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Abstract

We consider two continuous-time generalizations of conservative random walks intro-
duced in Englander and Volkov (2022), an orthogonal and a spherically symmetrical
one; the latter model is also known as random flights. For both models, we show the
transience of the walks when d ≥ 2 and that the rate of direction changing follows a
power law t−α , 0 < α ≤ 1, or the law (ln t)−β where β > 2.
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1. Introduction

Conservative random walks (discrete time) were introduced in [8] as a time-inhomogeneous
Markov chain Xn, n = 1, 2, . . . , defined as a process on Z

d such that, for a given (non-random)
sequence p1, p2, . . . where all pi ∈ (0, 1), the walk at time n with probability pn randomly
picks one of the 2d directions parallel to the axis, and otherwise continues moving in the
direction it was going before. This walk can be viewed as a generalization of Gillis’ random
walk [9]. An interesting special case studied in [8] is when pn → 0, and in particular when
pn ∼ n−α where α ∈ (0, 1]; note that the case α > 1 is trivial as the walk would make only
finitely many turns. The question of recurrence vs. transience of this walk was one of the main
questions of that paper.

Similar processes have appeared in the literature under different names. Some of the earliest
papers which mention a continuous process with memory of this type were probably [10, 12].
The term persistent random was used in [3, 4]; in these papers some very general criteria of
recurrence vs. transience were investigated. A planar motion with just three directions was
studied in [6]. A book on Markov random flights was recently published [14]. Planar random
motions with drifts with four directions/speeds, switching at Poisson times, were studied in
[17]. Applications of telegraph processes to option pricing can be found in [18]. Characteristic
functions of correlated random walks were studied in [5].

The main difference between the conservative random walk and most of the models studied
in the literature (except, perhaps, [19], which has a more applied focus) is that the underlying
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process of direction switching is time-inhomogeneous, thus creating various new phenomena.
The recurrence/transience of a discrete-space conservative random walk on Z

1 was thoroughly
studied in [7] (see also the references therein), and we believe that the continuous-time ver-
sion in one dimension will have very similar features. The establishment of recurrence in one
dimension is more or less equivalent to finding that the lim sup of the process is +∞ and the
lim inf of the process is −∞, while in higher dimensions the situation is much more intricate.
Hence, we concentrate on the case when the dimension of the space is at least 2, except for
Theorem 3.1 which deals with the embedded process.

Below we formally introduce the two versions of a continuous-time conservative random
walk on R

d, d ≥ 1.

1.1. Model A (orthogonal model)

Let λ(t) be a non-negative function such that

�(T) =
∫ T

0
λ(t) dt < ∞ for all T ≥ 0; lim

T→∞ �(T) = ∞. (1.1)

Let τ1 < τ2 < · · · be the consecutive points of an inhomogeneous Poisson point process (PPP)
on [0, ∞) with rate λ(t), and τ0 = 0. Then the conditions in (1.1) guarantee that there will be
finitely many τi in every finite interval, and that τn → ∞. Let f0, f1, f2 be an independent and
identically distributed (i.i.d.) sequence of vectors, each of which has a uniform distribution on
the set of 2d unit vectors {±e1, ±e2, . . . , ±ed} in R

d.
The (orthogonal, continuous-time) conservative walk generated by the rate function λ(·) is

a process Z(t), t ≥ 0, in R
d, d ≥ 1, such that Z(0) = 0 and at each time τk, k ≥ 0, the walk starts

moving in the direction fk, and keeps moving in this direction until time τk+1, when it updates
its direction. Formally, we define N(t) = sup{k ≥ 0: τk ≤ t} as the number of points of the PPP
by time t; then

Z(t) =
N(t)−1∑

k=0

(τk+1 − τk)fk + (t − τN(t))fN(t).

We can also define the embedded process Wn = Z(τn) so that W(0) = 0 and, for n ≥ 1,
Wn =∑n−1

k=0 (τk+1 − τk)fk. The process Z(t) can be viewed as a continuous equivalent of the
conservative random walk introduced in [8].

1.2. Model B (von Mises–Fisher model)

This model is defined similarly to the previous one, except that now the random vectors fk,
k = 1, 2, . . . , have a uniform distribution on the d-dimensional unit sphere Sd−1, often called
the von Mises–Fisher distribution, instead of just on 2d unit vectors of Rd.

Note that this model is similar to the ‘random flights’ model studied, e.g., in [16]; however,
their results are only for a time-homogeneous Poisson process, unlike our case.

1.3. Aims of this paper

The results that we obtain in the current paper are somewhat different for the two models;
however, since they share a lot of common features, certain statements will hold for both of
them. The main goal is establishing transience vs. recurrence of the walks, defined as follows.

Definition 1.1. Let ρ ≥ 0. We say that the walk Z(t) is ρ-recurrent if there is an infinite
sequence of times t1 < t2 < · · · , converging to infinity, such that Z(ti) ∈ [ − ρ, ρ]d for all
i = 1, 2, . . .
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Transience of continuous-time conservative random walks 3

We say that the walk Z(t) is transient if it is not ρ-recurrent for any ρ > 0, or, equivalently,
limt→∞ ‖Z(t)‖ = ∞.

Recurrence and transience of the embedded process Wn are defined analogously, with the
exception that instead of t1, t2, t3, . . . in the above definition, we have a strictly increasing
sequence of positive integers ni, i = 1, 2, . . .

Remark 1.1. Note that a priori it is unclear if transience and recurrence are zero–one events;
neither can we easily rule out the possibility of ‘intermediate’ situations (e.g. ρ-recurrence
only for some ρ).

Our main results, which show transience for two types of rates, are presented in Theorems
3.1, 3.2, 3.3, and 4.1.

