l’l] ~ RHOWZD(V*)(NA, OV*)-
As another application, we construct the complex of tempered hyperfunctions
B, = RHom(Cy[—n], O%),

whose global sections are invariant by Fourier transform.

1. Notations and Review
1.1. NOTATIONS

We refer the reader to [K-S2] for a detailed exposition of sheaf theory within the
framework of derived categories.
On a real analytic manifold X, we shall encounter the objects associated with X

C¥ the sheaf of C* functions.
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Dby the sheaf of Schwartz distributions.

Dy the sheaf of finite order analytic differential operators.

DP(Cy) the bounded derived category of the category of complexes of sheaves of
C-vector spaces.

D%_C(Cx) the full subcategory in DP(Cy) given by objects whose cohomology
groups are R-constructible sheaves.

In particular, we shall use the six Grothendieck’s operations ®, Hom, f;, /', £, f*.
We set D'F = RHom(F, Cy).

1.2. REVIEW ON FORMAL AND MODERATE COHOMOLOGY

The functor of tempered cohomology T"Hom(-, Ox) has been introduced by M.
Kashiwara to solve the Riemann-Hilbert problem in 1983 (see [K2]). In 1995,
M. Kashiwara and P. Schapira introduced a functor dual to WT Hom(-, Oy) in their
paper [K-S1], the functor of formal cohomology denoted by - ® Ox. We recall some
properties of these functors.

Let U be a subanalytic open subset of X and let Z = X \ U be its complement. One
sets

THom(Cy, Dby) = Tz Dby, (1.1)

Cy®C¥ =15, (1.2)

where I'zDby denotes the sheaf of distributions with support in Z and Z¥ , denotes
the subsheaf of C¥ consisting of functions which Vanishwon Z up to infinite order.
One defines the sheaves THom(Cy, Dby) and Cz ® C§ by the short exact

sequences
0— rzpbx — Db}( — THOWZ(CU, Db}() — 0, (13)
0>1IF, > C¥— CrCY 0. (1.4)

Now one states Lojasiewicz’s Theorem:

THEOREM 1.1 (Lojasiewicz [Lo]). Let U; (i = 1, 2) be two subanalytic open subsets
of X, Zi:= X\ U;. Then the two sequences below are exact

0— I}OaZlUZZ - I§(O,Z| 691-}0,22 - Igfo,zlﬂzz — 0,
0— FZIHZZDbX — FZIDbX (&) FZZDbX — FZIUZZDbX — 0.

By this result, the functors of Whitney and Schwartz satisfy a kind of Mayer—
Vietoris property, and an abstract result of [K-S1] allows one to extend these
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functors as exact functors on the category of R-constructible sheaves:

. % CY:R—cons(X) - Mod(Dy),
THom(-, Dby): (R—cons(X))’’” — Mod(Dy).

Moreover, given an R-constructible sheaf F, the sheaves F ® CY and
THom(F,Dby) are soft. These functors being exact, they extend as functors on
the derived categories, from Dfl’;gfc(C ¥) to D°(Dy).

From now on, we consider a complex analytic manifold X, of complex dimension
dy, endowed with its structural sheaf Oy. One denotes by Q(}(’) the sheaf of
holomorphic p-forms, we also write Qy instead of Q()?"). We shall denote by X
the real underlying analytic manifold to X and by X the complex conjugate manifold
to X. By its definition, X is the topological space Xr endowed with the sheaf O of
anti-holomorphic functions on X. Then X x X is a complexification of Xy by
the diagonal embedding Xr<>X x X. Notice that Dy and Dy are two subrings
of Dy, and if P € Dy, Q € Dy then [P, 0] = 0.

For F € DbR_C(CX), one sets

F ® Oy = RHomp_(O3. F ® C¥.), (1.5)

THom(F, Ox) = RHomp._(Og, THom(F, Dby,)). (1.6)

The functors - (%) Oy and THom(-, Oy) are called the functor of formal co‘lvlomology
and the functor of moderate cohomology, respectively. The objects F ® Oy and
THom(F, Ox) belong to D°(Dy).

There are natural morphisms

F®Oy — F® Oy — THom(D'yF, Ox) — RHom(D,F, Oy).
If G is a locally free Oy-module of finite rank, one sets

F®G=(F® Ox)®o, G,

THom(F, G) = THom(F, Ox) ®o, G.

