ON INDEPENDENT COMPLETE SUBGRAPHS
IN A GRAPH

J. W. MOON

1. Definitions. A graph G = G(n, €) consists of a set of n nodes e pairs
of which are joined by a single edge; we assume that no edge joins a node to
itself. A graph with 2 modes is called a complete k-graph if each pair of its
nodes is joined by an edge. The graphs belonging to some collection of graphs
are independent if no two of them have a node in common. The maximum
number of independent complete k-graphs contained in a given graph G will
be denoted by I(G).

2. Summary. Erdos and Gallai (2) have determined the maximum num-
ber of edges a graph can have in terms of the maximum number of independent
edges it contains. Their proof makes use of the theory of alternating chains. In
§ 3 we give an elementary proof of their theorem that does not require this
theory. Erdés (1) has determined the maximum number of edges a graph
G(n, e) can have when the maximum number of independent complete 3-
graphs it contains is ¢, provided that = > 400¢2. His proof is by induction.
In § 4 we show, by a modification of the argument used in § 3, that Erdos’s
theorem is valid whenever # > 9¢//2 4+ 4. Finally, in §5, we consider the
general problem of determining an upper bound for the number of edges in
a graph in terms of the maximum number of independent complete k-graphs
it contains.

3. The case k£ = 2.

TaeorReEM 1. If 1.(G(n,e)) = h, then

enad () (Y0},

with equality holding only if G(n, e) consists of « complete (2h + 1)-graph and
n — {2k + 1) isolated nodes or if G(n,e) consists of a complete h-graph each
node of which is also joined to each of the remaining n — h nodes.

Proof. Let I denote the set of % independent edges of G = G(n, ¢) and let
N denote the set of # — 2k nodes of G that are not incident with any of the
edges of I. (We may assume that z > 24 and that I and N are not empty
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sets). There are no edges joining two nodes of N to each other, nor are there
edges joining two nodes of N to different ends of an edge in I, for otherwise
I,(G) would exceed k.

The edges of I may be partitioned into two subsets as follows. Let A denote
the set of edges (x, y) of I such that one of the nodes x or y, say v, is joined
to at least two nodes of N; the nodes x, then, cannot be joined to any nodes
of N. Let B denote the set of the remaining edges (u#, v) of I; there can exist,
then, at most one node of N that is joined to # or v or both. We shall denote
the number of edges in 4 and B by ¢ and b, where ¢ + b= 1.

The following assertions are consequences of the definitions of 4, B, and
N and the fact that I;(G) = k.

(1) If (x1, y1) and (xs, y2) are two edges of the set 4, then x; and x, are
not joined to each other. Hence, the number of edges joining ends of edges
of A to each other or to nodes of N is at most

(2) - () +ot—om.

(i1) If (x1, v1) and (x2, ¥2) are two edges of 4, then x; and x; cannot be
joined to different ends of an edge (u, 2) of B. Furthermore, if the node u is
joined to the node x,, say, then the node v cannot be joined to any node of
N. This implies that the number of edges joining ends of edges of B to any
other nodes is certainly no more than

<2()b> + (2b)a + ba + 2b.

Since every edge of G is of one of the types considered in (i) and (ii), it

follows that
2 2
< <;‘> - <‘§> -+ (;) + a(n — 2h) + 3ab + 2b

N

{

AN

2
<J‘; 1) T oa(n — 23 — 13)

- @ it —h) = (b = a)(n — 25k — 13).

The last two expressions attain their maximum value when a = 0 or #,
depending on the sign of » — 234k — 13. If equality holds when ¢ = 0, then
the ends of the edges of B = I determine a complete 2k-graph; a simple
argument shows that all the nodes of this graph are joined to the same node
of N. In this case, therefore, the graph G(#, e) consists of a complete (2k + 1)-
graph and # — (2& + 1) isolated nodes. If equality holds when a = k, then
each node y belonging to an edge (x,y) of A = I is joined to every other
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node of the graph. In this case the graph G(u, ¢) consists of a complete k-
graph each node of which is joined to each of the remaining # — & nodes. This
suffices to complete the proof of the theorem.