2. Preliminaries

Throughout the paper we use the following notation. We write X ∼ Poi(μ) when X has
a Poisson distribution with parameter μ > 0. For any set A, |A| denotes its cardinality. For
x ∈R

d, ‖x‖ denotes the usual Euclidean norm of x.
First, we state Kesten’s generalization of the Kolmogorov–Rogozin inequality. Let Sn =

ξ1 + · · · + ξn where the ξi are independent, and for any random variable Y define Q(Y; a) =
supx P(Y ∈ [x, x + a]).

Lemma 2.1. ([13].) There exists C > 0 such that, for any real numbers 0 < a1, . . . , an ≤ 2L,

Q(Sn; L) ≤ CL
∑n

i=1 a2
i (1 − Q(ξi; ai))Q(ξi; ai)[∑n

i=1 a2
i (1 − Q(ξi; ai))

]3/2
.

Second, if D1, . . . , Dm is a sequence of independent events each with probability p, ε > 0,
and ND(m) = card({i ∈ {1, . . . , m} : Di occurs}) =∑m

i=1 1Di , then

P(|ND(m) − pm| ≥ εm) ≤ 2e−2ε2m (2.1)

by Hoeffding’s inequality (see, e.g., [11]).
Suppose we have an inhomogeneous PPP with rate

λ(t) = 1

tα
, t > 0, (2.2)

where 0 < α < 1 is constant; thus

�(T) =
∫ T

0
λ(t) dt = T1−α

1 − α

and the conditions in (1.1) are fulfilled. Let 0 < τ1 < τ2 < · · · denote the points of the PPP
inincreasing order.

The following statement is probably known, but for the sake of completeness, we provide
its short proof.

Claim 2.1. Let Z be a Poisson random variable with rate μ > 0. Then

P

(
Z ≥ 3μ

2

)
≤ e−((3 ln (3/2)−1)/2)μ = e−0.108...μ,

P

(
Z ≤ μ

2

)
≤ e−((1−ln 2)/2)μ = e−0.153...μ.
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4 S. BHATTACHARYA AND S. VOLKOV

Proof. By the Markov inequality, since EeuZ = eμ(eu−1), we have, for u > 0,

P

(
Z ≥ 3μ

2

)
≤ P(euZ ≥ e3μu/2) ≤ e−3μu/2

E euZ = exp

{
−μ

[
3u

2
− eu + 1

]}
.

Setting u = ln (3/2) yields the first inequality in the claim.
For the second inequality, we use

P

(
Z ≤ μ

2

)
≤ P(e−uZ ≥ e−μu/2) ≤ eμu/2

E e−uZ = exp

{
−μ

[
−u

2
− e−u + 1

]}
.

Now let u = ln 2. �

Lemma 2.2. Suppose that the rate of the PPP is given by (2.2). For some c1 > c0 > 0,
depending on α only,

P(τk ≤ c0k1/(1−α)) ≤ e−k/15; P(τk ≥ c1k1/(1−α)) ≤ e−k/15.

Proof. Recall that N(s) denotes the number of points of the PPP by time s. Then
N(s) ∼ Poi(�(s)), and P(τk ≤ s) = P(N(s) ≥ k). Let Tn = �(−1)(n) = 1−α

√
(1 − α)n. Noting that

N(Tn) ∼ Poi(n) for all n, we have

P(τk ≤ T2k/3) = P(N(T2k/3) ≥ k) = P

(
Z ≥ 3

2
μ

)
≤ e−0.072 13...k

by Claim 2.1, with Z ∼ Poi(μ) where μ = 2k/3. Similarly,

P(τk ≥ T2k) = P(N(T2k) ≤ k) ≤ P

(
Z ≤ 1

2
μ

)
≤ e−0.306 85...k

by Claim 2.1, with Z ∼ Poi(μ) where μ = 2k. Note that 0.072 13 > 1
15 , 0.306 85 > 1

15 . Now
the statement follows with c0 = 1−α

√
2(1 − α)/3 and c1 = 1−α

√
2(1 − α). �

3. Analysis of Model A

Theorem 3.1. Let d = 1, α ∈ ( 1
3 , 1

)
, and the rate be given by (2.2). Then the embedded walk

Wn is transient almost surely (a.s.).

Proof. Assume without loss of generality that n is even. We will show that for any ρ > 0 the
walk Wn visits [ − ρ, ρ] finitely often a.s. With probabilities close to 1, both the events

E1 = {
τn/2 ≥ c0(n/2)1/(1−α)}, E2 = {

τn ≤ c1n1/(1−α)} (3.1)

occur; indeed,
P(Ec

1) ≤ e−n/30, P(Ec
2) ≤ e−n/15 (3.2)

by Lemma 2.2.
Since the rate λ(t) = t−α of the Poisson process is monotonically decreasing, the random

variables τi − τi−1, n/2 ≤ i ≤ n, under the condition stated in the event E1, are stochasti-
cally larger than i.i.d. exponential random variables ζi with rates equal to [c0(n/2)1/1−α]α =
c̃0n−α/(1−α) for some c̃0 > 0. For ζ , there exists β = β(c0, α) > 0 such that

P
(
ζi > βnα/(1−α))= exp

(−c̃0n−α/(1−α) · βnα/(1−α))= e−c̃0β = 2

3
.
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Transience of continuous-time conservative random walks 5

Let In = {
i ∈ [n/2, n] : i is even, τi − τi−2 > βnα/(1−α)

}
, and note that card(In) ≤ n/4. Then,

since τi − τi−2 > τi − τi−1, by stochastic monotonicity and Hoeffding’s inequality (2.1) with
m = n/4, p = 2

3 , and ε = 2
3 − 1

2 = 1
6 ,

P

(
card(In) <

1

2
· n

4
| E1

)
≤ P

(
card

({
i ∈ [n/2, n] : i is even, ζi > βnα/(1−α)})<

n

8

)