When X is a complexification of a real analytic manifold M, C,, é) Oy is nothing but
the sheaf C3; and T"Hom(D'y Cys, Ox) is the sheaf Dby,. If Y is a closed complex
analytic subset of X, Cy é Oy = OXTy, the formal completion of Oy along Y
(in particular, Cy %) Oy is concentrated in degree 0) and THom(Cy, Oy) =
RIy1(Oyx), the algebraic cohomology of Oy with support in Y.

1.3. FOURIER-SATO TRANSFORM AND CONIC SHEAVES

Let : E — M be a real vector bundle, of rank n, endowed with an action of R* the
multiplicative group of positive numbers. One denotes by D%+(CE) the full sub-
category of DP(Cy) consisting of objects F such that H/(F) is locally constant
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on the R™-orbits for all j. An object of D%+(CE) is called a conic object. One then sets
DY _(Cp) = DY (Cp) NDY_(Cp).

Let n: E* — M be the dual vector bundle. Denote by p; and p; the first and second
projection defined on E x,; E*, and set

P={(x,y) € Exy E*; (x,)) =
P ={(x,y) € E xy E*; (x,y) <O0}.

Consider the diagram

Exy B*
/ K
M
DEFINITION 1.2. Let F € D%+(CE), Ge DbR+(CE*). One sets:

F" = Rpay(p7' F)p., (1.7)

G' = Rp1,(p5G)p. (1.8)
Let us recall the main result of this theory:

THEOREM 1.3. The functors " from D%+(CE) to Dg’V(CE»«) and” from DE{*(CE*) to
DEN(CE) are equivalences of categories, inverse to each other. In particular, if Fi and
F> belong to DF[’V(CE)’ then

RHom(F), F>) ~ RHom(F[", F}"). (1.9)

Let us summarize some properties and examples of the Fourier-Sato trans-
formation.

(1) Let A be a closed proper convex cone in E with M C 4. We denote by
A° ={y € E*; (x,y) = 0 for all x € 1} the polar cone to 4 and IntA° its interior. Then
one gets

(C)" = Crae. (1.10)

(i1) Let y be an open convex cone in E. We denote by y* = —y the opposite cone. We
denote by org-,y the relative orientation sheaf of E* over M. Then one has

(C«/‘)A >~ Cyoa 2 OI'E*/M[—}’Z]. (1 1 1)
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(i) Let U be a convex open subset of E*. Then one obtain
RI(U; F") ~ RT - (E; F). (1.12)

One of the functorial properties of the Fourier—Sato transform is that it commutes to
base change. More precisely, consider a morphism of manifolds f: N — M and the
associated morphisms of vector bundles

f*E —>ﬁ E f*E —>f" E*
R
N L> M N L> M

Then, for F € D%J(CE) and G € D%+(Cf*E)’ there are natural isomorphisms
(7 P ~ [N, (1.13)

(Rf+,G)" =~ Rfz(G"). (1.14)

1.4. THE WEYL ALGEBRA

Let V be a n-dimensional complex vector space.

We denote by D(V) the Weyl algebra on V (i.e. the ring of differential operators
with polynomial coefficients on V). Note that D(V)=TI(V; Dy), where Dy is
the sheaf of algebraic differential operators on the algebraic variety V. There exists
a correspondence between the category Mod,(D(V)) of finitely generated
D(V)-modules and the category Mod..;(Dy) of coherent Dy-modules.

We can consider the Fourier isomorphism A: D(V) > D(V™), and its inverse
v:D(V*) — D(V).

Let (z1,...,zy)and ({4, ..., {,) be dual systems of linear coordinates on V and V*.
Recall that the Fourier transform is defined by

Ao D LA
(z)" = ot (E)Zi) ={;.

Naturally, its inverse is defined by

3\’ ‘
Zi (3_51) -

v_ 0
@) =5

These are Fourier ‘inverse’ transforms.
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1.5. THE CONIC SHEAF OF TEMPERED HOLOMORPHIC FUNCTIONS

Let V be a n-dimensional complex vector space and Vx the real underlying vector
space. If there is no risk of confusion, we write V instead of V. Let 7y be a convex
open cone in V.

