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Personality tests employing comparative judgments have been proposed as an alternative to Likert-
type rating scales. One of the main advantages of a comparative format is that it can reduce faking of
responses in high-stakes situations. However, previous research has shown that it is highly difficult to obtain
trait score estimates that are both faking resistant and sufficiently accurate for individual-level diagnostic
decisions. With the goal of contributing to a solution, I study the information obtainable from comparative
judgments analyzed by means of Thurstonian IRT models. First, I extend the mathematical theory of
ordinal comparative judgments and corresponding models. Second, I provide optimal test designs for
Thurstonian IRT models that maximize the accuracy of people’s trait score estimates from both frequentist
and Bayesian statistical perspectives. Third, I derive analytic upper bounds for the accuracy of these trait
estimates achievable through ordinal Thurstonian IRT models. Fourth, I perform numerical experiments
that complement results obtained in earlier simulation studies. The combined analytical and numerical
results suggest that it is indeed possible to design personality tests using comparative judgments that yield
trait scores estimates sufficiently accurate for individual-level diagnostic decisions, while reducing faking
in high-stakes situations. Recommendations for the practical application of comparative judgments for the
measurement of personality, specifically in high-stakes situations, are given.

Key words: Comparative judgments, forced-choice format, faking resistance, Thurstonian IRT models,
ordinal models, optimal experimental design.

Likert-type rating scales are still by far the most popular choice to measure personality traits.
However, they are susceptible to several response biases that threaten the validity and accuracy
of the obtained traits scores, including acquiescence, extremity/centrality biases, or leniency ten-
dencies (Paulhus & Vazire, 2007; Wetzel et al., 2016). As a potential remedy, questionnaires
that employ comparative judgments between two or more alternative items have gained a lot of
attention (Brown & Maydeu-Olivares, 2013; Cheung & Chan, 2002; Paulhus, e.g., 1991; Saville
& Willson, 1991). This is true specifically for forced choice (FC) formats where the comparative
judgments can be expressed as a set of binary decisions on item pairs, forcing respondents to
either endorse one or the other item (e.g., Brown & Maydeu-Olivares, 2011; Hontangas et al.,
2015). Perhaps most importantly, FC formats and comparative judgments more generally have the
potential to reduce faking of responses, as they prevent all items from being endorsed maximally
at the same time (Cao & Drasgow, 2019; Wetzel et al., 2016). Faking tendencies tend to occur
particularly in high-stakes situations, such as personal selection, where an individual’s responses
and the subsequently estimated trait scores are used for inter-individual decision making (Cao &
Drasgow, 2019). If the faking tendency varies across individuals in a given population, this will
strongly bias the obtained trait scores obtained from any fakeable questionnaire, thus invalidat-
ing their use for individual-level diagnostic decisions. Accordingly, developing faking-resistant
personality questionnaires that yield highly accurate trait estimates even in high-stakes situations
would be amajor breakthrough for the fields of psychological diagnostics, differential psychology,
and their areas of application.
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In the most simple case, scoring such comparative tests proceeds by counting how often each
of the items is endorsed, a procedure often referred to as classical scoring. For a long time, the
lack of alternatives to the classical scoring procedure has been a major barrier to the application
of comparative judgments in the context of personality measurement (Baron, 1996; Hicks, 1970).
This is because the classical scoring implies the within-person score mean across traits to be fixed
by design of the scoring rule (Baron, 1996). Hence, we obtain only ipsative trait estimates that
enable comparisons within but not across individuals. For example, we can compare extraversion
to emotional stability of Person A but not extraversion of Person A to extraversion of Person B.
Of course, for individual-level diagnostic decisions, we need normative trait scores that enable
comparisons both within and across individuals.

1. Obtaining Normative Traits Scores from Comparative Judgments

The Thurstonian Item Response Theory (TIRT) model has been proposed as a way to obtain
normative trait scores from FC questionnaires (Brown & Maydeu-Olivares, 2011; 2012). It is
perhaps the most widely applied IRT model for FC data and belongs to a wider class of models
that all aim to obtain normative trait scores from such data (see Brown, 2016a for an overview and
unifying framework). Although these models differ from each other in the details of how the latent
person and itemparameters relate to the comparative responses, they all share the samemechanism
bywhich they can achieve normative scoring: differential weighting of responses.When responses
are differentially weighted, the within-person score means may vary across individuals and so
between-person comparisons become possible, provided that the weighting itself is valid. From
the perspective of (latent) linear factor analysis models, including TIRT models (Brown, 2016a),
there are two ways to achieve differential weighting: First, ensure that factor loadings differ
between the compared items. Second, invert some of the items so that positively keyed items
are also compared to negatively keyed items, so-called unequally keyed item pairs (Bürkner et
al., 2019a). The second mechanism can be understood as an extreme case of the former because
inverted items have, by definition, negative factor loadings, which implies particularly strong
factor loading differences when compared to items with positive factor loadings.

Various simulation studies have demonstrated that normative scores can indeed be obtained by
means of TIRT (or comparable)modeling approaches (Brown&Maydeu-Olivares, 2011; Bürkner
et al., 2019a; Lee & Smith, 2020; Schulte et al., 2020), although satisfactory estimation accuracy
cannot easily be achieved under all practically relevant conditions (see Sect. 1.1 for details).
Several real-world studies have compared TIRT-scored FC questionnaires to rating scales and
have found that FC estimates correlate substantially with corresponding rating scale estimates
(Guenole et al., 2018; Lee et al., 2018; Watrin et al., 2019). Where investigated, validities were
also mostly similar between the two formats (Anguiano-Carrasco et al., 2015; Brown & Bartram,
2013; Lee et al., 2018; Watrin et al., 2019). At least, no consistent pattern favoring one over the
other format could be found.With regard to fakability, meta-analytic evidence indicates that score
inflation between honest and faking conditions can be lower for FC than for rating scale estimates
if the FC comparisons are set up with faking resistance in mind (Cao&Drasgow, 2019). However,
it remains unclear if score inflation alone captures all relevant aspects of fakability (Schulte et
al., 2021). More detailed literature reviews on applications of FC questionnaires can be found in
Bartram (2007) and Cao and Drasgow (2019).

As the responses to FC item pairs or blocks can be represented by a set of binary indicators,
they contain comparable little information about the model parameters. To increase the informa-
tion per pairwise comparison, generalizations of the original (binary) TIRTmodel for the analysis
of other comparative judgment formats have been proposed as well. This includes models for
proportion-of-total (compositional) formats (Brown, 2016b) and for (ordinal) graded paired com-

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 20:37:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


PAUL-CHRISTIAN BÜRKNER 1441

parisons (Brown &Maydeu-Olivares, 2018, see also Sect. 2). Regardless of the specific response
format, the mechanism by which normative scores can be obtained from comparative judgments
(i.e., differential weighting of responses) remains the same.

1.1. The Paradox of Comparative Judgments in High-Stakes Situations

In order for comparative judgments to have the potential to be faking resistant in high-
stakes situations, the items being compared need to be equally socially desirable (Bürkner et
al., 2019a; Wetzel et al., 2020). Otherwise, we can expect almost all individuals to choose the
more socially desirable option independent of their true personally traits (Bürkner et al., 2019a),
which is indeed what happens in practice (e.g., Schulte et al., 2021). This response behavior is
of course understandable, but de-facto renders responses on pairs of items with differing social
desirability completely uninformative. Designing pairs of equally keyed items that are equally
socially desirable is by no means trivial and requires careful item design and pretesting under
realistic conditions, but it can be done (e.g., Wetzel et al., 2020). Trying to achieve the same
for unequally keyed pairs is much more complicated though: Items keyed in the objectively less
desirable direction would have to appear as equally desirable as items keyed the objectively more
desirable direction (Bürkner et al., 2019a).

On the other hand, existing research suggests that, with few exception discussed below,
including unequally keyed item pairs is required to obtain normative trait scores from FC ques-
tionnaires (Brown & Maydeu-Olivares, 2011; Bürkner et al., 2019a; Lee & Smith, 2020; Schulte
et al., 2020). Otherwise, estimated trait scores remain partially ipsative and have insufficient accu-
racy for use in individual-level diagnostic decisions. Accordingly, we are stuck between two bad
options leading to the same outcome in the end: Either include unequally keyed item pairs and
risk them being completely uninformative in practice, or directly include only equally keyed item
pairs and still end up with highly inaccurate trait scores.

