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Abstract

Using a new proof technique of the first author (by adding a new vertex to a graph and creating
a total colouring of the old graph from an edge colouring of the new graph), we prove that the
TCC (Total Colouring Conjecture) is true for any graph G of order n having maximum degree at
least n — 4. These results together with some earlier results of M. Rosenfeld and N. Vijayaditya
(who proved that the TCC is true for graphs having maximum degree at most 3), and A. V.
Kostochka (who proved that the TCC is true for graphs having maximum degree 4) confirm that
the TCC is true for graphs whose maximum degree is either very small or very big.
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1. Introduction

Throughout this paper, all graphs are finite, simple and undirected. Let G
be a graph. We denote its vertex set, edge set, chromatic index and the
maximum degree of its vertices by V(G), E(G), x\ (G) and A(G) respectively.
If x e V(G), we denote by N(x) the neighbourhood of x and CIG{X) (or
simply d(x)) the degree of x. HFC E(G), then G - F is the graph obtained
from G by deleting F from G. If S c V{G), then G[S] and G - S denote
the subgraphs of G induced by 5 and V(G)\S respectively. The null graph
of order m is denoted by 0m. Other terms and notation not defined in this
paper can be found in [11].
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A total colouring n of a graph G is a mapping n: V(G) U E(G) —•{1,2,...}
such that

(i) no two adjacent vertices or edges have the same image, and
(ii) the image of each vertex x is distinct from the images of its incident

edges.
The total chromatic number Xi{G) of a graph G is the smallest integer k

such that G has a total colouring n having image set {1,2, . . . , k}.
From the definition of total chromatic number, it is clear that X2{G) >

A(G) + 1. Behzad [1] and Vizing [8, 10] made the following conjecture.

TOTAL COLOURING CONJECTURE. For any graph G, Xi{G) < A(G) + 2.

This conjecture was proved for complete graphs by Behzad, Chartrand and
Cooper [3]; for graphs G having A(G) < 3 by Rosenfeld [6] and Vijayaditya
[7]; for graphs G having A(G) = 4 by Kostochka [5]; for complete 3-partite
graphs, complete balanced r-partite graphs by Rosenfeld [6]; and for complete
r-partite graphs by Yap [12]. A survey on total colourings of graphs is given
in a recent paper by Behzad [2]. The main result of this paper is stated in
the abstract above.

We shall apply the following theorems.

THEOREM 1.1 (Rosenfeld [6], Vijayaditya [7], Kostochka [5]). For any
graph G having A{G) < 4, Xi(G) < A(G) + 2.

(An alternate, slightly simpler proof of Theorem 1.2 for A{G) — 3 can be
found in [12].)

THEOREM 1.2 (Vizing [9]). For any graph G having at most two vertices of
maximum degree, X\(G) = A(G).

(This theorem follows from some results of Vizing: see [11, Theorem 3.3
and Corollary 3.6].)

THEOREM 1.3 (Chetwynd and Hilton [4]). Let G be a connected graph of
order n with three vertices of maximum degree. Then xi (G) = A(G) + 1 if and
only if G has three vertices of degree n - 1 and the remaining vertices have
degree n — 2 (this implies that n is odd).
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(A proof of Theorem 1.3 can also be found in [11, page 53].)

2. Proof of main results

We shall also apply the following lemmas. The first lemma requires no
proof.

LEMMA 2.1. For any subgraph H of a graph G, Xi{H) < Xz{G).

LEMMA 2.2. Let G be a graph of order n and let A(G) = A. Suppose there
exists S c V(G) such that G[S] = 0r where r = n - A - 1. IfG - S contains a
matching M such that the graph G* obtained by adding a new vertex c* $ V(G)
toG-M and adding an edge joining c* to each vertex inG-S has chromatic
index A + 1, then Xi(G) < A + 2.

PROOF. We first note that A(G*) = A+1. Let n be a proper edge-colouring
of G* using the colours 1,2, . . . ,A+ 1. Then we can turn n into a total
colouring (f of G using the colours l , 2 , . . . , A + l , A + 2as follows:

q>{v) = n{c*v) for any v e V(G - S);

<p(v) = A + 2 for any v &S;

<p(e) — n{e) for any e e E(G - M); and

<p(e) — A + 2 for any e e M.

We now prove our main results.

THEOREM 2.3. For any graph G of order n having A(G) = n - 3, Xi{G) <
n-l.