DEFINITION 1.4. We denote by ©0"“(y) the space of holomorphic functions f in
the cone y which satisfy the following property: there exist M, «, and f = 0 such
that

@) < MO+ 12)%(1+d(z, VA ),

where d(z, V \ y) is the distance from z to V \ y (for some euclidean structure on
Vr).

Let j: VP denote the projective compactification of V. For F € D%_C(Cy), one
sets

THom(F, Dby) = RT'(P; THom(j,F, Dbp)),
THom(F, Oy) = RI'(P; THom(jF, Op)).

In particular, if A is a subanalytic convex closed cone in V, we have
THom(C;, Dby) = I';(S'(V)),

where I';(S'(V)) is the space of tempered distributions supported by A.
Note that the functor of moderate cohomology THom(F, Oy) belongs to
D*(D(V)), for F € D%_(Cy).

LEMMA 1.5. Let y be a subanalytic convex open cone in V. Then
0" (y) ~ THom(C,, Ov).

Proof. The sections of @"(y) are holomorphic functions which are tempered
along the boundary of the cone y and at infinity. Moreover, if f € @"°/(y) then
all its derivations are also tempered (see [Siu]).

On the other hand, the complex THom(iC,, Op) can also be calculated by the
Dolbeault complex of THom(j;C,,C¥) (see [K-S1]). Let us recall that a section
of T'(U; THom(;C,,C%)), for an open subset U C P, is a C* function on
U Nj(y) which is tempered on U (all its derivations are with polynomial growth
on U N j(y)). O

We shall consider conic sheaves associated with conic presheaves. Let us give their
constructions.

LEMMA 1.6 (see [K-S3]). Let T be a family of open cones satisfying: for eachz € V,
and each open conic neighborhood vy of z, there exists v € T with z €y C .
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Let G be a presheaf of C-vector spaces on T. The classical construct of a sheaf
associated with a presheaf gives a conic sheaf G and a morphism of presheaves
0: G — G such that any morphism G — F with a conic sheaf F factorizes through 0:

G —— _F
|~
0 //

g~

Moreover, we have G. — G for all z € V.

We can now introduce the conic sheaf of tempered holomorphic functions.

DEFINITION 1.7. We denote by Of, the conic sheaf associated with the conic
presheaf Ui—>"°Y(U), for U a subanalytic convex open cone in V.

The conic sheaf Db, of [K-S3].
Let V' be a n-dimensional real vector space, and j: <P its projective com-
pactification. Let us recall the definition of the conic sheaf Db’, introduced in [K-S3].

DEFINITION 1.8. One denotes by Db, the conic sheaf associated with the conic
presheaf

U|—>THom((GU, DbV) = RF(P, THom(j!CU, Dbp)),
for U a subanalytic open cone in V.

The main properties of this sheaf are the following.
PROPOSITION 1.9. (i) The conic sheaf Db, is conically soft (i.e. its direct image on
V/RY is flabby), and in particular
H/(U; Db',) = 0 for all j # 0 and U open cone.
(it) Dbi, is a D(V)-module.
(iii) RI(V; Db',) ~ THom(Cy, Dby).

(IV) RF{())(V; 'DblV) ~ THOI’Il((G(O}, DbV)
(v) For any cone U, one has in the category of vector spaces

T(U; b)) = lim T(U’; DbY)),

where the projective limit is taken over the subanalytic open cones U’ such that
U c UU{0).
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The link with the conic sheaf Oiv of [K-S3]

We have a natural description of the conic sheaf Of by taking the Dolbeault res-
olution of the conic sheaf DbiVR.

LEMMA 1.10. O}, = RHomD@(O(V), Db, ).
Proof. By Lemma 1.5, O is the conic sheaf associated with the presheaf
U—THom(Cy, Oy),

for U a subanalytic convex open cone in V. O

Thanks to the preceding lemma, we obtain the same conic sheaf of tempered
holomorphic functions which has been introduced in [K-S3]. Let us remark that
the sections of O, are tempered at zero and at infinity and

RI(V; O) ~ THom(Cy, Oy) ~ C[V], (1.15)

RF{O}(V; Og\v) ~ THom(C{o}, OV) =~ C[V*][—I’l] (116)

2. The Laplace Transform
2.1. REAL FRAMEWORK

Let V' be a n-dimensional real vector space and V = C ®g V its complexification.