≤ 2e−n/72. (3.3)

Let Jn = {i ∈ In : fi−1 = −fi−2}. Since the fi are i.i.d. and independent of {τ1, τ2, . . . }, and
P(fi−1 = −fi) = 1

2 , on the event {card(In) ≥ n/8} we have, by (2.1) with m = card(In), p = 1
2 ,

and ε = 1
34 ,

P

(
card(Jn) <

n

17
| card(In) ≥ n

8

)
≤ P

(∣∣∣∣card(Jn) − card(In)

2

∣∣∣∣> card(In)

34
| card(In) ≥ n

8

)

≤ 2 exp

{
−2 · 1

342
· n

8

}
= 2e−c∗n, (3.4)

where c∗ = 1/4624.
Our proof will rely on conditioning over the even stopping times, i.e. on the event D =

D0 ∩D1 ∩ E2, where

D0 = {
τn/2 = tn/2, τn/2+2 = tn/2+2, . . . , τn = tn

}
, D1 = {card(Jn) ≥ n/17} ∩ E1

for some strictly increasing sequence 0 < tn/2 < tn/2+2 < · · · < tn. Note that

P(Dc
1) ≤ P(Ec

1) + P

(
card(Jn) <

n

17
| E1

)

≤ P(Ec
1) + P

(
card(Jn) <

n

17
| card(In) ≥ n

8
, E1

)
+ P

(
card(In) <

n

8
| E1

)

≤ e−n/30 + 2e−c∗n + 2e−n/72 ≤ 5e−c∗n (3.5)

by (3.2), (3.3), and (3.4).
We denote the ith step of the embedded walk by Xi = Wi − Wi−1, i = 1, 2, . . . , and

ξi := Xi−1 + Xi = (τi−1 − τi−2)fi−2 + (τi − τi−1)fi−1.

Conditioned on D, the random variables ξ2, ξ4, ξ6, . . . are then independent.

Lemma 3.1. For i ∈ Jn, supx∈R P(ξi ∈ [x − ρ, x + ρ] |D) ≤ cρ/nα/(1−α) for some
c = c(α) > 0.

Proof of Lemma 3.1. Given τi−2 = ti−2 and τi = ti, τi−1 has the distribution of the only point
of the PPP on [ti−2, ti] with rate λ(t) conditioned on the fact that there is exactly one point in
this interval. Hence, the conditional density of τi−1 is given by

fτi−1|D(x) =

⎧⎪⎨
⎪⎩

λ(t)∫ ti
ti−2

λ(u) du
if x ∈ [ti−2, ti],

0 otherwise.

https://doi.org/10.1017/jpr.2024.46 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.46


6 S. BHATTACHARYA AND S. VOLKOV

Assume without loss of generality that Xi−1 > 0 > Xi (recall that i ∈ Jn). Then

ξi = [τi−1 − τi−2] − [τi − τi−1] = 2τi−1 − (ti−2 + ti)

so that the maximum of the conditional density of ξi equals one-half of the maximum of the
conditional density of τi−1. At the same time, since λ is a decreasing function,

sup
x∈R

fτi−1|D(x) = λ(ti−2)∫ ti
ti−2

λ(u) du
≤ λ(ti−2)

(ti − ti−2)λ(ti)
≤ λ(ti−2)

βnα/(1−α)λ(ti)
= 1

βnα/(1−α)
·
(

ti
ti−2

)α

≤ 1

βnα/(1−α)
·
(

τn

τn/2

)α

≤ 1

βnα/(1−α)
·
(

c1

c02−1/(1−α)

)α

since the events E1 and E2 occur. This implies the stated result with c = β−1(c−1
0 c1

1−α
√

2)α . �

Now we divide Wn into two portions:

A =
∑
i∈Jn

ξi, B = Wn − A =
∑

i∈{2,4,...,n}\Jn

ξi.

Lemma 3.2. For some C = C(α, ρ) > 0,

sup
x∈R

P(A ∈ [x − ρ, x + ρ] |D) ≤ C

nα/(1−α)+1/2
.

Proof of Lemma 3.2. The result follows immediately from Lemma 2.1 with ai ≡ 2ρ = L,
using Lemma 3.1 and the fact that card(Jn) ≥ n/17. �

So,

P(|Wn| ≤ ρ |D) = P(A + B ∈ [ − ρ, ρ] |D) =
∫

P(A + b ∈ [ − ρ, ρ] |D)fB|D(b) db

≤
∫

sup
x

P(A ∈ [x − ρ, x + ρ] |D)fB|D(b) db ≤ C

nα/(1−α)+1/2
,

where fB|D(·) is the density of B conditional on D.
Finally, using (3.2) and (3.5),

P(Wn ∈ [ − ρ, ρ]) ≤ P(Wn ∈ [ − ρ, ρ] |D) + P(Dc
1) + P(Ec

2) ≤ C

nα/(1−α)+1/2
+ 5e−c∗n + e−n/15,

which is summable over n, so we can apply the Borel–Cantelli lemma to show that {|Wn| ≤ ρ}
occurs finitely often a.s. �

Theorem 3.2. Let d ≥ 2, α ∈ (0, 1), and the rate of the PPP be given by (2.2). Then Z(t) is
transient a.s.

Remark 3.1. This result also holds for α = 1, and the proof is more or less identical to that of
[8, Theorem 5.2], once we establish that, a.s., τn > ecn for some c > 0 and all large n; the latter
follows from arguments similar to Lemma 2.2.

Proof of Theorem 3.2. We provide the proof only for the case d = 2 and ρ = 1; it can be
easily generalized for all d ≥ 3 and ρ > 0. Denote the coordinates of the embedded walk by
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Transience of continuous-time conservative random walks 7

FIGURE 1. Model A: Recurrence of conservative random walk on R
2.

