
ON INDEPENDENT COMPLETE SUBGRAPHS 
IN A GRAPH 

J. W. MOON 

1. Definitions. A graph G = G(n, e) consists of a set of n nodes e pairs 
of which are joined by a single edge; we assume that no edge joins a node to 
itself. A graph with k modes is called a complete k-graph if each pair of its 
nodes is joined by an edge. The graphs belonging to some collection of graphs 
are independent if no two of them have a node in common. The maximum 
number of independent complete ^-graphs contained in a given graph G will 
be denoted by Ik(G). 

2. Summary. Erdôs and Gallai (2 ) have determined the maximum num­
ber of edges a graph can have in terms of the maximum number of independent 
edges it contains. Their proof makes use of the theory of alternating chains. In 
§ 3 we give an elementary proof of their theorem that does not require this 
theory. Erdôs (1) has determined the maximum number of edges a graph 
Gin, e) can have when the maximum number of independent complete 3-
graphs it contains is /, provided that n > 400£2. His proof is by induction. 
In § 4 we show, by a modification of the argument used in § 3, that Erdôs's 
theorem is valid whenever n > 9t/2 + 4. Finally, in § 5, we consider the 
general problem of determining an upper bound for the number of edges in 
a graph in terms of the maximum number of independent complete ^-graphs 
it contains. 

3. The case k = 2. 

THEOREM 1. If I2(G(n, e)) = h, then 

e<mJx(
2h+1),Q+h(n-k)}, 

with equality holding only if G(n, e) consists of a complete (2h + 1)-graph and 
n — (2h + 1 ) isolated nodes or if G(n, e) consists of a complete h-graph each 
node of which is also joined to each of the remaining n — h nodes. 

Proof. Let I denote the set of h independent edges of G = G(n, e) and let 
N denote the set of n — 2h nodes of G that are not incident with any of the 
edges of / . (We may assume that n > 2h and that I and N are not empty 
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sets). There are no edges joining two nodes of N to each other, nor are there 
edges joining two nodes of N to different ends of an edge in / , for otherwise 
h{G) would exceed h. 

The edges of / may be partitioned into two subsets as follows. Let A denote 
the set of edges (x, y) of / such that one of the nodes x or y, say y, is joined 
to at least two nodes of N; the nodes x, then, cannot be joined to any nodes 
of N. Let B denote the set of the remaining edges (u, v) of / ; there can exist, 
then, at most one node of N that is joined to u or v or both. We shall denote 
the number of edges in A and B by a and b, where a + b = h. 

The following assertions are consequences of the definitions of A, B, and 
N and the fact that I2(G) = h. 

(i) If (xi, 3/1) and (x2, y 2) are two edges of the set A, then %\ and x2 are 
not joined to each other. Hence, the number of edges joining ends of edges 
of A to each other or to nodes of N is at most 

^) - (« )+ . ( . -3» . 
(ii) If (#1,3/1) and (x2, y2) are two edges of A, then Xi and x2 cannot be 

joined to different ends of an edge (u, v) of B. Furthermore, if the node u is 
joined to the node Xi, say, then the node v cannot be joined to any node of 
N. This implies that the number of edges joining ends of edges of B to any 
other nodes is certainly no more than 

(2
2

6) + (2b)a + ba + 2b. 

Since every edge of G is of one of the types considered in (i) and (ii), it 
follows that 

e < fe) " (2) + (f) + a(n ~ 2h) + 3ab + 2b 

+ a(n - 2\h - \\) - \a(h - a) 

+ a(n - 2\h - \\) 

+ h(n - h) - (h - a)(n - 2\h - \\). 

The last two expressions attain their maximum value when a — 0 or h, 
depending on the sign of n — 2\h — \\. If equality holds when a = 0, then 
the ends of the edges of B = / determine a complete 2/^-graph; a simple 
argument shows that all the nodes of this graph are joined to the same node 
of N. In this case, therefore, the graph G(n, e) consists of a complete (2h + 1)-
graph and n — (2h + 1) isolated nodes. If equality holds when a = h, then 
each node y belonging to an edge (x, y) of A —I is joined to every other 
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node of the graph. In this case the graph G(n, e) consists of a complete h-
graph each node of which is joined to each of the remaining n — h nodes. This 
suffices to complete the proof of the theorem. 