How can we solve this paradox? Two potential paths toward a solution have been identified.
First, we can develop unequally keyed item pairs where both items have roughly the same social
desirability and can thus be reasonably applied in high-stakes situations (see Wetzel et al., 2020
for some initial evidence in this direction). Second, we can carefully design tests consisting only
of equally keyed item pairs so that they alone are sufficient to ensure satisfactory estimation
accuracy. It is this second path that I will focus on below, approaching it mainly from a statistical
perspective. For example, how shall we choose factor loadings in purely equally keyed designs
to maximize information on the trait scores? This is a question of optimal design (see Sect. 1.2).
Also, how can we reduce the information lost through the binary decision (or ranking) process
that is used in FC formats? This leads to the idea of using rating scales to indicate the degree of
preference for one or the other item, instead of giving respondents only a binary choice to express
their preferences. Modeling the degree of preferences in turn implies the application of ordinal
models of comparative judgments (Brown & Maydeu-Olivares, 2018, see Sect. 2 for details).
Intuitively, using an ordinal comparative rating with more than two possible response categories,
and a corresponding ordinal model, should yield more information about trait scores than a binary
decision. This is indeed the case, as shown in Online Supplement A.

Another direction leading along the second path is the observation initially made by Baron
(1996) that measuring a higher number of traits can lead to a noticeable increase in estimation
accuracy of trait scores. This can go up to a point where sufficient to excellent accuracy can be
achieved using only equally keyed item pairs (see Bürkner et al., 2019a; Schulte et al., 2020 for
extensive simulations with up to 30 traits). While Baron (1996) provided some explanation for
this behavior (see Online Supplement E), the understanding of why higher number of traits can
improve estimation accuracy is still incomplete and required further investigation (see Sect. 4.3).
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In summary, there remain a lot of open research questions related to the applicability of
comparative judgments to measure personality in high-stakes situations. Although the present
research was motivated primarily by these questions, the obtained results apply to comparative
judgments more generally independent of the specific application context.

1.2. Optimal Design in IRT

In TIRT models and IRT more generally, we aim for an efficient and accurate estimation of
person and/or item parameters. Toward this goal, applying principles of optimal (experimental)
design can be highly beneficial (Atkinson et al., 2007). In the context, one usually distinguishes
between two types of optimal design problems: optimal test designs and optimal sampling designs.
In the former, we select items with specific properties for the efficient estimation of person
parameters. In the latter, we select people with specific trait scores for the efficient estimation
of item parameters. The designs studied in this paper are all optimal test designs, that is, item
parameters are treated as known and, at least for the purpose of mathematical argumentation,
as freely selectable in order to optimize the efficiency of person parameter estimation. In the
literature, optimal designs are investigated from both frequentist and Bayesian perspectives, and
I use both perspectives in the present paper as well (see Sect. 3.1 and Online Supplement B,
respectively).

In order to quantify the amount of information contained in data y about model parameters
η, optimal design utilizes the Fisher information matrix (or simply Fisher information) that is
generally defined as

I(η) := Ey

[
d l(η)

d η

d l(η)

d ηT

]
, (1)

where l(η) denotes the log-likelihood of the model evaluated at parameter values η. In words, the
Fisher information is the square of the log-likelihood’s gradient with respect to the parameters
in expectation over possible data (Lehmann & Casella, 2006). The Fisher information plays a
crucial role in both frequentist and Bayesian statistics and constitutes an important tool to study
theoretical properties ofmodels. For example, in frequentist statistics, the Fisher information is the
inverse of the covariance matrix of an (asymptotically) efficient estimator (Lehmann & Casella,
2006). Understanding the Fisher information of a model provides important insights about how
accurately parameters can be estimated from a given study design. Thus, the Fisher information
plays a major role also in this paper.

1.3. Summary of Contributions

The primary goal of this paper is to enable accurate and efficient estimation of people’s
latent traits using models of comparative judgments, while keeping an eye specifically on the
applicability under high-stakes situations. Toward achieving this goal, the paper contributes to the
psychological and statistical literature in several ways: First, I extend the mathematical theory of
ordinal comparative judgment models with a specific focus on TIRTmodels (Sect. 2.1 and Online
Supplement A). Second, I provide optimal test designs for comparative judgments that maximize
estimation accuracy of people’s traits from both frequentist and Bayesian statistical perspectives
(Sect. 3.1 and Online Supplement B, respectively). Third, I derive analytic upper bounds for the
accuracy of these trait estimates achievable through ordinal comparative judgments and corre-
sponding TIRT models (Sect. 3.3). Fourth, I perform numerical experiments that complement
results obtained in earlier simulation studies (Sect. 4) and specifically explain why measuring a
higher number of traits can be beneficial for estimation accuracy (Sect. 4.3). Fifth and lastly, I
extend recommendations for the practical application of paired comparisons for the measurement
of personality, specifically in high-stakes situations (Sect. 5). All mathematical proofs are pro-
vided in Appendix A and materials required to replicate the numerical results can be found on
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OSF (https://osf.io/2g76w/). The online supplement containing additional analytical results and
numerical experiments can also be found on OSF.

2. Ordinal Thurstonian IRT Models

Building on Thurstone’s law of comparative judgment (Thurstone, 1927), TIRT models are
used to describe individuals’ responses on item pairs (or item blocks represented by a set of
item pairs) using a latent variable approach (Brown & Maydeu-Olivares, 2011; 2012). Under a
Thurstonian model, we assume that each item i has a latent utility u pi that describes the item’s
psychological value or desirableness for person p. Assuming a one-dimensional linear factor
structure for each item (Brown & Maydeu-Olivares, 2011; Bürkner et al., 2019a), such that item
i loads on trait t , we define

u pi := λiηpt + εpi (2)

where ηpt is the trait score of person p on trait t , λi is the factor loading of the item i , and εpi
is the person and item-specific unique factor considered an error term. In a pairwise comparative
format, the utilities of two items i1 and i2 are subtracted to yield the latent response ỹpn of person
p on item pair n:

ỹpn := u pi1[n] − u pi2[n] = (λi1[n]ηp,t1[n] + εp,i1[n]) − (λi2[n]ηp,t2[n] + εp,i2[n]), (3)

where i1[n] and i2[n] denote the 1st and 2nd item belonging to the nth pair, which load on the
trait t1[n] and t2[n], respectively. Overall, a total number of T traits is measured. The unique
factors εpi are assumed to be normally distributed with mean zero and standard deviation ψi .
The corresponding variance ψ2

i is called the uniqueness of the i th item. Item parameters can be
standardized, without loss of information in person parameters, by setting ψ2

i = 1 − λ2i . I will
use standardized item parameters throughout in this paper. Person parameters ηp are assumed to
be normally distributed with mean 0 and covariance matrix �. The covariance matrix is denoted
as � in Brown and Maydeu-Olivares (2011), but I use � here instead, because the cumulative
distribution function of the standard normal distribution is also denoted as �. For identification,
the marginal variances of ηp are fixed to 1 so that � is also the correlation matrix of ηp. As
a result of these assumptions, ỹpn is normal distributed with mean zero and standard deviation

ϕn :=
√

ψ2
i1[n] + ψ2

i2[n] (Brown & Maydeu-Olivares, 2011; 2018).

In practice, we can never observe ỹpn directly but only its categorized version ypn that is
the response of person p to item pair n on a binary or ordinal (Likert) scale (Brown & Maydeu-
Olivares, 2018). Formally,we assume that the observed response ypn arises from the categorization
of ỹpn based on a vector τn = (τn1, . . . , τnK ) of ordered inner thresholds that partition the values
of ỹpn into the K + 1 observable categories:

ypn = k ⇔ τn(k−1) < ỹpn ≤ τk for 1 ≤ k ≤ K + 1. (4)

For notational convenience, the outer thresholds are set to τn0 = −∞ and τn(K+1) = ∞. Taken
all of these assumptions together (Brown & Maydeu-Olivares, 2018), the probability that person
p selects response category ypn = k on item pair n is given by

p(ypn = k | ηp) = �

(
τnk − 
nηp

ϕn

)
− �

(
τn(k−1) − 
nηp

ϕn

)
, (5)
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where 
nηp := λi1[n]ηp,t1[n] − λi2[n]ηp,t2[n] is the systematic part of ỹpn and � denotes the
cumulative distribution function of the standard normal distribution with corresponding density
function φ. The binary TIRT model (Brown & Maydeu-Olivares, 2011; 2012) arises as a special
case of the ordinalTIRTmodelwhen the comparative judgments have only two response categories
(i.e., K = 1). Conversely, in the theoretical case of infinite response categories (i.e., K = ∞), the
ordinal TIRTmodel becomes linear factor model (3) on the latent continuous response ỹ (Schmidt
& Schwabe, 2015). Thus, the ordinal TIRTmodel bridges the gap between the binary TIRTmodel
as a lower bound and a latent linear factor model as an upper bound (see Online Supplement A
for technical details).