Xn and Yn; thus Wn = (Xn, Yn) ∈R
2. Fix some small ε > 0 and consider the event Rn = {Z(t) ∈

[ − 1, 1]2 for some t ∈ (τn, τn+1]}. We will show that events Rn occur finitely often a.s., thus
ensuring the transience of Z(t).

For the walk Z(t) to hit [ − ρ, ρ]2 between times τn and τn+1, we have to have either

• |Xn| ≤ ρ, fn = −sign(Yn)e2, and τn+1 − τn ≥ |Yn| − 1, or

• |Yn| ≤ ρ, fn = −sign(Xn)e1, and τn+1 − τn ≥ |Xn| − 1

(see Figure 1.)
Using the fact that the fn are independent of anything, we get

P(Rn) ≤ 1

4
P(|Xn| ≤ ρ, τn+1 − τn ≥ |Yn| − 1) + 1

4
P(|Yn| ≤ ρ, τn+1 − τn ≥ |Xn| − 1).

We will show that P(|Xn| ≤ ρ, |Yn| ≤ τn+1 − τn + 1) is summable in n (and the same holds for
the other summand by symmetry), hence by the Borel–Cantelli lemma that Rn occurs finitely
often a.s.

Lemma 3.3. Assume that ε ∈ (0, 1). Then there exists c∗
1 = c∗

1(ε) such that, for all sufficiently
large n, P

(
τn+1 − τn + 1 ≥ nα/(1−α)+ε

)≤ 3e−c∗
1nε

.

Proof of Lemma 3.3. For s, t ≥ 0,

P(τn+1 − τn ≥ s | τn = t) = e−[�(t+s)−�(t)] = exp

{
− (t + s)1−α − t1−α

1 − α

}
,

so if t < c1n1/(1−α), where c1 is the constant from Lemma 2.2, and s = nα/(1−α)+ε − 1 =
o(n1/(1−α)), we have

P(τn+1 − τn ≥ s | τn = t) ≤ exp

{
− (c1n1/(1−α) + s)1−α − c1−α

1 n

1 − α

}

≤ exp

{
−nc1−α

1

1 − α

[(
1 + nα/(1−α)+ε − 1

c1n1/(1−α)

)1−α

− 1

]}

= exp

{
−nε(1 + o(1))

cα
1

}
.
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Consequently, using Lemma 2.2,

P
(
τn+1 − τn ≥ nα/(1−α)+ε − 1

)≤ P
(
τn+1 − τn ≥ nα/(1−α)+ε − 1 | τn < c1n1/(1−α))

+ P
(
τn ≥ c1n1/(1−α))

≤ e−c∗
1nε + e−n/15 ≤ 2e−c∗

1nε

(3.6)

for some c∗
1 ∈ (

0, 1
15

)
. �

Now we will modify the proof of Theorem 3.1 slightly to adapt to our needs. Let the events
E1 and E2 be the same as in the proof of Theorem 3.1. We will also use the set In, but instead
of Jn we introduce the sets

J1
n = {i ∈ In : fi−1 = −fi−2, fi−1 ∈ {e1, −e1}},

J2
n = {i ∈ In : fi−1 = −fi−2, fi−1 ∈ {e2, −e2}}.

Similarly to the proof of Theorem 3.1, inequality (3.5), we immediately obtain that

P(card(J1
n) ≤ n/34) ≤ P(card(J1

n) ≤ n/34 | E1) + P(Ec
1) ≤ 6e−c′∗n,

P(card(J2
n) ≤ n/34) ≤ P(card(J2

n) ≤ n/34 | E1) + P(Ec
1) ≤ 6e−c′∗n

(3.7)

for some c′∗ > 0.
Fix a deterministic sequence of unit vectors g1, . . . , gn such that each gi ∈ {±e1, ±e2}. We

now also define the event

D = {f1 = g1, . . . , fn = gn} ∩ {τk = tk for all k ≤ n : k is even or fk ⊥ fk+1}∩{
card(J1

n) ≥ n

34

}
∩
{

card(J2
n) ≥ n

34

}
∩ E1 ∩ E2.

Therefore, repeating the previous arguments for each of the horizontal and vertical components
of Wn, we immediately obtain

P(|Xn| ≤ 1 |D) ≤ C

nα/(1−α)+1/2
, sup

x∈R
P(|Yn − x| ≤ 1 |D) ≤ C

nα/(1−α)+1/2
.

The second inequality implies that

P(|Yn| ≤ nα/(1−α)+ε |D) ≤ nα/(1−α)+ε · C

nα/(1−α)+1/2
= C

n1/2−ε
.

Now, by Lemma 3.3,

P(|Xn| ≤ 1, |Yn| ≤ τn+1 − τn + 1)

≤ P
(|Xn| ≤ 1, |Yn| ≤ τn+1 − τn + 1 | τn+1 − τn + 1 ≤ nα/(1−α)+ε

)
+ P

(
τn+1 − τn + 1 ≥ nα/(1−α)+ε

)
≤ P

(|Xn| ≤ 1, |Yn| ≤ nα/(1−α)+ε
)+ 3e−c∗

1nε

.
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Observing that Xn and Yn are actually independent given D, we conclude that

P
(|Xn| ≤ 1, |Yn| ≤ nα/(1−α)+ε

)≤ P
(|Xn| ≤ 1, |Yn| ≤ nα/(1−α)+ε |D)

+ P

(
card(J1

n) <
n

34
or card(J1

n) <
n

34

)
+ P(Ec

1) + P(Ec
2)

≤ C

nα/(1−α)+1/2
· C

n1/2−ε
+ 12e−c′∗n + e−n/15 + e−n/15

= C2 + o(1)

n1+[α/(1−α)−ε]

by (3.2) and (3.7). Assuming ε ∈ (0, α/(1 − α)), the right-hand side is summable, and thus
P(|Xn| ≤ ρ, |Yn| − 1 ≤ τn+1 − τn) is also summable in n. �

Theorem 3.3. Let d ≥ 2, and the rate be given by

λ(t) =
⎧⎨
⎩

1

(ln t)β
, t ≥ e;

0, otherwise.
(3.8)

Then Z(t) is transient as long as β > 2.