We note a related theorem which has appeared in Fulkerson and Shapley
(4) and Erdss and Posa (3); it follows almost immediately from the observa-
tions at the end of the first paragraph of the proof of Theorem 1.

THEOREM 2. If each node of the graph G is joined to at least t other nodes,
then I5(G) > min{t, [3n]}, where n denotes the number of nodes of G.

4, The case k = 3. Let R and .S denote two disjoint sets containing #
and s nodes, respectively. If each node of R is joined to each node of S, then
the resulting configuration is called a complete r by s bipartite graph. A special
case of a theorem due to Turan (5) states that if I3(G(n,e)) = 0, then
e < [:in?] with equality holding if and only if G(n, ) is a complete [L1n] by
[3(n 4+ 1)] bipartite graph.

Lemva. If 1.,(G(n,e)) = h and I,(G(n,e)) = 0, then e < h(n — k), with
equality holding only if G(n, e) is a complete b by (n — k) bipartite graph.

Proof. Let I and N have the same meaning as before. No node of N can
be joined to both ends of an edge of I and no two nodes of N are joined to
each other. Hence, the number of edges incident with nodes of V is at most
h(n — 2h). Furthermore, according to Tur4n’s theorem, there are at most A2
edges joining ends of the edges of I to each other. Therefore,

e< h(n — 2h) + h? = h(n — h),

with equality holding only if each of the # — 2A nodes of NV is joined to exactly
k£ nodes of a complete & by % bipartite graph formed by the remaining 2A
nodes. Since I3(F) = 0 and I:(G) = h, it follows that when equality holds,
each of the nodes of IV is joined to the same % nodes and that these # nodes
form one of the node-sets of a complete & by A bipartite graph. Thus, if
equality holds, G is a complete 2 by (# — k) bipartite graph by definition.
This suffices to complete the proof of the lemma.

TureoreM 3. If I:(G(n,e)) =t and n > 9%t + 4, then

e< (;) +in— 0+ o =0')

with equality holding only if G(n, ) consists of ¢ complete t-graph each node of
which 1s also joined to each node of a complete [3(n — )] by [$(n — ¢t + 1)]
bipartite graph.

Proof. Let I denote a set of ¢ independent complete 3-graphs (or triangles,
as we shall call them henceforth) of G = G(n, e); let N denote the subgraph
determined by the #» — 3¢ nodes that are not contained in triangles of I. (We
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may assume that I and N are not empty.) We shall say that an edge (u, 9)
is joined to a node w, and vice versa, if w is joined to both # and v. There
cannot be two independent edges of N that are joined to different nodes of a
triangle in I, for otherwise I3(G) would exceed &.

The triangles of I may be partitioned into two subsets as follows. Let 4
denote the set of triangles (x, ¥, z) of { such that one of the nodes x, v, or z,
say z, is joined to at least two independent edges of N; let B denote the set
of the remaining triangles of N. We shall denote the number of triangles in
A and B by e and b, where a + b = ¢

We shall now obtain upper bounds for the number of edges of various
types in G.

(i) If the triangle (x,y, 2z) belongs to 4, then no node of N is joined to
both x and y, for otherwise I;(G) would exceed ¢ Therefore,

e(4, N) < 2a(n — 3t),

where e(4, N) denotes the number of edges joining nodes of the triangles of
A to nodes of V.

(ii) If the triangles (x1, ¥1, 21) and (xy, ¥2, 22) both belong to A4, then
neither x; nor y; is joined to both x, and v, For, a simple argument shows
that there exist two independent triangles of the type (z1, $, ¢) and (2, 7, s),
where p, g, 7, and s belong to N; and if x4, say, were joined to both x; and 7.,
then the triangles (x1, ¥1, 1) and (xs, ¥s, 22) of I could be replaced by the
triangles (x1, %2, ¥2), (21, £, ¢), and (21, 7, 5) to form a set of £ + 1 independent
triangles. Therefore, if ¢(J) denotes the number of edges both of whose ends
belong to triangles in I, it must be that

< () -(3)

(iii) There is at most one independent edge of N that is joined to one or
more nodes of any given triangle of B. Therefore, if Io(V) = v and ¢(B, N)
denotes the number of edges joining nodes of the triangles of B to nodes of V,
then ¢(B,N) <0(3mn —3t —2y) +3v+3) =3¢ —a)(n — 3t — v + 1).