Ordinal comparative judgments are typically employed directly in the form of item pairs
instead of in blocks of more than two items (Brown & Maydeu-Olivares, 2018; Schulte et al.,
2021). Accordingly, in the following, I will assume to have measured item pairs directly. This
comes without loss of generality as blocks of more than two items can be expressed equivalently
by a set of item pairs (subject to certain constraints on the item parameters, Brown & Maydeu-
Olivares, 2011; Bürkner et al., 2019a). As a result, the above formulation of Thurstonian IRT
models naturally extends to blocks of items in that such blocks simply increases the total number
of item pairs implied by a questionnaire.

2.1. Fisher Information of Thurstonian IRT Models

Below, I will study the Fisher information of ordinal TIRTModels with respect to the person
parameters η assuming the item parameters λ,ψ , and τ to be known; an approach used commonly
in the literature (Atkinson et al., 2007; van der Linden & Hambleton, 2013). For this purpose, I
will rewrite Eq. (5) in terms of an equivalent ordinal regression model (Bürkner & Vuorre, 2019).
This simplifies the notation andmakes important model properties more visible. Define the design
matrix X ∈ MatrixN×T of the regression model as

Xnt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λi1[n]
ϕn

if i1[n] �= i2[n] and item i1[n] loads on factor t

−λi2[n]
ϕn

if i1[n] �= i2[n] and item i2[n] loads on factor t
λi1[n]−λi2[n]

ϕn
if both item i1[n] and i2[n] load on factor t

0 otherwise,

(6)

and define the standardized thresholds as αnk := τnk/ϕn . For notational convenience, I will drop
the person index p and simply write η in the following unless where specifically required to avoid
ambiguity. Then, the ordinal TIRT model can be written equivalently as an ordinal regression
model with

p(yn = k | η) = �(αnk − Xnη) − �
(
αn(k−1) − Xnη

)
(7)

where Xn is the row vector denoting the nth row of design matrix X . Note that this is simply a
rewritten version of Eq. (5). Now define

InK (η) :=
K+1∑
k=1

(
φ (αnk − Xnη) − φ

(
αn(k−1) − Xnη

))2
�(αnk − Xnη) − �

(
αn(k−1) − Xnη

) , (8)

which I will call the information factor (of the nth item pair based on K thresholds) for reasons
that become apparent soon. Using basic calculus, it can be shown that the Fisher information
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matrix of the person parameters η equals

ITIRT(η) =
N∑

n=1

InK (η)XT
n Xn (9)

(see Brown&Maydeu-Olivares, 2018; Samejima, 1969, or Online Supplement A for derivations).
In the limiting case of infinite response categories, ITIRT(η)will converge to the informationmatrix
of a normal linear regression model (Schmidt & Schwabe, 2015, see also Online Supplement A).
It is well known (e.g., Atkinson et al., 2007) that the Fisher information matrix of the regression
coefficients of a normal linear regression model is given by

I(η) =
N∑

n=1

XT
n Xn (10)

Thus, we obtain the following natural limits of the information factor:

Corollary 2.1. Let � be the cumulative distribution function of the standard normal distribution
with corresponding density function φ, and let (sk)0≤k≤K+1 be a series of ordered real values
such that −∞ = s0 ≤ s1 ≤ . . . ≤ sK ≤ sK+1 = ∞. Then, for finite K , the following inequalities
hold:

0 ≤
K+1∑
k=1

(φ(sk) − φ(sk−1))
2

�(sk) − �(sk−1)
< 1. (11)

Moreover, if limK→∞ �(sk) − �(sk−1) = 0 for all k ∈ {1, . . . , K }, then
∞∑
k=1

(φ(sk) − φ(sk−1))
2

�(sk) − �(sk−1)
= 1. (12)

Corollary 2.1 implies that 1 − InK (η) can be interpreted as the percentage of information
lost through the response categorization process during measurement of item pair n. If we could
directly observe the latent variable ỹn underlying the observed response yn , we would have
InK (η) = 1 and no information would be lost through response categorization. Of course, mea-
suring ỹn is impossible in reality, but InK (η) still approaches 1 rather quickly as K increases,
provided that the threshold vector τn roughly has mean 0 (see Figure 1 darker lines). For example,
for 10 response categories (K = 9), the median information factor across item pairs already
exceeds 85% under reasonable assumptions. However, as threshold means differ more from zero,
the convergence of InK (η) becomes much slower (see Fig. 1 brighter lines). This is highly relevant
for the application of TIRT models in high-stakes situations where social desirability is an issue,
as I will elaborate in the Discussion.

Convergence of the information factor toward 1 is not uniform across different values of
Xnη (see Figure 2 for an illustration). Rather, convergence for very small or large Xnη values,
corresponding to bigger differences between compared trait scores, is slower than for values
close to the threshold mean (compare median lines in Fig. 2). Additionally, the variation of the
information factor across different threshold vectors, corresponding to different items, is larger
for more extreme Xnη values (compare shaded areas Fig. 2). Still, using an increasing number
thresholds greatly increases the obtainable Fisher information from comparative judgments across
the board, which is clearly visible in particular when contrasted with the binary approach (yellow
line in Fig. 2).
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Figure 1.
Information factor (Eq. (8)) as a function of the number of thresholds K and threshold mean τ . For each condition, 10,000
samples of independent random draws of length K were drawn from a normal distribution with varying mean τ (colored)
and standard deviation 3. Central colored lines indicate medians over all samples (per K and τ ), while the shaded areas
indicate 90% confidence intervals. The black horizontal line denotes the information factor of the latent normal model
without categorization (Color figure online).

Figure 2.
Information factor parameterized as sk = τk −Xη as a function of the number of thresholds K . For each condition, 10,000
samples of independent random draws for the threshold vector τ of length K were drawn from a normal distribution with
mean 0 and standard deviation 1.5. Central colored lines indicate medians over all samples per K , while the shaded areas
indicate 90% confidence intervals. The black horizontal line denotes the information factor of the latent normal model
without categorization (Color figure online).
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3. Upper Information Bounds

In Corollary 2.1, we have seen that the information from the linear normal model on the latent
variable ỹ provides a natural and sharp upper bound for the Fisher information obtainable from
ordinal comparative judgments. This is because the latent linear model does not suffer from any
loss of information through response categorization. Thus, we can use this model to study the
maximal Fisher information obtainable by a given test design. Although the maximal information
cannot be fully achieved in practice, we have seen above that a close approximation is very well
realistic. What is more, a lot of the central properties of this latent linear model, which I will
study analytically below, apply to its ordinal counterparts as well. Accordingly, there is a lot to be
learned from studying such an ideal model even if we are not able to fully achieve it in practice.

For the purpose of the upcoming mathematical analysis, I will assume factor loadings λi
and error variances ψ2

i to be known or at least estimable with sufficient precision so that their
uncertainty does not affect person parameter estimates to a relevant degree. Such a precision
seems to be achievable already when including data of as few as 300 (or more) individuals
in the analysis as suggested by the simulation study of Schulte et al. (2020). When applying
IRT models in practice, it is common to measure several hundreds or perhaps even thousands of
individuals. Accordingly, in practice, the assumption of known item parameters does hardly affect
estimation accuracy obtained for individuals’ trait scores. And even if the information difference
was noticeable, assuming item parameters to be known implies more information on the person
parameters than when item parameters are estimated. As such, the general goal to provide an
upper information bound remains unaffected. Of course, we rarely know the exact values of item
parameters in practice; and whether or not item parameters are estimated makes a big difference
with regard to the required estimation algorithms and their stability (Bürkner et al., 2019a; e.g.,
van der Linden&Hambleton, 2013), but these considerations are not in focus of the present paper.

Under the above assumptions, we can formally write down the likelihood of the latent normal
model on ỹ as a linear regression

ỹn ∼ normal(Xnη, 1), (13)

where n = 1, . . . , N indexes item pairs and Xn denotes the nth row of the test design matrix
X defined in Eq. (6). In Sect. 2, it was mentioned the person parameters η are assumed to come
from a multivariate normal distribution, an assumption made for two reasons: (a) Fixing the
marginal variance of this distribution ensures joint identification of item and person parameters
and (b) modeling the correlation matrix of this distribution enables sharing of information across
parameters of the same person as well as across people. Reason (a) is obsolete when assuming
item parameters to be known. However, reason (b) remains highly relevant and will be discussed
in detail in Sect. 3.2. For now, I will not consider such a distribution or equivalently, assume it to
have infinite marginal variances.