PROOF. By Lemma 2.1, we can assume that G is maximal, that is, for any
two nonadjacent vertices x and y of G, either d{x) = n - 3 or d{y) — n - 3.

Suppose x and y are two nonadjacent vertices of G, and d(x) = n - 3. Let
H = G- {x,y}, Vi = {ze V{G) \ d(z) = n - 3}, and M be a matching in H
such that \V{M) n V\\ is maximum among all matchings in H.

We first prove that V\ contains at most one Af-unsaturated vertex different
from x and y. Suppose otherwise. Let u and v be two M-unsaturated vertices
in V\. Clearly uv £ E(G). By Theorem 1.1, we can assume that A(G) > 5.
Thus there exist at least three vertices ai,02,^3 in H such that a,« € E{H)
for i = 1,2,3. Clearly such a, is M-saturated. Thus there exist distinct
vertices b\,bi,bs in H such that a\b\, 02^2. ^3^3 £ M. (Note that fe, ^ v
for any / = 1,2,3 but bj can be a aj for some j ^ i.) If bjV e E{H) for
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some i = 1,2,3, then M' = (Af\{a,6,}) U {a,-u,6,-«} is a matching in H such
that \V{M') n V\\ > \V(M) n Vi\, a contradiction to our assumption. (We
shall call such an argument the "ENLARGE-MATCHING ARGUMENT.") Hence
biv £ E(H) for all / = 1,2,3. This implies that d(v) < n - 4 (in fact, since
M is also not adjacent to v in G,d(v) < n - 5), which is false. Hence V\
contains at most one A/-unsaturated vertex different from x and y.

Finally, let G* be the graph obtained by adding a new vertex c* $ V(G)
to G - M, and adding an edge joining c* to each vertex in G - {x,y}. Then
A((J*) = n - 2 and G* has at most two vertices of (maximum) degree n - 2,
namely, c* and z, where z is an Af-unsaturated vertex in V\ (if V\ contains
such an Af-unsaturated vertex). Hence, by Theorem 1.2, *i((7*) = n - 2.
Theorem 2.3 now follows from Lemma 2.2.

THEOREM 2.4. For any graph G of order n having A(G) = n - 4, X2(G) <
n-2.

PROOF. By Lemma 2.1, we can assume that G is maximal, that is, for any
two nonadjacent vertices x and y of G, either d(x) = n - 4 or d{y) = n - 4.
By Theorem 1.1, we can assume that A(G) > 5, that is, n > 9.

Let V\ - {v G V{G) | d(v) = n-4}. We first settle the case that G contains
three vertices x,y and z such that G[{x,y, z}] = O3.

Let M be a matching in H = G - {x,y, z} such that \V{M) n V\\ is max-
imum among all matchings in H. We first prove that V\ contains at most
two Af-unsaturated vertices different from x,y and z. Suppose otherwise.
Let u,v and w be three Af-unsaturated vertices in Vx - {x,y,z}. Clearly
G[{u,v,w}] = O3. Since A(G) > 5, there exist at least two vertices a\ and ai
in H such that a\u, aiu e E(H). It is clear that a\ and ai are M-saturated.
Let i i , i 2 e V(H) be such that a\b\, a2b2 e M. (Note that b\,bi£ v, w, but
bt can be a, for some j ^ 1.) Using the "Enlarge-Matching Argument", we
can show that b\v, b2v $ E(H). Hence b\, b2, u, w $ N(v). This implies
that d(v) < n - 5 which is false. Hence V\ - {x,y, z} contains at most two
Af-unsaturated vertices, u and v say.

Let G* be the graph obtained by adding a new vertex c* ^ V(G) to G - M,
and adding an edge joining c* to each vertex in G - {x,y, z). Then G*
contains at most three vertices of (maximum) degree n - 3, namely, c*, u
and v. Hence by Theorems 1.2 and 1.3, Xi(G*) = n — 3. Thus, by Lemma
2.2, xi{G) <n-2.