We note a related theorem which has appeared in Fulkerson and Shapley 
(4) and Erdôs and Posa (3) ; it follows almost immediately from the observa­
tions a t the end of the first paragraph of the proof of Theorem 1. 

T H E O R E M 2. If each node of the graph G is joined to at least t other nodes, 
then 12(G) > min{/, [%n]}, where n denotes the number of nodes of G. 

4. T h e case k = 3 . Let R and S denote two disjoint sets containing r 
and 5 nodes, respectively. If each node of R is joined to each node of S, then 
the resulting configuration is called a complete r by s bipartite graph. A special 
case of a theorem due to T u r i n (5) s tates tha t if Iz(G(n, e)) = 0, then 
e < [\n2] with equali ty holding if and only if G(n, e) is a complete [%n] by 
[%(n + 1)] bipart i te graph. 

LEMMA. If I2(G(n, e)) = h and Iz(G(n, e)) = 0, then e < h(n — h), with 
equality holding only if Gin, e) is a complete h by in — h) bipartite graph. 

Proof. Let / and N have the same meaning as before. No node of N can 
be joined to both ends of an edge of / and no two nodes of N are joined to 
each other. Hence, the number of edges incident with nodes of N is a t most 
h(n — 2h). Fur thermore , according to Turân ' s theorem, there are a t most h2 

edges joining ends of the edges of I to each other. Therefore, 

e <h(n - 2h) + h2 = h(n - h), 

with equali ty holding only if each of the n — 2h nodes of N is joined to exactly 
h nodes of a complete h by h bipart i te graph formed by the remaining 2h 
nodes. Since Iz(F) = 0 and 12(G) = h, it follows t ha t when equali ty holds, 
each of the nodes of N is joined to the same h nodes and t ha t these h nodes 
form one of the node-sets of a complete h by h bipart i te graph. Thus , if 
equali ty holds, G is a complete h by (n — h) bipart i te graph by definition. 
This suffices to complete the proof of the lemma. 

T H E O R E M 3. If I^(G(n, e)) = t and n > §\t + 4, then 

e< y^J+t(n-t) + [\(n-t)\ 

with equality holding only if G(n, e) consists of a complete t-graph each node of 
which is also joined to each node of a complete [J (n — t) ] by [ | (n — t + 1 ) ] 
bipartite graph. 

Proof. Let I denote a set of t independent complete 3-graphs (or triangles, 
as we shall call them henceforth) of G = G(n, e); let N denote the subgraph 
determined by the n — 3t nodes t h a t are not contained in triangles of / . (We 
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may assume that I and N are not empty.) We shall say that an edge (u, v) 
is joined to a node w, and vice versa, if w is joined to both u and v. There 
cannot be two independent edges of N that are joined to different nodes of a 
triangle in I, for otherwise /3(G) would exceed /. 

The triangles of I may be partitioned into two subsets as follows. Let A 
denote the set of triangles (x, y, z) of I such that one of the nodes x, y, or z, 
say z, is joined to at least two independent edges of N; let B denote the set 
of the remaining triangles of N. We shall denote the number of triangles in 
A and B by a and b, where a + b = t. 

We shall now obtain upper bounds for the number of edges of various 
types in G. 

(i) If the triangle (x,y, z) belongs to A, then no node of N is joined to 
both x and y, for otherwise /3(G) would exceed t. Therefore, 

e(A,N) < 2a{n - 3t), 

where e(A, N) denotes the number of edges joining nodes of the triangles of 
A to nodes of N. 

(ii) If the triangles (xx, yly Zi) and (x2, y2, z2) both belong to A, then 
neither Xi nor yi is joined to both x2 and y2. For, a simple argument shows 
that there exist two independent triangles of the type (21, py g) and (z2, r, s), 
where p, q, r, and 5 belong to N; and if Xi, say, were joined to both x2 and y2, 
then the triangles (xi, 3/1, z{) and (x2, y2, z2) of I could be replaced by the 
triangles (xi, x2, y2), (z1} p, q), and (zi, r, s) to form a set of t + 1 independent 
triangles. Therefore, if e(I) denotes the number of edges both of whose ends 
belong to triangles in 7, it must be that 

e(I)< (3ù - <°2) • 
(iii) There is at most one independent edge of N that is joined to one or 

more nodes of any given triangle of B. Therefore, if I2(N) = y and e(B, N) 
denotes the number of edges joining nodes of the triangles of B to nodes of N, 
then e(B, N) < 6(3(w - 3t - 2T) + 3y + 3) = 3(t - a)(n - St - y + 1). 