3.1. Maximizing the Test Design Information

As already mentioned earlier, the Fisher information matrix of the regression coefficients of
a linear model is given by

M := I(η) =
N∑

n=1

XT
n Xn = XTX. (14)

It is well known (e.g., Atkinson et al., 2007) that �η̂ := M−1 is the covariance matrix of the
maximum likelihood estimator

η̂ML = M−1XT ỹ. (15)
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Thus, the larger the information, the smaller the uncertainty in the parameter estimates, as is the
case more generally for (asymptotically) efficient estimators (Atkinson et al., 2007). The Fisher
information M obtainable on the latent space of ỹ depends on the factor loadings λi and the
uniqueness ψ2

i . As per Eq. (2), both parameters are related to each other via ψ2
i = vi − λ2i where

vi denotes the variance of the utilities u pi across people. For ordinal paired comparisons, vi is
not identified so we can set vi = 1 without loss of generality, which leads to standardized item
parameters and ψ2

i = 1 − λ2i . Independently of how we fix the utility variances, M = M(λ)

can be written to only depend on the factor loadings, which will thus be the primary target of
investigation.1

We can now ask how to choose factor loadings in order to maximize information or equiv-
alently minimize uncertainty. Such questions can be investigated by means of optimal design
and several optimality criteria can be applied (see Atkinson et al., 2007; Berger & Wong, 2009
for an overview). Probably the most common criterion is D-optimality aiming to maximize the
determinant of the Fisher information, det(M), or equivalently minimize the determinant of the
inverse information det(M−1) = det(M)−1. The popularity of D-optimality can be explained
by a combination of mathematical convenience and intuitiveness of interpretation as det(M−1)

is proportional to the volume of the T -dimensional confidence ellipsoid of an (asymptotically)
efficient estimator (Atkinson et al., 2007). As above, T is used to denote the total number of esti-
mated parameters per person, that is, the total number of measured traits. Minimizing det(M−1)

can be interpreted as minimizing the joint uncertainty of the estimated trait scores per person. For
comparability across different number of traits, it is sensible to define the D-optimality criterion
as

CD(λ) := CD(M(λ)) := det(M−1)1/T = det(M)−1/T , (16)

which is a strictly monotonic transformation of det(M−1) that accounts for the volume change
induced by increased dimensionality. If we assume some symmetry in the design, we obtain an
insightful analytical result about the D-optimal test design for comparative judgments.

Theorem 3.1. Let λmax ∈ (0, 1) be the maximally achievable standardized factor loading and let
λn1 and λn2 be the two standardized factor loadings for item pair n ∈ {1, . . . , N }, with λn1 ≥ 0
without loss of generality. Assume that each trait i is compared to every other trait j �= i an even
number of Ri j ≥ 0 times. Further, without loss of generality, assume that every two consecutive
pairs m and m+1, such that m is odd, belong to the same trait combination. Then, for any number
of traits T ≥ 2 and any even number of comparisons Ri j ≥ 0 per trait combination the D-optimal
design is given if λn1 = λmax, λn2 = (−1)nλmax, and each trait appears in the same number of
item pairs in total.

Among others, this result implies that half of the item pairs should be equally keyed and the
other half should be unequally keyed. This is particularly relevant, as it not only states that mixed
keyed designs are preferable but also specifies exactly how the ratio between the number of equally
and unequally keyed comparisons should be for the test to be optimal. To build an intuition, it is
helpful to look at the Fisher information of a single item with trait scores parameterized by their
mean η̄ and difference ηd such that η1 = η̄ + ηd/2 and η2 = η̄ − ηd/2. Then, the information in
the direction of η̄ equals

I(η̄) = (λ1 − λ2)
2

2 − λ21 − λ22
, (17)

1If vi was identified such that we could vary λi and φi independently of each other, then minimal uniqueness φi → 0
would always be the optimal choice independently of λi as can be seen, for example, from the proof of Theorem 3.1.
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while the information in the direction of ηd equals

I(ηd) = (λ1 + λ2)
2

4(2 − λ21 − λ22)
. (18)

In words, the trait score mean requires high factor loading differences, as provided by unequally
keyed item pairs, while the trait score difference requires high factor loading sums, as provided
by equally keyed item pairs.

It might be argued that D-optimality is not an ideal measure for evaluation of comparative
judgments designs as we are primarily interested in minimizing the marginal variances of each
trait, rather than minimizing the determinant of the whole covariance matrix. In other words, we
might be more interested in achieving A-optimality (Atkinson et al., 2007). I define

CA(λ) := CA(M(λ)) :=
√√√√ 1

T

T∑
i=1

(M−1)i i (19)

as the A-optimality criterion, which is a strictly monotonic transformation of the sum of marginal
variances. The scaling via 1/T ensures that the score is comparable across varying number of traits
T , and the square-root transform enables interpretation in terms of standard deviations instead
of variances. Thus, CA can be interpreted as an average marginal standard deviation across trait
estimates. It turns out that for the comparative judgment designs considered above, the D-optimal
design is also A-optimal:

Theorem 3.2. Under the assumptions of Theorem 3.1, the D-optimal design is also A-optimal.

Through the proofs of Theorems 3.1 and 3.2, it not only becomes clear that an equal number of
equally and unequally keyed pairs is optimal but alsowhy this is the case, namely that the diagonal
elements of the Fisher information are maximized, while the off-diagonal elements become zero.
Conversely, when applying a design with only equally keyed item pairs, we can achieve the same
diagonal elements in theory, but obtain highly negative off-diagonal elements, which drastically
increases (worsens) both the inverse Fisher information’s determinant (D-optimality) and its trace
(A-optimality). In the most extreme case of an equally keyed design, where λn1 = λn2 for each
item pair n = 1, . . . , N , the design no longer even identifies the person parameters (see also
Brown, 2016a).

The above-derived optimal design is in fact ‘very optimal’ compared to potentially alternatives
as we can see using a simple example. Suppose we have T = 5 traits and a symmetric design with
R = 2 comparisons for each trait combination such that the design consists of a total of N = 20
paired comparisons. Suppose further that λn1 = λ̄ + λ/2 ∈ (0, 0.8] and λn2 = λ̄ − λ/2 ∈
(0, 0.8] for each trait combination, so that λ̄ is the factor loading mean and λ is the factor loading
difference per item pair. In this example, every trait has the same amount of higher and lower factor
loadings such that the information for each trait is the same due to symmetry. The corresponding
mixed keyed design is obtained by switching the sign of half of the λn2 to be negative.

For varying λ̄ and λ, I illustrate the implied D-optimality criterion in Fig. 3. On the right-
hand side of Fig. 3, an illustration for the mixed keyed design is shown, which clearly has the
highest determinant when the factor loadings are maximal within the considered range (λ̄ = 0.8
and λ = 0). In contrast, when considering an equally keyed design (left-hand side of Fig. 3),
we see the importance of balancing high mean factor loadings (i.e., high λ̄) with high differences
between factor loadingswithin the same itempair (i.e., highλ).What ismore, the optimal equally
keyed design offers only a fraction of the information from the (mixed keyed) optimal design
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Figure 3.
D-optimality criterion for a simple example with T = 5 traits and N = 20 item pairs as a function of the mean factor
loading λ̄ and factor loading difference λ. Equally keyed designs are depicted on the left, while mixed keyed designs are
depicted on the right. Brighter colors indicate better values (lower confidence ellipsoid volume). Black dots indicate the
location of the optimal design. The left-most part of the grids are not shown to avoid obfuscating the color scale (Color
figure online).

Figure 4.
A-optimality criterion for T = 5 traits and N = 20 item pairs as a function of the mean factor loading λ̄ and factor
loading difference λ. Equally keyed designs are depicted on the left, while mixed keyed designs are depicted on the
right. Due to symmetry of the design, standard deviations of all traits are identical. Brighter colors indicate better values
(lower marginal standard deviations). Black dots indicate the location of the optimal design. The left-most part of the
grids are not shown to avoid obfuscating the color scale (Color figure online).

(CD(M) ≈ 0.40 vs. CD(M) ≈ 0.15) under the given conditions. The practical implications
of the information difference between mixed and equally keyed designs can be better grasped
when investigating the marginal standard deviations of the ML estimator, that is, the A-optimality
criterion.When comparing the left-hand and right-hand side of Fig. 4, we not only see very similar
optimality patterns as for the D-optimality criterion, but also that the optimal mixed keyed design
implies marginal SDs about as half as big as the corresponding marginal SDs implied by the
optimal equally keyed design (CA(M) ≈ 0.37 vs. CA(M) ≈ 0.73). The absolute values are not
super small in either case, but this is simply the result of using only N = 20 item pairs for the
purpose of this illustration. More detailed numerical experiments are provided in Sect. 4.