Proof. The proof is analogous to the proof of Theorem 3.2; we will only indicate how that
proof should be modified for this case. As before, we assume that ρ = 1 and d = 2, without
loss of generality. First, we prove the following lemma.

Lemma 3.4. Let �(T) = ∫ T
0 λ(s) ds = ∫ T

e ds/(ln s)β . Then

lim
T→∞

�(T)

T(ln T)−β
= 1.

Proof of Lemma 3.4. Fix an ε ∈ (0, 1). Then

�(T) =
∫ T

e

ds

(ln s)β
=
∫ T1−ε

e

ds

(ln s)β
+
∫ T

T1−ε

ds

(ln s)β
< T1−ε + T

(ln T)β (1 − ε)β
.

At the same time, trivially, �(T) > (T − e)/(ln T)β . Now, the limit of the ratio of the upper and
the lower bounds of �(T) can be made arbitrarily close to 1 by choosing a small enough ε.
Hence the statement of the lemma follows. �

The rest of the proof goes along the same lines as that of Theorem 3.2. First, note that for
some c > 0 the event {τn ≤ cn(ln n)β} occurs finitely often almost surely. Indeed,

�̃ = �(cn(ln n)β ) = cn(ln n)β

[ ln (cn(ln n)β )]β
(1 + o(1)) = (ln n)β

(1 + o(1))(ln n)β
cn(1 + o(1))

= (1 + o(1))cn
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by Lemma 3.4, and thus

P(τn ≤ cn(ln n)β ) = P(N(cn(ln n)β ) ≥ n)

= e−�̃

(
�̃n

n! + �̃n+1

(n + 1)! + �̃n+2

(n + 2)! + · · ·
)

= e−�̃ �̃n

n!
(

1 + �̃

(n + 1)
+ �̃2

(n + 1)(n + 2)
+ · · ·

)

≤ e−�̃ �̃n

n!
(

1 + �̃

1! + �̃2

2! + · · ·
)

= �̃n

n! = [(1 + o(1))cn]n

n! =O
(

[(1 + o(1))c]nnn

nne−n
√

n

)
.

This quantity is summable as long as ce < 1, and the statement follows from the Borel–Cantelli
lemma.

Second, for any positive ε, the event {τn ≥ c∗n(ln n)β}, where c∗ = 1 + ε, occurs finitely
often, almost surely. Indeed,

�̄ := �(c∗n(ln n)β ) = c∗n(ln n)β

[ ln (c∗n(ln n)β )]β
(1 + o(1)) = c∗n(1 + o(1)) ≥ (1 + ε/2)n

for large enough n by Lemma 3.4. Hence, since �̄ > n,

P(τn ≥ c∗n(ln n)β ) = P(N(c∗n(ln n)β ) ≤ n)

= e−�̄

(
1 + �̄ + �̄2

2! + · · · + �̄n

n!
)

≤ e−�̄(n + 1)
�̄n

n!

= e−�̄(n + 1)
�̄n

nne−n
√

2πn
(1 + o(1))

= (1 + o(1))

√
n

2π
exp

{
−n

[
�̄

n
− 1 − ln

�̄

n

]}
,

which is summable in n, as c∗ = 1 + ε implies that the expression in square brackets is
strictly positive (this follows from the easy fact that c − 1 − ln c > 0 for c > 1). Hence,
{τn ≥ c∗n(ln n)β} happens finitely often, almost surely, as stated.

Third, the event {τn+1 − τn ≥ 2(ln n)1+β} occurs finitely often, almost surely. This holds
because, for all sufficiently large n, τn+1 ≤ c∗(n + 1)(ln (n + 1))β , and hence, for t ≤ τn+1,

λ(t) ≥ 1

[ ln (c(n + 1)(ln (n + 1))β )]β
= 1 + o(1)

(ln n)β
,

and thus (τn+1 − τn) is stochastically smaller than an exponential random variable E with
parameter (1 + o(1))/(ln n)β . So, for all sufficiently large n,

P(τn+1 − τn ≥ 2(ln n)1+β ) ≤ P(E ≥ 2(ln n)1+β ) = 1

n2−o(1)
, (3.9)

which is summable in n, and we can apply the Borel–Cantelli lemma.
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Transience of continuous-time conservative random walks 11

FIGURE 2. Model B: Ŵn, the (projection of) a conservative random walk on R
2.

Using the previous arguments for horizontal and vertical components, we obtain

P(|Xn| ≤ 1) ≤ C√
n(ln n)β

, P(|Yn| ≤ (ln n)1+β ) ≤ (ln n)1+β · C√
n(ln n)β

= C ln n√
n

.

Again, similar to Theorem 3.2, the event {|Xn| ≤ ρ, |Yn| ≤ 2(ln n)1+β} has to happen infinitely
often almost surely for Z(t) to be recurrent.

Thus, it follows that

P(Z(t) visits [ − 1, 1]2 for t ∈ [τn, τn+1]) ≤ P(|Xn| ≤ 1, |Yn| ≤ 2(ln n)1+β ) + f (n)

≤ C2

n(ln n)β−1
+ f (n) + g(n),

where f and g are two summable functions over n, similar to Theorem 3.2. The right-hand
side is summable over n as long as β > 2. Hence, Z(t) visits [ − 1, 1]2 finitely often, almost
surely. �

4. Analysis of Model B

Recall that in Model B, the vectors fn are uniformly distributed over the unit sphere in R
d.