DEFINITION 2.1. We denote by O}, the conic sheaf on V associated with the
presheaf y1—> O"°(y + iV), for y a subanalytic convex open cone in V.

Let us remark that the sections of ©"/(y + iV’) are tempered along the boundary
of the tube y+ iV C V and at infinity, while sections of O} are only tempered
at infinity and along iV.

We can now recall the well-known result which describes the isomorphism
between the tempered distributions supported by a convex closed cone / and tem-
pered holomorphic functions in the dual tube.

THEOREM 2.2 (see [F]). Let 4 be a subanalytic proper convex closed cone in V. The
Laplace transform induces an isomorphism between the spaces T';(S'(V)) and
O Int)° + iV*).

In order to obtain Theorem 2.5 below, we need a couple of lemma. The following

lemma ensures that the Fourier transform of the sheaf Db/, is concentrated in degree
0.

LEMMA 2.3. The complex (Db',)" € D%+ (Cy) is concentrated in degree 0.
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Proof. We have to show that (Hf(Db’V)A)é =0 forallj#0and & € V*.
By definition, (H/(Db!,)"); = lim H/(U; (Db',)"), where U ranges over the family

of subanalytic proper convex conic neighborhood of & in V*.

(1) If £ =0, it is a direct consequence of Proposition 1.9. (iv).
(i) Now, we consider the case where & # 0.

For 4 a subanalytic proper convex closed cone in V, we have
RI,(V; Dbl,) = RHom(C,, Db}))
= RHom(C,", (Db})")

= RHom(Cinize, (Db})")
= RI(Int/°; (Db},)"). _

We shall prove that lim Hﬁ(V; Db',) = 0 for all j # 0, where A ranges over the family

of subanalytic propef convex closed cones of ¥ satisfying Intd® > ¢
Obviously, since the sheaf Db/, is conically soft, the groups H,(V; Db',) vanish for
j > 1. Let us consider the following diagram with exact rows:

I(V:Dby,) —— T(V\2:;Dby) —> H)(V;Db,) —> 0

| | |

I(V:Db})) — T(V\2:Dby) —> HL(V;Db)) —s 0

where 1; C 4, are subanalytic proper convex closed cones of V', with 4, \ {0} C Int4,.
The morphism H ill(V; Dbl,)—H jZ(V; DbY,) is zero. Indeed, for every section
¢ € (V' \ 21; DbY,), there exists a section  eI'(V;Db}) such that
,0(1//)\1/\12 = ¢’\V\/12'
Therefore, we conclude that liin H %(V; Db’,/) =0. O
We need also to describe the sections of the sheaf Db/,.
LEMMA 2.4. Let 1 be a subanalytic proper convex closed cone in V.
[,(V; Dby, = T(Intl°; (Db))").
Proof. If we take the isomorphism (2.1) in degree 0, we obtain
H°RT;(V; Db',) = H'RT(Int.°; (DbY)").

Moreover, the complex (Db!,)" is a sheaf by Lemma 2.3. Then, the result follows. []

Now, we can state the
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THEOREM 2.5. Let us consider the sheaf O as a sheaf of D(V)-modules, via the
Fourier isomorphism D(V) >~ D(V*). The Laplace transform induces an isomorphism
of sheaves of D(V)-modules

(Db!))" ~ O (2.2)

Proof. First, we shall define a morphism of conic sheaves (Db,)" — O..
Let A be a subanalytic proper convex closed cone in V. By Theorem 2.2, the
Laplace transform induces an isomorphism

(S (V) = O™4(Inti° + iV*). (2.3)

By definition, O, is the conic sheaf associated with IntA°i— O (Intl° +iV*)
(indeed, for every subanalytic convex open cone y in V*, there exists a subanalytic
convex closed cone 4 in V such that y = Inti°).