It is of high practical relevance to understand how the optimal designs on the latent linear
TIRT model generalize to ordinal TIRT models. Fortunately, the optimal designs generalize quite
nicely:
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Theorem 3.3. Let C : MatrixT×T → R be an optimal design criterion based on the Fisher
information such that, without loss of generality, lower values are considered more optimal. Let
M� := ∑N

n=1 M
�
n := ∑N

n=1 X
�T
n X�

n be the optimal Fisher information of a normal linear model
according to criterion C with corresponding optimal design matrix X�. Assume that C(M�) ≤
C(M) implies C(c M�) ≤ C(c M), for any Fisher information matrix M = ∑N

n=1 X
T
n Xn based

on a permissible design matrix X and any constant c ∈ R
+. Then, the optimal design matrix

X� for the normal linear model on ỹ is also optimal for all corresponding ordinal models on y
independently of the number of thresholds K .

Theorem 3.3 applies very generally to any ordinal model with a normal distribution and a
linear predictor on the latent scale. Most relevant for the purposes of this paper, Theorem 3.3
immediately implies the following result:

Corollary 3.4. Under the assumptions of Theorem 3.1, the D- and A-optimal factor loadings for
the latent linear model on ỹ are also D- and A-optimal for the corresponding ordinal models on
y independently of the number of thresholds K .

However, neither Theorem 3.3 nor Corollary 3.4 make a statement about the optimal ordinal
thresholds, just about the optimal factor loadings. Deriving optimal thresholds for ordinal TIRT
models is an interesting research direction but out of scope of the present paper. In the following,
I will continue with studying the properties of latent linear TIRT models.

3.2. Adding Prior Information

Investigating the test design information alone tells only half of the story even in the linear
case. This is because the person parameters in IRT models constitute latent variables that are
assumed to come from an underlying distribution describing the variation of the parameters across
people (van der Linden & Hambleton, 2013). In particular this is true for the TIRT model that
assumes a multivariate normal distribution for the person parameters η (see Sect. 2 for details).
From a Bayesian perspective, this distribution can be understood as a prior and we can formally
extend linear regression model (13) as

ỹn ∼ normal(Xnη, 1) (20)

η ∼ multinormal(0, �prior) (21)

In practical applications of TIRT models, we would usually treat �prior as a hyperparameter that
is estimated from the data. Here, again for the purpose of the mathematical analysis, I assume
�prior to be known rather than estimated, an assumption I will come back to in the Discussion. If
�prior is known, the above model becomes a special case of Bayesian linear regression. It is well
known that a normal prior is conjugate to a normal likelihood (Gelman et al., 2013), and so we
can derive the posterior distribution of η analytically as

η | ỹ ∼ multinormal(μpost, �post) (22)

with posterior covariance matrix

�post =
(
M + �−1

prior

)−1
(23)

and posterior mean
μpost = �postM η̂ML, (24)
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where M = XTX and η̂ML is the maximum likelihood estimate of η:

η̂ML = M−1XT ỹ. (25)

The posterior mean μpost is commonly known as the expected a-posteriori (EAP) estimator and
applied extensively both in full and empirical Bayes approaches (Gelman et al., 2013). The
expected value and covariance matrix of μpost over data ỹ are given, respectively, by

μ̄post := Eỹ(μpost) = �postMη (26)

and
Var ỹ(μpost) = �postM�post. (27)

The subscript of E and Var indicates over which variable integration is performed. In order to
measure to accuracy of the EAP estimator, investigating its covariance matrix is insufficient on
its own as the estimator may be biased. For this reason, I additionally consider the mean squared
error (MSE) matrix

MSE ỹ(μpost, η) := Eỹ
(
(μpost − η)(μpost − η)T

)
= Var ỹ(μpost) + (

μ̄post − η
) (

μ̄post − η
)T

= �postM�post + (�postM − I )ηηT(�postM − I )T, (28)

which can be expressed as the variance plus the bias squared. The MSE matrix can be used to
obtain root-mean-square error (RMSE) estimates as an importantmeasure for predictive accuracy:

RMSE(μpost,i , ηi ) =
√
MSE ỹ(μpost, η)i i . (29)

3.3. Marginalizing over Person Parameters

In the above equations, I condition on a fixed vector η of true person parameters. In other
words, I investigate the estimates of only a single person at the same time. From the perspective
of model estimation, this is totally valid as all the item parameters (i.e., λi and ψi per item
i) and person hyperparameters (i.e., �prior) were considered to be known for the purpose of
the mathematical analysis performed here. If they were not known, data of all people had to be
modeled jointly in order to estimate item parameters and person hyperparameters, as is done in the
full version of the TIRTmodel. However, even if the simplified model can be estimated separately
per person, we still aim to compare different individuals and hence we need to consider multiple
η parameters and compare their estimates. This can be done by interpreting the multinormal prior
over η in Eq. (21) as a sampling distribution from which true person parameter values can be
drawn (Gelman et al., 2013). More accurately, one assumes that η is sampled according to

η ∼ multinormal(0, �η). (30)

This resembles the approach in simulation studies, only that the results below are derived analyt-
ically instead of empirically via repeated sampling from the distribution. Because the latent scale
of η is arbitrary, I set the marginal variances �ηi i = 1 as is standard in TIRT models and many
other latent variable models for reasons of identification (Brown & Maydeu-Olivares, 2011). If
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�η = �prior, then the model’s prior assumes the correct data generating process. If �η �= �prior,
then the prior provides some kind of model misspecification, whose influence on the obtained pos-
terior estimates can be investigated. This is sensible in the context of TIRT models, as simulation
studies have shown potentially strong biases in the correlation hyperparameters that constitute
�prior (Brown & Maydeu-Olivares, 2011; Bürkner et al., 2019a); biases we can mimic by letting
�prior deviate from �η.

It is now possible to study η-depending quantities not only conditional on η but rather
marginalized over its distribution (30). In particular, we can study the first two moments of
μ̄post that evaluate to

Eη

(
μ̄post

) = �postMEη(η) = 0 (31)

and
Varη

(
μ̄post

) = �postM�ηM�post. (32)

Due to the positive semi-definiteness of �prior, �η, and M , and because of det(�post) ≤ det(M)

as implied by Eq. (23), we see that the marginal variances

Varη
(
μ̄post

)
i i ≤ �ηi i = 1. (33)

Moreover, if the a-priori covariance matrix�prior is finite, inequality (33) holds strictly so that the
variance of μ̄post is smaller than the variance of η. In other words, the prior leads to a shrinkage of
estimates in expectation and thus contributes to the bias and MSE of μpost, a well-known result
of adding prior information (Gelman et al., 2013). This is not to say that shrinkage is undesirable
as it also decreases the variance, thus leading to a bias-variance trade-off (Gelman & Hill, 2006).
However, in diagnostic practice, we are not directly interested in estimating the true scale of η

correctly, but to compare (the estimates of) different people’s traits. Accordingly, the difference
in the scales of μ̄post and η is irrelevant and any linear transformation of the true scale will do
equivalently well. Also, when fitting TIRTmodels in practice, we estimate both person parameters
and factor loadings simultaneously. This implies that the prior scale is required to identify the
scale of η and thus no shrinkage will occur in this case.

To remove the shrinkage-induced scale difference, I standardize μpost so that its expectation
μ̄post has the same variance as η. Formally, this is done as follows: Let S be a diagonal matrix
with diagonal elements equal to the inverse of the marginal standard deviations of μ̄post over η,
that is,

Sii := 1/
√
Varη

(
μ̄post

)
i i . (34)

and define the scaled EAP estimator δpost of η as

δpost := Sμpost. (35)

By definition, δpost then satisfies Varη
(
δ̄post

)
i i = 1.

The MSE matrix of δpost is given by

MSE ỹ(δpost, η) = S�postM�postS + (S�postM − I )ηηT(S�postM − I )T, (36)

which is now free of any bias caused solely by scale differences. Since η is multivariate normally
distributed with covariance matrix ση, the matrix ηηT is Wishart distributed with one degrees of
freedom (Srivastava, 2003):

ηηT ∼ Wishart(�η, 1) (37)
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Because of 1 = ν ≤ T − 1, this Wishart distribution is singular (Srivastava, 2003), but its mean
still exists and is equal to �η as in the non-singular case. It follows that

Eη

(
MSE ỹ(δpost, η)

) = S�postM�postS + (S�postM − I )�η(S�postM − I )T. (38)

For the i th trait, we can obtain an expected RMSE marginalized over η via

RMSE(δpost,i, ηi ) :=
√
Eη

(
MSE ỹ(δpost, η)

)
i i . (39)

I have deliberately taken the expectation before the square-root so that the expression is analytical,
in line with common approaches to express average square roots of variance-like terms. The
formulas for Eη

(
MSE ỹ(μpost, η)

)
and RMSE(μpost,i, ηi ) of the unscaled posterior means μpost

can simply be obtained from Eqs. (38) and (39), by dropping the scaling matrix S.
As the test information increases, the RMSE decreases. Further, as the test information

approaches infinity (i.e., det(M) ⇒ ∞), we have �post ⇒ M−1 and S ⇒ I provided that M is
invertible (i.e., the model is identified). Hence, we get

Eη

(
MSE ỹ(δpost, η)

) ⇒ I M−1MM−1 I + (I M−1M − I )�η(I M
−1M − I )T = M−1 ⇒ 0

(40)
such that also RMSE(δpost,i, ηi ) ⇒ 0, as it should be.