Throughout this section, we again suppose that ρ = 1 and we show that the process is not
1-recurrent. The proof for general ρ is analogous and is omitted.

Let Wn = (Xn, Yn, ∗, ∗, . . . , ∗) be the embedded version of the process Z(t) =
(X(t), Y(t), ∗, ∗, . . . , ∗); here, Xn and Yn (X(t) and Y(t) respectively) stand for the process’ first
two coordinates. We denote the projection of Z(t) (Wn respectively) on the two-dimensional
plane by Ŵ(t) = (X(t), Y(t)) (Ŵn = (Xn, Yn) respectively.) See Figure 2.

The following statement is quite intuitive.

Lemma 4.1. Suppose d ≥ 3, and let f = (f1, f2, . . . , fd) be a random vector uniformly dis-
tributed on the unit sphere Sd−1 in R

d. Then, for some γ > 0,

P
(√

f 2
1 + f 2

2 ≥ γ
)≥ 2

3
.
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12 S. BHATTACHARYA AND S. VOLKOV

Remark 4.1. The statement is trivially true for the case d = 2 as well.

Proof of Lemma 4.1. We use the following well-known representation (see, e.g., [2, Section
2.5]) of f:

f =
(

η1

‖η‖ , . . . ,
ηd

‖η‖
)

,

where ηi, i = 1, 2, . . . , are i.i.d. standard normal and ‖η‖ =
√

η2
1 + · · · + η2

d. For some large
enough A > 0,

P

(
max

i=3,...,d
|ηi| < A

)
= (�(A) − �( − A))d−2 ≥

√
2

3
,

where �(·) is the distribution function of the standard normal random variable. Also, for

some small enough a ∈ (0, A), P( maxi=1,2 |ηi| > a) ≥
√

2
3 . On the intersection of these two

independent events we have

f 2
1 + f 2

2 = η2
1 + η2

2

(η2
1 + η2

2) + (η2
3 + · · · + η2

d)
≥ a2

a2 + (d − 2)A2
=: γ 2.

�

Remark 4.2. In fact, we can rigorously compute

P(f 2
1 + f 2

2 ≥ γ 2) = P

(
η2

1 + η2
2

η2
1 + η2

2 + · · · + η2
d

≥ γ 2
)

= P

(
η2

1 + η2
2 ≥ γ 2

1 − γ 2
(η2

3 + · · · + η2
d)

)

= P

(
χ2(2) ≥ γ 2

1 − γ 2
χ2(d − 2)

)

=
∫∫

x≥(γ 2/(1−γ 2))y≥0

e−x/2

2
· yd/2−2e−y/2

2d/2−1�(d/2 − 1)
dx dy

=
∫ ∞

0
e−(y/2)·(γ 2/(2(1−γ 2))) · yd/2−2e−y/2

2d/2−1�(d/2 − 1)
dy = (1 − γ 2)d/2−1;

however, we do not really need this exact expression.

Lemma 4.2. Suppose d ≥ 2, and let Rk = {(x, y) ∈R
2 : k2 ≤ x2 + y2 ≤ (k + 1)2} be the ring of

radius k and width 1 centered at the origin. For some constant C > 0, possibly depending on d
and α,

P
(
Ŵ(1)

n ∈ Rk
)≤ Ck

n1+(2α/(1−α))
, P

(
Ŵ(2)

n ∈ Rk
)≤ Ck

n(ln n)2β

for all large n, where Ŵ(1)
t is the walk with rate (2.2) and Ŵ(2)

t is the walk with rate (3.8).

https://doi.org/10.1017/jpr.2024.46 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.46


Transience of continuous-time conservative random walks 13

Proof. Assume that the event E1 defined by (3.1) has occurred. We can write

Ŵn = (Xn, Yn) =
n∑

k=1

(τk − τk−1)f̃k

where f̃k = �k[e1 cos (φk) + e2 sin (φk)], φk, k = 1, 2, . . . , are uniformly distributed on
[−π, π ], and �k is the length of the projection f̃k of fk on the two-dimensional plane. Note
that the elements of the set {�1, η2, η3, . . . , φ1, φ2, φ3, . . . } are all independent. Also, define

D2 = {for at least half of the integers i ∈ [n/2, n] we have �i ≥ γ },
where γ is the constant from Lemma 4.1. Then P(Dc

2) ≤ 2e−n/36 by (2.1) and Lemma 4.1.
Let W̃n be the distribution of Ŵn ∈R

2 conditioned on E1 ∩D2, and

ϕW̃n
(t) =E eit·W̃n =E exp

{
i

n∑
k=1

t · f̃k(τk − τk−1)

}

be its characteristic function (here, t · f̃k = �k(t1 cos (φk) + t2 sin (φk))). We use the Lévy inver-
sion formula, which allows us to compute the density of W̃n, provided |ϕW̃n

(t)| is integrable:

fW̃n
(x, y) = 1

(2π )2

∫∫
R2

e−i(t1x+t2y)ϕW̃n
(t) dt1 dt2 ≤ 1

(2π )2

∫∫
R2

∣∣ϕW̃n
(t)
∣∣ dt1 dt2. (4.1)

Let �k = τk − τk−1. Since φ1, . . . , φn are i.i.d. Uniform[ − π, π ] and independent of
anything, we have

ϕW̃n
(t) =E

[
n∏

k=1

E
(
ei�k�k(t1 cos φk+t2 sin φk) | τ1, . . . , τn; �1, . . . , �n

)]=E

[
n∏

k=1

J0(‖t‖�k�k)

]