(iv) Since I$(N) = 0, it follows from the lemma that e(N) < y(n — 3/ —7), 
where e(N) denotes the number of edges of N. 

If we combine these inequalities, we find that 

e<2a(n-St) + (^J ~ 2{^) + 3(t - a)(n - 3t+ 1 - y) + y(n - 3t -y) 

= f 3
2M + 3t(n - 3/ + 1) - a(n + a - 3t + 2) 

+ y{n - §t + 3a - y) 

< ( 3
2M + 3t(n - 3/ + 1) - ain + a - 3/ + 2) 

+ [\{n- & + 3a)2]. 
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I t is a routine exercise to show that this last expression, considered as a 
function of a, attains its maximum on the interval 0 < a < t when a — t 
if n > 9t/2 + 4. Therefore, 

e < (3
2*) - 2 ( 2 ) + 2*(* - 3/) + [\{n - St)2] 

If equality holds in all these inequalities, then A = I and, by the lemma, 
the graph N is a complete [%(n — St + 1)] by [%(n — St]) bipartite graph. 
Since equality holds in inequalities (i) and (ii), it follows that the nodes z 
of the triangles of / determine a complete £-graph each node of which is 
joined to all the remaining nodes. 

Since equality holds in (i), it follows that each node of N is joined to 
exactly one of the nodes x and y of each triangle (x, y, z) ol I. If R and 5 
denote the node-sets of the graph N, then the node x of any such triangle 
cannot be joined to nodes in both R and S. For if it were, then, since R and 
S each contain at least two nodes, there would exist two independent edges 
of N that were joined to different nodes of the triangle (x, y, z), and this is 
impossible. If x is joined to no node of S, then each node of S is joined to y. 
Consequently, y is joined to no nodes of R and each node of R is joined to 
x. Therefore, we may assume that the nodes of the triangles (x, y, z) of I 
are labelled in such a way that each node x is joined to each node in R and 
each node y is joined to each node in 5. 

Since equality holds in (ii), it follows that, if (xi, yly Zi) and (x2, x2, z2) 
are any two triangles of / , the node Xi is joined to exactly one of the nodes 
X2 and y2. If Xi and x2 were joined to each other, then the two triangles 
(oci, y 1, Zi) and (x2, y'2, z2) of I could be replaced by the triangles (xi, x2, rx), 
(21, yi, Si), and (s2, y2, s2), where r± is any node of R and Si and s2 are any 
two nodes of S, to form a set of t + 1 independent triangles of G. As this 
is impossible, it follows that Xi is joined to y2 and x2 is joined to yi for every 
such pair of triangles of / . 

Therefore, if X and Y denote the sets consisting of the nodes x and yr 

respectively, of the triangles (x, y, z) of / , then the nodes oî X U S and Y \J R 
determine a complete [h(n — t)] by [\{n — t + 1)] bipartite graph. In view 
of the earlier remarks this suffices to complete the proof of the theorem. 

I t is almost certain that Theorem 3 remains valid for somewhat smaller 
values of n also. However, it is not valid for all admissible values of n. For, 
consider a graph G with n nodes that consists of a complete 3/-graph each 
node of which is also joined to two additional nodes p and q, where p and q 
belong to different node sets of a complete [\{n — Si)] by [%(n — St + 1)] 

• 
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bipartite graph. I t is not difficult to see that /3(G) = / and that G contains 

e(G) = [^) + & + [i(n - 3t)2] 

edges. But if Zt < n < Z\t + 2 | , then 

(-0 e(G)> ^2) + t(n - t) + [\{n -t)'\. 

5. The case k > 3. The argument used to prove Theorem 3 can also be 
used to determine an upper bound for the number of edges in a graph G 
if it is known that Ik(G) = t} where k > 3. The details become rather in­
volved, however, so we shall only outline the proof of the general inequality. 