As a second important metric of predictive accuracy, I consider the reliability, that is, the pro-
portion of variance inμpost explained by the true values η, or equivalently, the squared correlation
between μpost and η (Brown & Maydeu-Olivares, 2011). In contrast to the RMSE, the reliability
requires variation in η by definition and so there are no reliability coefficients of individual η

realizations. The estimates μpost and δpost of η only vary in their overall scale, which implies their
reliabilities to be the same. Accordingly, it is sufficient to derive the reliability for μpost. For this
purpose, we first compute the cross-covariance matrix of μpost and η over the joint distribution
p(ỹ, η) implied by Eqs. (20) and (30) as

Cov ỹ,η(μpost, η) = Cov ỹ,η(μ̄post + εpost, η)

= Covη(μ̄post, η) = Eη(�postMηηT) = �postM�η, (41)

and the covariance matrix of μpost as

Var ỹ,η(μpost) = Var ỹ,η(μ̄post + εpost) = Varη(μ̄post) + Var ỹ(εpost)

= �postM�ηM�post + �postM�post = �postM(�ηM + I )�post, (42)

where εpost ∼ multinormal(0, �post) is an error term uncorrelated with both μ̄post and η that
describes the difference betweenμpost and its data expectation μ̄post. Since�ηi i = 1 by definition,
the reliability for the i th trait integrated over parameters η and data ỹ is then given by

Rel(μpost,i ) = Cor ỹ,η(μpost,i , ηi )
2 = Cov ỹ,η(μpost, η)2i i

Var ỹ,η(μpost)i i�ηi i

= Cov ỹ,η(μpost, η)2i i

Var ỹ,η(μpost)i i
. (43)
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In the special case of the prior resembling the sampling distributions, that is �prior = �η, the
covariance matrix of μpost simplifies to

Var ỹ,η(μpost) = �postM�η(M + �−1
η )�post = �postM�η�

−1
post�post = �postM�η

= Cov ỹ,η(μpost, η) (44)

so that the reliability simplifies to

Rel(μpost,i ) = Cov ỹ,η(μpost, η)2i i

Cov ỹ,η(μpost, η)i i
= Cov ỹ,η(μpost, η)i i . (45)

As the test information increases, the reliability increases. Further, as the test information
approaches infinity, we get

Cov ỹ,η(μpost, η) ⇒ M−1M�η = �η, (46)

Var ỹ,η(μpost) ⇒ M−1M(�ηM + I )M−1 = �η + M−1 ⇒ �η, (47)

such that Rel(μpost,i ) ⇒ 1, independently of whether or not �prior = �η.
We now can also ask how we should design our tests such that they maximize reliability or

minimize (expected) RMSE of the person parameter estimates. These are questions that can, in
the present context, be answered by means of Bayesian optimal design (Bürkner et al., 2019b;
Chaloner & Verdinelli, 1995), and I provide a thorough discussion and results on this topic in
Online Supplement B.

4. Numerical Experiments

In Sect. 3, I have derived analytic upper information bounds for TIRT models. Based on
these analytic results, I will perform numerical experiments to gain a better understanding of the
relative influence of several factors related to test design on the obtainable estimation accuracy.
These experiments build on and extend existing simulation studies performed for binary TIRT
models (Brown & Maydeu-Olivares, 2011; Bürkner et al., 2019b; Schulte et al., 2020).

4.1. Simulation Design

To study the behavior of person parameter accuracy more thoroughly, I vary the following
factors in a fully crossed manner:

• The number of traits T = 2, 3, 5, 10, 20, 30 representing the full range of how many traits
one might want to measure in practice.

• The total number of item pairs B = 30, 90, 270 ranging from very short to very long tests.
The number of item pairs per trait equals BT = 2B/T such that, for constant B, tests with
higher number of traits have fewer item pairs per trait. This stands in contrast to previous
simulation studies where, if at all, BT rather than B was varied (see Online Supplement D
for additional experiments with varying BT ).

• The mean standardized factor loading λ̄ = 0.5, 0.65, 0.8 ranging from medium to high
values.

• The difference between the two-factor loadings of an item pair λ = 0.1, 0.2, 0.3 ranging
from small to high factor loading differences.
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• The design type: Either a mixed keyed design (half equally and half unequally keyed pairs)
denoted as (+/-) or a fully equally keyed design denoted as (+).

• The sampling correlation matrix �η: Either diagonal or one of two conditions inspired by
the NEO-PI-R (Costa & McCrae, 1992; Ostendorf & Angleitner, 2004) described in the
following. For T ≤ 5 traits, take a random subset of length T from the correlation matrix
of the Big Five scores measured by the NEO-PI-R. For T ≥ 10, take a random subset
of length T from the correlation matrix of the 30 Big Five sub-scores using the approach
of Schulte et al. (2020). These correlation matrices, denoted as NEO(+/-), contain a mix
of negatively, positively, and uncorrelated traits. Alternatively, create another NEO-PI-R
correlation matrix, denoted as NEO(+), by inverting neuroticism into emotional stability
which results in all (T ≤ 5) or most (T ≥ 10) correlations to be non-negative (and select
a subset of traits as before).

• The prior correlation matrix �prior: Either diagonal or equal to �η.

Experimental conditions are defined by fully crossing the above factors. For each of the
conditions, S = 10 simulation trials were run. In each trial, a test design meeting the criteria
of the condition was obtained using the Thurstonian IRT package (Bürkner, 2019). Analytical
(expected) RMSE and reliability scores were computed on that basis (see Sect. 3.3). Since the
RMSE can also be computed on a per-person basis and hencemay vary across people, η parameter
values were drawn from sampling distribution (30) for J = 50 people and individual analytic
RMSE scores were obtained. In practice, multiple hundred people would be required to accurately
estimate item parameters of Thurstonian IRT models (e.g., Bürkner et al., 2019b). However, as
we assume item parameters to be known, the number of people has no influence on the accuracy
of person parameter estimates. Given that for each person we estimate multiple traits, so that the
total number of estimated person parameters is in fact equal to JT per trial, J = 50 per trial is
sufficient to show relevant RMSE variations across conditions and η parameter values.

4.2. Results

Below, I present selected results of a subset of conditions from which all major conclusions
regarding the influence of the above factors can be drawn.Additional results are provided inOnline
Supplement C and a complete overview is available on OSF (https://osf.io/2g76w/). Obtained
reliability scores for B = 90 item pairs are illustrated in Figure 5. As expected based on the
analytical findings above as well as existing simulative evidence for binary TIRT models (Brown
&Maydeu-Olivares, 2011; Bürkner et al., 2019b; Schulte et al., 2020), mixed keyed designs imply
a different reliability pattern and uniformly higher reliability values than equally keyed designs
especially so for smaller number of traits (T ≤ 10).

For mixed keyed designs and high mean factor loadings (λ̄ = 0.8), reliabilities are always in
a satisfactory (Rel > 0.8) to excellent (Rel > 0.9) range independent of all other factors varied
in the numerical experiments. In contrast, for low mean factor loadings (λ̄ = 0.5), reliabilities
are satisfactory or better only for smaller number of traits (T ≤ 10). In general, reliabilities are
declining in all mixed keyed conditions as the number of traits T increases, although this decline
is much more noticeable for lower mean factor loadings. The factor loading difference λ plays
no role for mixed keyed designs, as unequally keyed pairs already inform the within-person trait
mean well enough (see also Sect. 3.1).

For equally keyed designs, reliabilities are most influenced by the number of traits T and
the factor loading difference λ. For high factor loading differences (λ = 0.3), equally keyed
designs provide only slightly worse reliabilities than the correspondingmixed keyed designs, with
reliabilities decreasing slightly with increasing number of traits T . Especially when coupled with
high mean factor loadings (λ̄ = 0.8), satisfactory to excellent reliabilities can be achieved across
thewhole range of T . In contrast, for small factor loading differences (λ = 0.1), reliabilities tend
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to be unsatisfactory especially for smaller number of traits (T ≤ 5). They only reach a satisfactory
level for high mean factor loadings (λ̄ = 0.8) as the number of traits increases further. In general,
the reliabilities of equally keyed designs tend to converge to the corresponding reliabilities of
mixed keyed designs as T increases, but convergence is not fully achieved in all conditions for
the investigated T ≤ 30 traits.