(iv) Since I;(IV) = 0, it follows from the lemma that e(N) < y(n — 3t—~),
where e(N) denotes the number of edges of N.

If we combine these inequalities, we find that

e < 2a(n — 3f) + (%;) —2<;>—{—3(t—a)(n—3t+1—7)—1—7(n—3t—7)

=(32t>—I—3t(n—3t+1)——a(n+a—3t+2)
+v(m — 6+ 3¢ — v)

<<32t>+3t(n—3t+1)—a(n+cz—3t+2)
+ [t(n — 6t + 3a)’].
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It is a routine exercise to show that this last expression, considered as a
function of a, attains its maximum on the interval 0 < ¢ < ¢t when ¢ = ¢
if > 9t/2 + 4. Therefore,

e < <32‘> — 2<;> 2% — 30) + [L(n — 30)7]

- (;) +in— 0 + [0 — 1))

If equality holds in all these inequalities, then 4 = I and, by the lemma,
the graph N is a complete [3(n — 3t 4 1)] by [§(m — 3t]) bipartite graph.
Since equality holds in inequalities (i) and (ii), it follows that the nodes z
of the triangles of I determine a complete i-graph each node of which is
joined to all the remaining nodes.

Since equality holds in (i), it follows that each node of N is joined to
exactly one of the nodes x and ¥ of each triangle (x,v,2) of I. If R and S
denote the node-sets of the graph N, then the node x of any such triangle
cannot be joined to nodes in both R and S. TFor if it were, then, since R and
S each contain at least two nodes, there would exist two independent edges
of N that were joined to different nodes of the triangle (x, v, 2), and this is
impossible. If x is joined to no node of .S, then each node of S is joined to y.
Consequently, ¥ is joined to no nodes of R and each node of R is joined to
x. Therefore, we may assume that the nodes of the triangles (x, v, 2) of I
are labelled in such a way that each node x is joined to each node in R and
each node ¥ is joined to each node in S.

Since equality holds in (ii), it follows that, if (x1, y1, 21) and (xs, x2, 22)
are any two triangles of I, the node x; is joined to exactly one of the nodes
xy and ys. If x; and %, were joined to each other, then the two triangles
(x1, ¥1, 21) and (x2, ¥s, 22) of I could be replaced by the triangles (xi, x5, 71),
(21, Y1, 81), and (s, ¥s, 52), where 71 is any node of R and s; and s, are any
two nodes of S, to form a set of ¢ 4+ 1 independent triangles of G. As this
is impossible, it follows that x; is joined to v, and x; is joined to y; for every
such pair of triangles of I.

Therefore, if X and Y denote the sets consisting of the nodes x and y,
respectively, of the triangles (x, y, 2) of I, then the nodesof X \U Sand YU R
determine a complete [$(n — )] by [3(» — ¢t 4+ 1)] bipartite graph. In view
of the earlier remarks this suffices to complete the proof of the theorem.

It is almost certain that Theorem 3 remains valid for somewhat smaller
values of # also. However, it is not valid for all admissible values of #. For,
consider a graph G with # nodes that consists of a complete 3i-graph each
node of which is also joined to two additional nodes p and g, where $ and ¢
belong to different node sets of a complete [5(n — 3¢t)] B —3t+4+1)]
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bipartite graph. It is not difficult to see that I3(G) = ¢ and that G contains

e(G) = <32‘> + 6+ [ (n — 30)"

edges. But if 3t < »n < 34t + 2%, then
e(G) > ( > +in—t) + 2 —0)7).

5. The case & > 3. The argument used to prove Theorem 3 can also be
used to determine an upper bound for the number of edges in a graph G
if it is known that I,(G) = ¢, where & > 3. The details become rather in-
volved, however, so we shall only outline the proof of the general inequality.