Let us check that the conic sheaf (Db!,)" is associated with IntA° i— I';(S'(V)).
First, we have by Lemma 2.4 I'(IntA°; (Db',)") = I',(V; Db,). Let £ be a vector of
V*. We consider A a family of subanalytic proper convex closed cone A in V
satisfying IntA° > &. We get

lim T5(V; Dbly) = lim T;(S'(V)).
JeA JeA

Then the morphism (2.3) is a morphism of presheaves defined only on a basis of conic
open sets of V* (this basis is given by the family of the open convex proper sub-
analytic cones and the space V*). Thanks to Lemma 1.6, the isomorphism (2.3)
of presheaves defines a morphism between the associated sheaves

(Db} — O, (2.4)
Moreover, we have

limT;(S'(V)) ——  lim O"™(Int2° + iV*)

AEA AEA

¢ ¢

lim ['(Inti°; (Db})") lim ['(IntA%; O.)
LEA rEA

¢ J,Z
(D)"); (©}.);

Then, the morphism (2.4) is an isomorphism in the stalk. We obtain an isomorphism
of conic sheaves between (Db',)" and OF..

The sheaf OY. (resp. Db?,) is naturally endowed with a structure of D(V*)-module
(resp. D(V)-module). Let us verify that the action of D(V*) on (Db!,)" coincides with
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the induced action by OF.. Let ¢ be a section of Db!,. We have

(9" = (3:-9)", ¥, ¢" = (—z.9)".
And the two actions are clearly interchanged by the Laplace transform 0.1 O

COROLLARY 2.6. Let M be a finitely generated D(V x V)-module. Then the
Laplace transform induces an isomorphism

tONA ~~ A 1t
RHomD(VXV)(M, Dby, ) _RHomD(V*XV)(M , \V*R)'

2.2. COMPLEX FRAMEWORK

Now we can give the main result of this paper which is already stated in [K-S3]. In
their paper, M. Kashiwara and P. Schapira establish the Laplace isomorphism
for F e DY+ »_(Cy)

THom(F, Oy) < THom(F"[n], O~),

which is linear over the Weyl algebra D(V). Then, the authors quantize the Fourier—
Sato transform of Of,. Our approach is different since we use the isomorphism (2.2)
(in a real framework on convex tubes) to prove the

THEOREM 2.7. Let N be a finitely generated D(V)-module. The Fourier—Sato trans-
Sform (O\)\[n]is concentrated in degree 0, where nis the dimension of V. Moreover, we
have the D(V)-linear isomorphism induced by the Laplace transform

RHompey(N, OF)" =~ RHomp+(N", O )[—n]. (2.5)

Proof. Applying Corollary 2.6 for the D(V x V)-module M = NKO(V), we
obtain

RHom (NRO(V), Dby )" ~ RHomD(V*XV)((NO(V))A, 0%, ).

D(VxV)

Concerning the left-hand side, we have

RHom s (N O(V), Db;)

= RHompey)(N, RHom i (O(V), Db, )
= RHompe (N, OF).
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As for the right-hand side,
RHom, . <+ (N o, (95\57% )
~ RHom, . xV*)(NA O(V)", {\}%)
~ RHompcy+(N",RHom D(V)(O(V)A , Offv% ))
~ RHompy+(N",RHom o7 By OE{,WR ))

In the last isomorphism, we used the identification

< D(V) ) DY)

e w) T P
B{O}W* denotes the regular holonomic D(V*)-module of holomorphic hyperfunctions
on {0}.

We are reduced to prove the isomorphism
RHom (B, 57 Of{,,j{ ) =~ Of[—n].

We first consider the particular case n = 1. The complex RHom D(V‘)(B{O}
represented by the complex

113 :
‘V* s OV%) 18

Since ({) is clearly injective, we are reduced to prove that Coker ({) = O. Recall
that ({) is the complex coordinate on V* and denote by () the complex conjugate
coordinate on V'. Then V% is the diagonal of V* x V" defined by ¢ = 7.

Let g(¢, n7) be a section of (95\{;7%. Its restriction g({, 1), 1 tempered at zero and at
infinity, and hence we get a map o: Of\t[ — Of. This map is surjective, a right inverse
being given by (81— g({, n) = f({ +n).
For general nLB{O}\V* E isomorR}iic to the negative Koszul complgi associated to
the sequence (-{y,...,-{,) of D(V )-linear endomorphisms of D(V ). Since {; is
injective and {, induces an injective endomorphism of the quotient D(V*)/
(i, ..., {p-1), this complex is exact except in degree zero.