The influence of the sampling correlation matrix �η is noticeable only for equally keyed
designs, where �η = Neo(+/−) provides uniformly higher reliabilities than �η = Neo(+),
especially for lower number of traits (T ≤ 5) and small factor loadings differences (λ = 0.1).
We will explain this finding in Sect. 4.3. Using a misspecified prior (diagonal �prior, while �η is
one of the NEO correlation matrices), is only problematic for a higher number of traits (T ≥ 10),
but may there be quite detrimental to the achievable reliabilities especially for small mean factor
loadings (λ̄ = 0.5). Finally, using a higher total number of item pairs B implies uniformly higher
reliabilities (compare Fig. 5 to the results provided in Online Supplement C).

For the same selected conditions, distributions of obtained RMSE values are illustrated in
Figure 6. Qualitatively, results from reliabilities and RMSEs paint a similar picture only that the
latter is more nuanced since the RMSE can be computed on a per-person basis, while the relia-
bility is, by definition, an expectation over people. For mixed keyed designs and smaller number
of traits, individual RMSE values are almost constant across the whole range of η values within
each condition. In contrast, for equally keyed designs, RMSE values vary considerably across η

values within each conditions and are noticeably bigger on average than for the corresponding
mixed keyed design. For higher number of traits (T = 20, 30 in particular), differences in RMSE
distributions between equally and mixed keyed designs become smaller or even diminish com-
pletely for some conditions. This extends the results of Schulte et al. (2020) who investigated
RMSEs obtained from binary TIRT models for varying number of traits and found that, for a
very high number of traits, average RMSEs obtained from equally and mixed keyed designs are
highly similar. Similar to the results obtained for the reliabilities, a misspecified prior (diagonal
�prior, while �η is one of the NEO correlation matrices) increases the expected RMSE primarily
for higher number of traits (T ≥ 10; see Online Supplement C). However, at the same time, there
is a striking variation across trait scores with respect to how much a misspecified prior changes
the RMSE of the trait score estimates.

As illustrated in Figure 7, the within-person mean η̄ over trait scores can explain some of
the within-condition variation of RMSE scores in the equally keyed design conditions for small
number of traits (T ≤ 5) and small factor loading differences (λ = 0.1). In those cases, RMSE
scores are particularly high if a person has a very negative or very positive mean, corresponding
to overall low and high trait scores. This is the result of partial ipsativity of trait estimates induced
by equally keyed designs which, as demonstrated here, is still present even in the limiting case
of the latent linear model and thus cannot be eliminated through the application of ordinal TIRT
models. Explained in more detail, trait scores of people with low variation between traits are
estimated closer to zero, thus inducing strong biases and thus high RMSE for people with low or
high average trait scores. This pattern is much less visible for higher number of traits (T ≥ 10),
a finding which I investigate and explain further in Sect. 4.3. Figure 7 also illustrates that the
within-person RMSE mean may vary strongly across people within the same condition, even
when their η̄ values are similar. The variation in mean RMSE scores may vary by a factor of 2 or
even 3 between people with the lowest and highest mean RMSE within condition. Notably, this
variation can neither be explained by variation across simulation trials within each condition nor
by shrinkage of parameter estimates induced by the prior (see Online Supplement C). Together,
the results demonstrate that differences in between traits of the same person can be estimated well
as long as equally keyed item pairs are present confirming theoretical results (see also Brown &
Maydeu-Olivares, 2011).
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Figure 5.
Expected reliability for B = 90 number of item pairs as a function of the number of traits T . Abbreviations: λ̄ = mean
factor loading; λ = factor loading difference; �η = true sampling correlation matrix; �prior = prior correlation matrix.
See Sect. 4.1 for more details on the simulation design and abbreviations.

4.3. Increasing Test Information by Measuring More Traits

In the above numerical experiments, I systematically varied the total number of item pairs
B rather than the number of item pairs per trait BT . Comparing different number of traits for
an arbitrary, but fixed B (my approach above) implies fixing the overall test length. In contrast,
comparing different number of traits for an arbitrary, but fixed BT implies the test to become
longer for a higher number of traits, up to a point where the test length becomes impractically
high for most applications. In a simulation study for binary TIRT models, Schulte et al. (2020)
used the approach of systematically varying BT and found that higher number of traits imply
strong increases in estimation accuracy, especially for equally keyed designs. Results of additional
numerical experiments mirroring the simulation design from Sect. 4.1, apart from systematically
varying BT rather than B, confirm that this behavior can be found in latent linear TIRT models
as well (see Online Supplement D).

A comprehensive explanation for the apparent benefit of a higher number of traits when using
equally keyed designs has been lacking so far. Baron (1996) identified one mechanism related
to �η in that highly skewed true trait patterns, where most traits of an individual are either very
high or low, become less likely as the number of traits increases (see Online Supplement E for
a more detailed discussion). Below, I discuss two additional mechanisms, related to the Fisher
information matrix M and the prior correlation matrix �prior, respectively. Together, each of the
three essential matrices (M, �η,�prior) has a corresponding mechanism by which higher number
of traits benefits estimation accuracy.

The mechanism related to M is the increase in per-trait information in equally keyed designs
through measuring more traits while holding BT constant. Figure 8 shows the scaled D- and
A-optimality criteria (Eqs. (16) and (19)) for varying number of traits T . Due to the scaling by
T , these criteria are comparable across varying number of traits. For equally keyed designs, it is
clearly visible that the per-trait information improves consistently in all investigated conditions as
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Figure 6.
Person-trait-specific RMSEs (dots) for B = 90 number of item pairs as a function of the true trait scores η. Expected
RMSEs are shown as horizontal lines. Abbreviations: T = number of traits; λ̄ = mean factor loading; λ = factor loading
difference;�η = true sampling correlationmatrix. See Sect. 4.1 formore details on the simulation design and abbreviations.

more traits are measured. The information improvement is particularly strong for smaller T and
then gradually flattens out toward a lower asymptote that depends on the mean factor loading λ̄

and on BT . In contrast to equally keyed designs, the per-trait information for mixed keyed designs
is constant across traits and equals the asymptote that equally keyed designs are only approaching
for higher number of traits. When holding the total number of pairs B constant, instead of the
number of pairs per trait BT , a higher number of traits no longer implies an increase in per-trait
information (smaller criterion values) but rather an almost linear decrease in information (see
Figure 9), with a slope depending on λ̄, λ, and B.
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Figure 7.
Person-specific RMSEs (dots; averaged over traits) for B = 90 number of item pairs as a function of the true within-person
trait score mean η̄. Expected RMSEs are shown as horizontal lines. Abbreviations: T = number of traits; λ̄ = mean factor
loading; λ = factor loading difference; �η = true sampling correlation matrix. See Sect. 4.1 for more details on the
simulation design and abbreviations.

The mechanism related to �prior is the increase in variance of each trait that can be explained
by means of all other traits. If prior correlations are nonzero, different trait estimates will inform
each other through the prior and thus be pushed along the axes implied by the correlation structure.
Clearly, the influence of the prior is only helpful if �prior contains some true prior information,
that is, relates closely enough to the sampling correlation matrix �η. If that is the case, as one
trait becomes estimated more accurately, so will be all other traits correlated with the former.

Of course, if all traits are mutually uncorrelated, the variance explained would still be zero
no matter the number of traits. However, in practice, the more traits are measured, the higher their
(absolute) correlations will be in expectation. This is simply due to the fact that the amount of
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Figure 8.
D-optimality criterion (left-hand side) and A-optimality criterion (right-hand side) for fixed number of item pairs per trait
BT as a function of the number of traits T . Lower values are better. Abbreviations: λ̄ = mean factor loading; λ = factor
loading difference; (+/−) = mixed keyed design; (+) = equally keyed design.

Figure 9.
D-optimality criterion (left-hand side) and A-optimality criterion (right-hand side) for fixed total number of item pairs
B as a function of the number of traits T . Lower values are better. Abbreviations: λ̄ = mean factor loading; λ = factor
loading difference; (+/−) = mixed keyed design; (+) = equally keyed design.

mutually independent personality traits, or other constructs one aims to measure via comparative
judgments, is naturally limited. Not even the Big-Five personality scores are completely uncor-
related with each other. For example, the main Big-Five scores measured by NEO-PI-R have
an average absolute correlation of |r | = 0.19, while the corresponding 30 Big-Five sub-scores
(six per main Big-Five dimension) have an average absolute correlation of |r | = 0.26. Even if
the average absolute correlation remained constant for increasing number of traits, the number
of traits themselves will lead to an increase in variance explained per trait as more other traits
can be used for prediction. For the main Big-Five NEO-PI-R scores, the average percentage of
variance explained per trait by means of all other traits is R2 = 0.23, while for the corresponding
30 sub-scores, one finds R2 = 0.81. This large percentage of variance explained in the latter case
is mostly but not exclusively driven by other sub-scores belonging to the same main dimension.