A complete I-partite graph consists of [ disjoint sets of nodes Ry, Ro, ..., R;
such that two nodes are joined if and only if they do not belong to the same
set of nodes. The symbol D(x, ) will denote the complete /-partite graph
with # nodes in which the numbers of nodes in the different node-sets are all
as nearly equal as possible. If # = # + 7, where ¢ > 0 and 1 < r </, then
7 of the node-sets of D(#, ) contain ¢ -+ 1 nodes and the remaining [ — 7
node-sets contain { nodes. The number of edges in the graph D(n, l) is given

by the formula
[ —1 9 P) r
e(n,l) = 2] (n —r)—|—<2>.

(Later we shall use the fact that

-1

etn, 1) < <o n’

with equality holding only if # is a multiple of 1.) Turdn's theorem (5) states
that if [,(G(n,e)) =0, where & > 3, then e < e(n, & — 1), with equality
holding if and only if G(n,e) = D(n, k — 1).

The following lemma may be proved in essentially the same way as was
the earlier lemma.

Lemma. If Li«(G(n,e)) = h and I,(G(n,e)) = 0, where k > 3, then
<h(n—h)+en —hk—2),

with equality holding only if G(n, e) consists of h nodes each of which is joined
to each node of a graph D(n — h, k — 2).

TuroreM 4. If [,(G(n,e)) = t, where k > 3 and

n> 3tk —k2+ 1) + 58k —5)(k — 1),
then

e<<;>+t(”_> 2(kk 1)(” 0"
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Equality holds if and only if n — t is @ multiple of & — 1 and G(n, e) consisis
of a complete t-graph each node of which is joined to each node of a graph
D{n —t, k—1).

Outline of proof. Let I denote a set of ¢ independent complete k-graphs
of G = G(n, e); let N denote the subgraph determined by the » — (& nodes
not contained in members of I. (We may assume that I and N are not empty).
We shall say that a complete (¢ — 1)-graph H is joined to a node w, and
vice versa, if every node of H is joined to w. Let 4 denote the set of those
complete k-graphs K of I such that some node of K is joined to at least 2 — 1
independent complete (¢ — 1)-graphs of N.

If there are a complete k-graphs in 4 and if I;_;(N) = v, then it can be
shown, by the same type of argument as was used before, that

< (k= Dam — ki) + <’;‘> - 1)@

+kt—a)n—kt —y+2)—=30t—0a)+v(n—kt —~)
+en — kbt — v, b —2)

<<h>+hw_h+2)_&_am+2Mh—U—M+-@k—@)

oyl —kt =kt —a) — ) + 55y (0 — Rt — )",

For fixed values of the parameters #, &, {, and « this last expression assumes
its maximum value when

_n— ki k(k—2)(l—a)
TER 1T E—1

It follows, after some rearranging, that

e<<”>+mm—m+a) a+%k D@ ki)

—a(n+ 3a(k — 1) — bt + 53k — 5))

(B — E
2(k — E—1
This last expression, considered as a function of a, attains its maximum on
the interval 0 < ¢ < ¢ when ¢ = ¢ if

n>it(kS — k24 1) + 2(3k — 5)(k — 1).

+ H)k(t—az

n— k)t — a).

Therefore,
kt
e<<2>+kt(n—kt+2) 3k+2(k )(n kt)?
—k(n+ 3k(k— 1) — bkt + 33k — 5))

=<;>'*“” ‘>+2@ n( 0"
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The graphs for which equality holds may be characterized by the same
type of argument as was used before.

The main inequality in Theorem 4 could undoubtedly be replaced by the
inequality

e<<;>+t(n-—t)—|—e(n—t,k—1).

The difficulty in proving this by the present method arises in trying to
determine the maximum of

yu —kt —k(t—a) —y) +e(n — kt — vy, b —2)

as a function of 4. The restriction on # in Theorem 5 is probably far stronger
than necessary, but it cannot be removed entirely, as simple examples will
show.

We remark in closing that the argument used to prove Theorems 3 and 4
breaks down when & = 2.
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