From now on we assume that G does not induce O3.
Let Xi,yi and x2,y2 be two pairs of nonadjacent vertices in G such that

{xi,yi}n{x2,y2} = 0> ̂ (-Xi) = n-4andd(x2) = n-4. Let Afi be a matching
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in Hi = G - {xi,yi} such that
(1) \V(Mi) n V\\ is maximum among all matchings in H\.
Using an argument similar to the proof of Theorem 2.3 we can prove that

Vi contains at most one A/j-unsaturated vertex, say u, different from xi and
y\-

Next, let Gi=G-Mi and let

{v e V{Gi) | dGl(v) = n - 5} U {x,} if d{yx) <n-6,

{ve V{GX) \dGl(v) = n-5}U{xuy\} ifd(yi)>n-5.
Let M2 be a matching in H2 = G\ - {x2,y2} such that
(2) u e V{M2) (if H\ contains an Mi-unsaturated vertex u) and \V{M2) n

V2\ is maximum among all matchings in H2.
(Note that here we assume that u ̂  x2 or y2. However, if u = x2 say, then

since G does not induce O3, G contains a vertex x2 ̂  u, x\,y\, such that x2

and y2 are not adjacent. Hence we can replace X2 by x2.)
We now show that V2 contains at most one A/2-unsaturated vertex different

from Xi and y\. Suppose otherwise. Let v and w be two A/2-unsaturated
vertices in V2 - {xj.^i}. Clearly vw £ E(H2). We can in fact assume that
vw £ E(G), that is, vw £ M\. (Suppose vw e M\. Since d{v) > 5, there
exist at least two vertices ai and a2 in H2 such that a\V, a2v e E(H2). Clearly
ai and a2 are A/2-saturated. Let bi € V(H2) be such that a,i», e M2, i— 1,2.
We note that bt ^ w but bt can be a, for 7 / /. By the "Enlarge-Matching
Argument", bjW $ E(H2), in fact, since vw e A/j, we have bjW ^ E(G),
i = 1,2. It is clear that M2 = (M2\{aib\}) U {a\v} is a matching in H2 such
that |F(A/^) n V2\ > \V{M2) n V2\. By (2), |F(A/^) n V2\ = \V(M2) n K2| and
dG{{b\) > n - 5, from which it follows that the two A/2-unsaturated vertices
bi, w in V2 are not adjacent in G. We note that if u = 61, then the condition
(2) that u e V(M'2) is violated. However, if this happens, we can replace a\
and b\ by a2 and b2.)

We continue our proof by considering three cases separately.

CASE 1: n > 11. In this case there exist at least four vertices ai, a2, a^, a4 in
H2 such that atv e E(H2), i = 1,2,3,4. Clearly each at is A/2-saturated. Let
bi € V(H2) be such that a,*, e M2, i = 1,2,3,4. By the "Enlarge-Matching
Argument", bjW £ E(H2). Hence v,bi,b2,bi,b^ £ NHl(w). This implies that
d{w) <n - 5 which is false.

CASE 2: n = 10. In this case there exist at least three vertices a\,a2,ai in
H2 such that atv e E(H2). Clearly each a, is A/2-saturated. Let bt e V{H2)
be such that a,6, e M2, i = 1,2,3. By the "Enlarge-Matching Argument,"
bjW $ E(H2), i = 1,2,3. Suppose {aua2,ai} n {bub2,bi} = <t>. Since

> 3 and v,b\,b2,bi £ NH2{W), we have a,tu e £'(^2) and thus

https://doi.org/10.1017/S1446788700033176 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033176


450 H. P. Yap, Wang Jian-Fang and Zhang Zhongfu [6]

bjV <£ E(H2), i = 1,2,3. (Otherwise M'2 = (Af2\{a,6,}) U {biV,ajiv} is
a matching in H2 such that \V{M'2) n V2\ > \V(M2) n V2\, which contra-
dicts (2).) Hence G[{v,w,bj}] = 03 for at least one i G {1,2,3} which
is false. Hence, without loss of generality, we can assume that b\ = a2

and b2 = ax. Now let {cx,c2} = V(G)\{x2,y2,v,w,ai,a2,ai,b3}. Since
dH2(

w) > 3 and v,a\,a2,bi $ NHl(w). we have a^w, c\w, c2w e E(H).
Hence C\C2 G M2 which in turn implies that C\v, c2v $ E{H2). Also it is clear
that biV $ E{H2). The partial subgraph of H2 is depicted in Figure l(a) in
which dotted lines indicate nonadjacency in H2. Now if bid\ G E(H2), then
{b-idi,a2v,a-iW,c\c2) is a perfect matching in H2, contradicting our assump-
tion. Hence b$ai £ E(H2). Similarly, bia2,bsC\,b-$c2 £ E(H2). Next, since
H2[{v,w,bj}] = O3, and G does not induce O3, we have either b^w e Mi
or biV e M\. Suppose b^w e M\. Since H2[{v,b^,c\)} = O3 and G does
not induce O3, we have c\v G M\. Consequently G[{v,bi,c2}] = O3 (see Fig-
ure l(b); the wavy lines denote edges in Mi), contradicting our assumption.
On the other hand if b^v G M\, then by a similar argument, we have either
G[{w,b3,a\}] = O3 or G[{w,bs,a2}] = O3, again contradicting our assump-
tion.