=⇒

|ϕW̃n
(t)| ≤E

[
n∏

k=1

|J0(‖t‖�k�k)|
]
,

where ‖t‖ =
√

t21 + t22, and J0(x) =∑∞
m=0 ( − x2/4)m/m!2 is the Bessel J0 function. Indeed, for

any x ∈R, setting x̃ = x
√

t21 + t22 and β = arctan (t2/t1), we get

E
[
eix(t1 cos φk+t2 sin φk)]= 1

2π

∫ 2π

0
eix(t1 cos φ+t2 sin φ) dφ = 1

2π

∫ 2π

0
eix̃( cos β cos φ+sin β sin φ)

dφ = 1

2π

∫ 2π

0
eix̃ cos (φ+β) dφ = 1

2π

∫ 2π

0
eix̃ cos (φ) dφ = 1

2π

∫ 2π

0
cos (x̃ cos (φ)) dφ = J0(x̃)

due to periodicity of cos (·), the fact that the function sin (·) is odd, and [1, (9.1.18)].
Let ξk be the random variable with the distribution of �k given τk−1. Then, recalling

that we are on the event E1, we get ξk � ξ̃ (1) for Ŵ(1)
n and ξk � ξ̃ (2) for Ŵ(2)

n , where ξ̃ (1)
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14 S. BHATTACHARYA AND S. VOLKOV

(ξ̃ (2) respectively) is an exponential random variable with rate 1/a1 (1/a2 respectively) with
a1 = c̃1nα/(1−α) and a2 = c̃2(ln n)β for some constants c̃1 > 0 and c̃2 > 0, and where ‘ζa � ζb’
denotes that random variable ζa is stochastically larger than random variable ζb. Consequently,
setting a = a1, ξ̃ = ξ̃ (1) or a = a2, ξ̃ = ξ̃ (2), depending on which of the two models we are
talking about, and Fk = σ (τ1, . . . , τk), we get

E[|J0(‖t‖�k�k)| |Fk−1, �k = �] =E |J0(‖t‖ξk�)|
≤E G(‖t‖ξk�)

≤E G(‖t‖ξ̃ �)

=
∫ ∞

0
a−1e−y/aG(‖t‖y�) dy

=
∫ ∞

0
e−uG(su) du

=
∫ ∞

0

e−u

4
√

1 + s2u2
du =: h(s, �), (4.2)

where s = a�‖t‖, since |J0(x)| ≤ G(x) by (A.1) and the facts that G(·) is a decreasing function
and ξk � ξ̃ .

We now estimate the function h(t, �). Since |J0(x)| ≤ 1, we trivially get 0 ≤ h(s, �) ≤ 1.
Additionally, for all s > 0,

h(s, �) ≤
∫ ∞

0

e−u

√
su

du =
√

π

s
=
√

π

a�‖t‖ .

Let n/2 ≤ j1 < j2 < · · · < jm ≤ n be the indices i ∈ [n/2, n] for which �i ≥ γ . Since |J0(x)| ≤ 1,
we have, from (4.2),

E

[
n∏

k=1

|J0(‖t‖�k�k)|
]

≤E

[
m∏

i=1

∣∣J0
(‖t‖�ji�ji

)‖
]

=E

[
E
(∣∣J0

(‖t‖�jm�jm

)∣∣ |Fjm−1, �jm

) m−1∏
i=1

∣∣J0
(‖t‖�ji�ji

)∣∣]

≤
√

π

aγ ‖t‖ ·E
[

m−1∏
i=1

∣∣J0
(‖t‖�ji�ji

)∣∣].

By iterating this argument for i = jm−1, jm−2, . . . , j1, we get

∣∣ϕW̃n
(t)
∣∣≤E

[
n∏

k=1

|J0(‖t‖�k�k)|
]

≤
(√

π

aγ ‖t‖
)n/4

(recall that m ≥ n/4 on D1).
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Transience of continuous-time conservative random walks 15

Now consider two cases. For ‖t‖ ≥ 2π
aγ

, part of the inversion formula gives

∫∫
‖t‖>2π/aγ

∣∣ϕW̃n
(t)
∣∣ dt1 dt2 ≤

∫∫
‖t‖≥2π/aγ

(
π

γ ‖t‖a

)n/8

dt1 dt2

=
(

π

aγ

)2 ∫ 2π

0
dθ

∫ ∞

2

r dr

rn/8

= 2π3

a2γ 2
· r2−n/8

2 − n/8

∣∣∣∣
∞

2
= o(2−n/8) (4.3)

by changing the variables t1 = (π/aγ )r cos θ , t2 = (π/aγ )r sin θ .
On the other hand, for ‖t‖ ≤ 2π/aγ , when � ≥ γ and thus σ := aγ ‖t‖ ≤ s,

h(s, �) =
∫ ∞

0

e−u du
4
√

1 + s2u2

≤
∫ ∞

0

e−u du
4
√

1 + σ 2u2

≤
∫ 1

0

e−u du
4
√

1 + σ 2u2
+
∫ ∞

1

e−u du
4
√

1 + σ 2u2

≤
∫ 1

0

(
1 − σ 2u2

50

)
e−u du +

∫ ∞

1
e−u du

= −
∫ 1

0

σ 2u2

50
e−u du +

∫ ∞

0
e−u du

= 1 − 0.0016 . . . σ 2 ≤ exp

{
− σ 2

700

}
= exp

{
−γ 2‖t‖2a2

700

}
,

since (1 + x2)−1/4 ≤ 1 − x2/50 for 0 ≤ x ≤ 7, and σ ≤ 2π < 7 by assumption. By iterating the
same argument as before, we get

ϕW̃n
≤ h(s, �)n/4 ≤ exp

{
−nγ 2‖t‖2a2

2800

}
.