More precisely, let us denote by ey, ..., e, the canonical basis of 7Z” and we set

D(VH® = D(V")® AF77. Then, one has
KDV T, ....0) = (o - D(VHY"— ... DV) — o),
5 5

where

S D(VH® — p(V*k=D
k

1
me e i 1= Z(_l)/ m-Ci @ e i i
J=1 ‘
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And we find

In the particular case where N = D(V), we recover the result of [K-S3].
THEOREM 2.8. (O%)"[n] ~ Of.

These last two theorems allow us to recover a result of Brylinski-Malgrange—
Verdier [B-M-V] and Hotta—Kashiwara [H-K]. This gives the transformation
between the sheaf of solutions of N and that of N”, in the case where N is a
monodromic D(V)-module. Recall that a finitely generated D(V)-module N is
monodromic if dimg C[fJu < oo for any u € N and 6 the Euler vector field on
V. Roughly speaking, a sheaf on V is monodromic if it is locally constant on
the C*-orbits.

COROLLARY 2.9 ([B-M-V], [H-K], [Mal]). Let N be a monodromic D(V)-module.
Then

(1) N” is monodromic.
(i) RHompeyy(N, Ov) is monodromic.
(i) RHompy) (N, OL) = RHompe(N, Oy).
(iv) RHompvy(N, Oy) is a conic sheaf (i.e. belongs to D%J,(CV)).
(v) The Laplace morphism induces an isomorphism

RHOWID(V)(N, OV)A[I/I] =~ RHOWZD(V*)(NA, OV*)

Proof. (i) If u € N and b € C[s] such that 5(0).u = 0 then H(0)" = b(—n — 0") where
0’ is the Euler vector field on V*, and b(—n — 0").u” = 0.

(ii) is obvious.

(iii) Resolving N by modules like D(V)/b(6), one can reduce to the case where N is
like this. By induction, one can suppose that 5(8) = 8 — 4, with /. € C. Then the result
follows.

(iv) Since RHomp)(N, OF) is a conic sheaf.

(v) follows from (iii) and the isomorphism (2.5). O

Remark 2.10 ([B-M-V]). The Riemann—Hilbert correspondence permits to state: if
F € D°(V) such that Rj,F € Dbj_(,(IP’) (where j: V< P), then there exists a complex N
of D(V)-modules with regular holonomic cohomology and RHomp) (N, Ovy) = F.
If moreover F is monodromic, then N is monodromic.

But A exchanges monodromic regular holonomic D(V)-modules with mono-
dromic regular holonomic D(V*)-modules (this statement becomes false if we do
not require the hypothesis of monodromy). Finally, the Fourier—Sato transform
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interchanges monodromic perverse sheaves on V with monodromic perverse sheaves
on V*,

As another consequence of Theorem 2.8, we can give a vanishing theorem for the
sections of OY,. First, we have the obvious lemma.

LEMMA 2.11. Let 7y be a subanalytic open cone in V. Then the groups H'(y; O%)
vanish for j =z n+ 1.

Proof. Naturally, the complex RI'(y; Of) is concentrated in degree > 0.
Moreover, the sheaf Of, admits the following conically soft resolution

0 — Dbl — (Dbl )"V— .. = (Db, ) — 0.
At a [ 8 a A AN
By the I'(y; -)-acyclicity of Db, , we obtain H(y;05)=0Vi>n+1. ]

If, moreover, the cone y is convex, one can use the isomorphism (O%,)"[n] ~ Of to
prove the

PROPOSITION 2.12. Let y be a subanalytic convex open cone in V. Then the complex
RI(y; OF) is concentrated in degree 0 and 1.
Proof. First, the Laplace transform induces the isomorphism

RI(y; O%) >~ RT,-(V*; Of)[n].

On one hand, the complex RI'(y; OF) is naturally concentrated in degree > 0. On the
other hand, the complex RI",-(V*; Of+)[n] is concentrated in degree < 1. Indeed, we
have the exact long sequence

o H'(VH Of) — H'(VE\ 9% Of) — HIF(VS 04) — -
Let us recall that RI(V; OF) ~ C[V]. Then, we obtain the isomorphism
H(V*\ 9% O) > HIY (V* O4.) for j > 0.