FIGURE 1

b)

CASE 3: n = 9. In this case there exist at least two vertices a\,a2 in
H2 such that a\v,a2v G E{H2). Clearly ct\ and a2 are A/2-saturated. Let
bi,b2e V{H2) be such that aibi, a2b2 G M2. By the 'Enlarge-Matching Argu-
ment", b\w, b2w £ E(H2). Suppose {a\,a2}n{bi,b2} = 0. Since dHl(w) > 2
and v,b\,b2 £ NHl{w), we have either a\w G E(H2) or a2w G E(H2). With-
out loss of generality, we assume that a\tv G E(H2). Then by the ''Enlarge-
Matching Argument", b\v £ E(H2). Hence H2[{v, w, b\}] - O3. Since G does
not induce O3, we have either b\w E M\ or b\v € Mi. If biiv G Mi, then
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E E(H2) because G[{v,w,b2}] # O3. Hence by the "Enlarge-Matching
Argument", a2w £ E{H2). Let c be the remaining vertex in H2. Since
dH2(

w) > 2, we G E(H2). Hence M'2 = {wc,aibi,a2b2} forms a match-
ing in H2, and v is the only A/j-unsaturated vertex in Hi, contradicting our
assumption. On the other hand if {ai,a2} n {bi,b2} ^ 0 , then b\ = a2 and
b2 = a\. By symmetry, Hi has two vertices C\,ci such that c\Ci e Mi and
wc\,wci € E{Hi). By the "Enlarge-Matching Argument," a\,ai £ NH2(w),
c\,ci $ NH2(V). Let c be the remaining vertex in H2. Then vc, we $. E{Hi)
and since G does not induce O3, either vc & M{ or we e M\. Without loss
of generality, assume that vc G. M\. Since a.\,ai $ NH2(w), at least one of
a.\ and ai is not adjacent to w in G, say wa.\ <$. E{G); then ca\ e E{G),
otherwise G[{a\,c, w}] = O3. Hence M'2 = {cai,vai,C\Ci} forms a matching
in Hi, and w is the only A/j-unsaturated vertex in H2, again contradicting
our assumption.

Finally, let G* be the graph obtained by adding a new vertex c* £ V(G) to
G-M\ -Mi and adding an edge joining c* to each vertex in G-{x\,y\, xi, y{\.
Then A(G*) = « - 4 and G* contains at most three vertices of (maximum) de-
gree n -4 , namely, c*, u (an A/i-unsaturated vertex) and v (an A/2-unsaturated
vertex). Consequently, by Theorems 1.2 and 1.3, Xi(G*) = n-4. Let n be a
proper edge-colouring of G* using the colours 1,2,..., n - 4. Then re can be
turned into a total colouring q> of (7 using the colours 1,2,..., n - 4, n - 3,
n - 2 as follows:

) for any v e F (G- {xuy{,xi,y2});
= n - 3 = 0>()>i), P t e ) = n - 2 = (p{y2);

(p{e) = n(e) for any e e E(G - Mi - M2);

<p(e) — n - 3 for any e e. M\\ and

= n - 2 for any e e A/2.

REMARKS. Since the TCC is true for complete graphs (Behzad, Chartrand
and Cooper [3]), by Lemma 2.1 it is also true for graphs G of order n having
A(G) = n - 1. Furthermore, suppose G is a graph of order n having A(G) =
n-2. Then applying the proof technique of Theorem 2.3, we can show that
Xi{G) < n. Combining these facts and Theorems 2.3, 2.4, we have known
that the TCC is true for graphs G of order n having A(G) > n - 4.
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Note Added in Proof

A. J. W. Hilton informed the first author that he and A. G. Chetwynd had
also used (independently) the same new proof technique in their study of
total colourings of regular graphs of high degree.
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