Consequently,∫∫
‖t‖≤2π/aγ

∣∣ϕW̃n
(t)
∣∣ dt1 dt2 ≤

∫∫
‖t‖≤2π/aγ

exp

{
−nγ 2‖t‖2a2

2800

}
dt1dt2

≤ 1400

a2γ 2

∫ 2π

0
dθ

∫ ∞

0
exp

{
−nr2

2

}
r dr = 2800π

na2γ 2
(4.4)

by changing the variables t1 = (10
√

14/aγ )r cos θ , t2 = (10
√

14/aγ )r sin θ .
Finally, recalling that a1 ∼ nα/(1−α) for Ŵ(1)

t and a2 ∼ (ln n)β for Ŵ(2)
t , from (4.1), (4.3),

and (4.4) we obtain

f
W̃(1)

n
(x, y) ≤ O

(
1

n1+(2α/(1−α))

)
, f

W̃(2)
n

(x, y) ≤ O

(
1

n(ln n)2β

)
.
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FIGURE 3. A ray from Ŵn passes through the unit circle.

Hence,

P(Ŵn ∈ Rk) ≤ P(Ec
1) + P(Dc

2) + P(W̃n ∈ Rk)

= 4e−n/36 +
∫∫

(x,y)∈Rk

fW̃n
(x, y) dx dy

= 2πk ×

⎧⎪⎪⎨
⎪⎪⎩

O

(
1

n1+(2α/(1−α))

)
for W(1)

n ,

O

(
1

n(ln n)2β

)
for W(2)

n ,

since the area of Rk is π (2k + 1). �

Lemma 4.3. Suppose d ≥ 2 and Ŵn = r > 1. Then

P(‖Ŵ(t)‖ ≤ 1 for some t ∈ [τn, τn+1]) ≤ 1

2r
.

Proof. First, note that Ŵn lies outside the unit circle on R
2. The projection f̃n+1 of fn+1

on the first two coordinates’ plane has an angle φ uniformly distributed over [0, 2π ]. The
probability in the statement of the lemma is monotone increasing in τn+1, and hence is bounded
above by

P(the infinite ray from Ŵn in the direction f̃n+1 passes through the unit circle) = 2 arcsin (1/r)

2π

(see Figure 3.) Finally, arcsin (x) ≤ πx/2 for 0 ≤ x ≤ 1. �

Theorem 4.1. Let d ≥ 2 and the walk Z(t) have either the rate (2.2) with α ∈ (0, 1) or the rate
(3.8) with β > 2. Then Z(t) is transient a.s.

Proof. As mentioned before, we only show that the walk is not ρ-recurrent for ρ = 1.
To do that, it will suffice that, a.s., there will be only finitely many n such that the event
An = {‖Ŵ(t)‖ ≤ 1 for some t ∈ [τn, τn+1]} occurs. Indeed, fix a positive integer n. At this time,
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Ŵn ∈ Rk for some k ∈ {0, 1, 2, . . . }. According to Lemma 4.3,

P(An | Ŵn ∈ Rk) ≤

⎧⎪⎨
⎪⎩

1 if k = 0,

1

2k
if k ≥ 1.

Fix some very small ε > 0. Then

P(An) ≤
nα/(1−α)+ε∑

k=1

P
(
An | Ŵ(1)

n ∈ Rk
)
P
(
Ŵ(1)

n ∈ Rk
)+ P

(
An | ∥∥Ŵ(1)

n

∥∥≥ nα/(1−α)+ε
)

≤ Cnα/(1−α)+ε

n1+(2α/(1−α))
+ P

(
τn+1 − τn ≥ nα/(1−α)+ε − 1

)≤ C

n1+(α/(1−α))−ε
+ 3e−c∗

1nε

by (3.6) and Lemma 4.2. Hence,
∑

n P(An) < ∞ and the result follows from the Borel–Cantelli
lemma.

Similarly, in the other case,

P(An) ≤
2(ln n)1+β∑

k=1

P
(
An, Ŵ(2)

n ∈ Rk
)+ P

(
An | ∥∥Ŵ(2)

n

∥∥≥ 2(ln n)1+β
)

≤ 2C(ln n)1+β

n(ln n)2β
+ P(τn+1 − τn ≥ 2(ln n)1+β − 1) ≤ 2C

n(ln n)β−1
+ 1

n2

for all sufficiently large n by (3.9) and Lemma 4.2. Hence,
∑

n P(An) < ∞ for β > 2, and the
result again follows from the Borel–Cantelli lemma. �

Appendix A. Properties of the Bessel function J0

Let

J0(x) =
∞∑

m=0

( − 1)m (x/2)2m

(m!)2

be the Bessel function of the first kind. The following statement might be known, but we could
not find it in the literature.

Claim A.1. For all x ≥ 0,

|J0(x)| ≤ 1
4
√

1 + x2
=: G(x). (A.1)

Proof. From [15, Theorem 1 and (1)] we get (with ν = 0, μ = 3)

J2
0(x) ≤ 4(4x2 − 5)

π ((4x2 − 3)3/2 − 3)
, x ≥ 1.13.

This inequality also implies that

|J0(x)| ≤ 1
4
√

1 + x2
, x ≥ 1.13.
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FIGURE 4. |J0(x)| (red) and its upper bound G(x) (blue).

At the same time, for 0 ≤ x ≤ 2 (using [1, 9.1.14]),

J2
0(x) =

∞∑
k=0

( − 1)k (2k)!
(k!)4

(
x

2

)2k

≤ 1 − 2

(
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)2
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2

(
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2
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(
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288

(
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)8

,

and at the same time

1√
1 + x2

≥ 1 − 2

(
x

2

)2

+ 3

2

(
x

2

)4

− 5

9

(
x

2

)6

+ 35

288

(
x

2

)8

,

yielding (A.1). �

Observe as well that 0 ≤ G(x) ≤ 1/
√

x, and that G is a decreasing function for x ≥ 0; see
Figure 4.
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