A complete l-partite graph consists of / disjoint sets of nodes Ri} Ro, . . . , Rt 

such that twro nodes are joined if and only if they do not belong to the same 
set of nodes. The symbol D(n, I) will denote the complete /-partite graph 
with n nodes in which the numbers of nodes in the different node-sets are all 
as nearly equal as possible. If n = tl + r, where t > 0 and 1 < r < /, then 
r of the node-sets of D(ny I) contain t + 1 nodes and the remaining I — r 
node-sets contain / nodes. The number of edges in the graph D(n, I) is given 
by the formula 

e(n,l) = l-^±(n*-ri) + y2). 

(Later we shall use the fact that 

e(n, I) < — n , 

with equality holding only if n is a multiple of /.) Turân's theorem (5) states 
that if Ik(G{n, e)) = 0 , where k > 3, then e < e(n, k — 1), with equality 
holding if and only if Gin, e) = D(n, k — 1). 

The following lemma may be proved in essentially the same way as was 
the earlier lemma. 

LEMMA. If Ik^i(G(n, e)) = h and Ik(G(n, e)) = 0 , where k > 3, then 

e < h(n — h) + e(n — h, k — 2), 

with equality holding only if G(n, e) consists of h nodes each of which is joined 
to each node of a graph D(n — h, k — 2). 

THEOREM 4. / / Ik(G(n, e)) = /, where k > 3 and 

n > ±t(kz - k* + 1) + è(3Jfe - 5)(k - 1), 
then 

k - 2 
2(k - 1) e < ( ^) + t(n - t) + J 1 J U in - t)\ 
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Equality holds if and only if n — t is a multiple of k — 1 and G(n, e) consists 
of a complete t-graph each node of which is joined to each node of a graph 
Bin - t, k - 1). 

Outline of proof. Let / denote a set of / independent complete ^-graphs 
of G = Gin, e); let N denote the subgraph determined by the n — tk nodes 
not contained in members of / . (We may assume that / and N are not empty). 
We shall say that a complete (k — 1)-graph H is joined to a node w, and 
vice versa, if every node of H is joined to w. Let A denote the set of those 
complete ^-graphs K oi I such that some node of K is joined to at least k — 1 
independent complete (k — 1)-graphs of N. 

If there are a complete ^-graphs in A and if Ih-iiN) = 7, then it can be 
shown, by the same type of argument as was used before, that 

e< l)a(»-») + (*/) - ( i - D Q 

+ k(t - a)(n - kt - 7 + 2) - 3(* - a) + y(n - kt - 7) 
+ e(n - kt - 7, k - 2) 

< f *M + kt(n - kt + 2) - 3/ - a(n + \a(k - 1) - kt + | ( 3 * - 5 ) ) 

+ y(n - H - k{t - a) - 7) + -$^Tz) ( » - * ' - T)2. 

For fixed values of the parameters n, k, t, and a this last expression assumes 
its maximum value when 

n - kt kik - 2)(t - a) 
k - l k - 1 

It follows, after some rearranging, that 

e < (**) + kt(n - kt + 2) - 3/ + ^ ^ y in - kt)2 

- ain + \a(k - 1) - kt + ±(3* - 5)) 

+ 2^~o *2(/ " a)2~ Fry {n ~ kt)(t ~ a)-
This last expression, considered as a function of a, attains its maximum on 
the interval 0 < a < / when a = t if 

n > ht(kz - k2 + 1) + §(3ife - 5)(fe - 1). 
Therefore, 

e < (^ y + *'(» - *' + 2 ) - 3 ^ + 2^ 

- k(n + §£(* - 1) - kt + | ( 3 * - 5)) 

+ *(» " t) + ^0Y) (» ~ 02 (i) 
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The graphs for which equality holds may be characterized by the same 
type of argument as was used before. 

The main inequality in Theorem 4 could undoubtedly be replaced by the 
inequality 

e< y2J +t(n- t) +e(n-t,k- 1). 

The difficulty in proving this by the present method arises in trying to 
determine the maximum of 

y(n — kt — k(t — a) — 7) + e(n — kt — 7, k — 2) 

as a function of 7. The restriction on n in Theorem 5 is probably far stronger 
than necessary, but it cannot be removed entirely, as simple examples will 
show. 

We remark in closing that the argument used to prove Theorems 3 and 4 
breaks down when k = 2. 
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