By Lemma 2.11, we know that for any U subanalytic open cone in V* the groups
H/(U; O%-) vanish for j>n+1. Then the groups HJ.(V*;O%.) vanish for
J =n+2, and the complex RI,.(V*; Of.) is concentrated in degree <n+1. [J

PROBLEM 2.13. We do not know whether H'(y; O%,) = 0 for a subanalytic convex
open cone 7. More generally, it would be interesting to show that H/(y; Of) =0
for j = n for a subanalytic (not necessarily convex) open cone y. The vanishing
of the group H"(y; O%) is equivalent to the surjectivity of

I(y; (Dbl )" Y) = T (Db ) O™). (2.6)

Following a technique of B. Malgrange [MaZ2], it is enough to show the surjectivity of
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the Laplace operator A

I(y; Db{w) — T'(y; Db\’w).
A

Indeed, let us give w=oadz; A...AdZ, € T'(y; (Db\’h)(o’")). If there exists
B € I'(y; Db, ) such that

4AB=XH: Gl =u

82,-8?,- -

i=1

then the form
o = Xn:(—l)”l%dzl A...dzi. . AdE
2 52, L.dzi .. n

does satisfy 9o = w. But the surjectivity of the morphism (2.6) is an open problem.

3. Fourier Hyperfunctions

We keep the same notations as in the last section.
Recall that Sato’s hyperfunctions on V are defined by

By = RHom(Cy[—n], Oy).
Within our framework, the isomorphism (O%)"[n] ~ O allows us to construct a
complex B, whose global sections are invariant by Fourier transform.
DEFINITION 3.1. We define the complex of tempered hyperfunctions by

B, = RHom(Cy[—n], O%).

PROPOSITION 3.2. The global sections of the complex By, is stable under Fourier
transform. More precisely,

RHom(Cy[—n], ©%) = RHom(C;p+[—n], O%»).

Proof. It is a direct consequence of the Theorem 2.8.
Indeed, we have the following isomorphisms

RHom(Cy[—n], %) ~ RHom(C)[—n], O}")

~ RHom(C;p+[—n], Of»). -

Remark 3.3. We do not know whether the complex B/, is concentrated in degree
zero.

We have only the vanishing of the groups H/RHom(Cy[—n], O) for j > 1.
Indeed, in the proof of Proposition 2.12, we get the following isomorphism for
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any A subanalytic closed cone in V
H(V\ 2 04) ~ HT(V; 04) forj > 0.

Then, we find the vanishing of the groups Hﬁ(V; OY) for j > n+ 1.

In particular, for A=V, we obtain that the complex RHom(Cy[—n], Of) =
RIy(V; OF)[n] is concentrated in degree < 1.

In the article [K], T. Kawai defines the sheaf Oy (resp. O%) of the germ of slowly
increasing holomorphic functions on D" x iR” (resp. rapidly decreasing holo-
morphic functions) where D" is the compactification R” U S";!. Let us remark that
in his framework the growth condition is exponential and not polynomial. Then
the author can define the sheaf R of hyperfunctions associated with Oy by

R(Q) = HH(D" x iR"; Oy),

where Q is open in D",

Naturally, the sheaf R coincides with B (the sheaf of hyperfunctions of M. Sato)
on R”. The duality between R(ID") and O*(ID") and the stability of O*(D") under
the Fourier transform permit to define the Fourier transform of a section u of
R(D™ by

(Fu, ) = (1. F ).

3.1. FOURIER MICROFUNCTIONS
Similarly, we can define a biconic sheaf on V' x V* ~ T}V by
Cyy = phom(Cy[—n], Y~ O),

where y: V — V is the identity map from V, endowed with the usual topology, to V
endowed with the conic topology induced by the projection V — S$>"~! U {0}.
Using the isomorphism [K-S2, Ex. VII.2] and identifying

VX VS VExV
(x, &) = (=& x)
we get the isomorphism of complexes of sheaves on V' x V*
(©)" = Cy. G-D

of which the result of Proposition 3.2 is a particular case.

3.2. FURTHER DEVELOPMENT

In [K-S3], the authors remark that one could construct the biconic sheaf of rings £,
of tempered microdifferential operators on V x V*. This sheaf is invariant by
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Fourier transform. It would be a natural task to develop systematically such a theory
and, in particular, to define the action of &£ on Cj,.
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