These implications of the between-parameter shrinkage property of joint normal priors not
only holds when �prior is known, as assumed in this paper, but also when it is estimated from
the data (Gelman & Hill, 2006). Of course, �prior has to be estimated without substantial bias in
order to be informative for the trait scores themselves. As shown by previous simulation studies,
estimates of �prior may be substantially biased for smaller number of traits (T ≤ 5) but become
much less biased or even unbiased as the number of traits increases further up to T = 30 (Bürkner
et al., 2019b; Schulte et al., 2020). This provides some sort of additional sub-mechanism by which
the prior improves estimation accuracy when measuring a higher number of traits.
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5. Discussion

The presented research is driven by themain goal of obtaining accurate and efficient estimates
of people’s latent traits using models of comparative judgments, while keeping an eye specifically
on the applicability under high-stakes situations. Any procedure applied in a high-stakes context
needs to be faking resistant—or at least have a realistic potential to be faking resistant—while at
the same time yielding trait score estimates that are accurate enough for individual-level diagnostic
decisions. Toward this goal, two paths have been identified. First, develop unequally keyed item
pairs where both items have roughly the same social desirability and can thus be reasonably
applied in high-stakes situations. Second, carefully design tests consisting only of equally keyed
item pairs so that they alone are sufficient to ensure satisfactory estimation accuracy. This paper
focuses on the second path approaching it mainly from a statistical point of view.

Progress was made from several perspectives all related to answering the main question.
Below, I will connect these perspectives into a single, coherent picture based on which practical
recommendations can be given. Walking along the second path is full of obstacles that we have
to get around one by one. As a reminder, unless explicitly stated otherwise, I consider higher
trait scores representing the more desirable (better) end of the scale. Because the choice of trait
direction is essentially arbitrary, it does not pose any actual restriction, but makes thinking about
the discussed problems easier.

5.1. Obtaining Accurate Trait Estimates from Equally Keyed Item Pairs

For the purpose of individual-level diagnostic decisions, using highly accurate trait score
estimates is not only sensible but ethically required. One way to increase the information from
comparative judgments is to employ ordinal rather than binary response scales (see Section 2 as
well as Brown &Maydeu-Olivares, 2018; Schulte et al., 2021). In this context, I have established
that the information factor (defined in Eq. (8)) can be used as an intuitive metric to quantify
the Fisher information gained in comparison with binary measurement models, or to quantify
the Fisher information lost in comparison with latent linear models. When using two response
categories per item pair (i.e., binary decisions), the average expected (Fisher) information is only
about 13% of the maximal achievable information under conditions not unrealistic for TIRT
models with item pairs matched for social desirability. In comparison, when using as few as five
response categories, the average expected information is already about 65% of the maximum and
even increases to about 85%when using ten response categories. Even if we consider the cognitive
complexity of the response process and treat the ranking of a triplet (two decisions leading to three
binary responses) as equivalently complex to a single ordinal response, the latter still contains
substantially more information (39% vs. 65% or 85% of the maximum, on average).

Upon studying the information factor in detail, we had seen that its distribution across indi-
vidual responses becomes narrower and is substantially higher than zero in a much wider range
of the latent scale. This leads me to conjecture that, as we increase the number of response cate-
gories, the ordinal model may also becomemore robust to moderate amounts of variation in social
desirability. However, this needs to be verified in empirical studies with faking instructions. In
any case, such robustness will have its limits: If one of the two items compared in an item pair is
much more socially desirable than the other, and if people react to the social desirability, this will
imply a strong shift in the ordinal thresholds toward the end of response scale belonging to the
less desirable item (see also Schulte et al., 2021). This in turn pushes the latent responses more
into the tails, beyond the range where the convergence of the information factor to its maximum
is still reasonable fast. Thus, social desirability matching continuous to be mandatory also in
ordinal models of comparative judgments, but we may get away with a little less perfect matching
compared to the binary case.
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Although ordinal models certainly help to increase information on individuals’ trait scores,
more measures need to be taken to obtain trait estimates applicable for individual-level diagnostic
decisions in high-stakes situations. Again also for ethical reasons, trait estimates of all individuals
should have roughly the same accuracy, for example, as quantified via their RMSE. Thus, not only
large average RMSEs (or small reliabilities) are problematic in practice, but also large RMSE
variations across traits and individuals. The numerical experiments performed in this paper have
demonstrated that, when only using equally keyed item pairs, trait score estimates of individuals
with particularly low or high (within-person) average scores tend to be comparably less accurate.
In personnel selection, or other high-stakes situations, individuals with low or high average scores
are of primary interest. Accordingly, it is particularly problematic if trait scores of specifically
those individuals cannot be estimated with sufficient accuracy.

From a statistical perspective, the reason for the above problem is that Fisher information
about within-person average trait scores is only provided through unequally keyed item pairs or
factor loading differences. If we restrict ourselves to equally keyed item pairs only, all we are left
with are the factor loading differences. Of course, those differences cannot become arbitrarily
large because standardized factor loadings very close to one are hard to achieve in practice (e.g.,
Costa & McCrae, 1992). Also, the closer factor loadings get to zero, the less information the
corresponding items provide. This induces a natural trade-off between high mean factor loadings
and high factor loading differences of item pairs, a trade-off I have approached in this paper in a
principled manner by means of optimal design theory.

Different design criteria find different trade-offs between high factor loading means and
differences to be optimal. Under several of the considered (frequentist and Bayesian) optimality
criteria, very high of even maximal factor loading differences are optimal. That is, one of the two
items in a pair should have a maximal factor loading—whatever we consider to be maximally
achievable in a given practical setting—while the other should have a very small, or even zero,
factor loading.Using itemswith all zero factor loadingsmaybe statistically optimal but comeswith
two practical problems. First, one has to design items that do not load on any of the desirable traits
of interest but still have comparable social desirability with items that do load strongly on such a
trait. Aweaker version of this problem is likely to hold also for positive but comparably small factor
loadings. I speculate that the more factor loadings differ from each other, the harder it becomes
to match the social desirability of the corresponding items, but this needs to be investigated
empirically in future research. Second, individuals will almost surely vary in whatever non-
modeled traits determine the responses to the items that have only zero (or very small) factor
loadings on the modeled traits. As a result, the corresponding variation of the non-modeled traits
will be ignored. This is essentially a misspecification of the latent model structure with potentially
detrimental effect on the validity of the estimated model (e.g., Hu & Bentler, 1998). As a result,
very high factor loading differences pose a risk to the practical validity of the trait score estimates,
and we should thus be careful to trust their statistical optimality too much.

In the numerical experiments, factor loadings differenceswere varied in a comparably smaller
range (0.1–0.3). As expected, the bigger the factor loading differences (within the considered
range), the lower RMSEs become across the board, that is, also for individuals with more extreme
average trait scores. However, it is only with higher number of traits (starting between 5 and
20 traits depending on condition) that the U-shape of individual RMSE scores as a function of
within-person average trait scores starts to vanish. So how do higher number of traits help with
estimation accuracy in the tails even if the number of administered item pairs is held constant?
Multiple mechanisms have been identified. One of these mechanisms is that that more extreme
average trait scores simply become less likely the more traits are considered (Baron, 1996, also
discussed in Online Supplement E). To put it another way, by measuring a large-enough number
of traits, we increase the within-person variation in trait scores relative to the between-person
variation; and the former kind of variation can be estimated well with only equally keyed items.
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Unfortunately, measuring more traits also has the drawback that, in a fixed-length test, the number
of items measuring a single trait decreases, thus reducing the average by-trait information. So,
again, we find a trade-off between different mechanisms, this time in the number measured traits.
For small factor loading differences, this trade-off reached its optimumat around 10 traits, whereas
for higher factor loading differences, the optimum is a little smaller somewhere between 5 and 10
traits. This optimum also depends on other factors influencing estimation accuracy (see below)
and may very well be higher than 10 depending on these factors. Accordingly, these optimal
values should be considered with care and rather taken as a rough rule of thumb.

The structure of the inter-trait correlation matrix is another factor that can have strong influ-
ence on the achievable estimation accuracy. Measuring traits with a mix of negative, positive, and
zero correlations implies higher estimation accuracy than measuring traits that are mostly zero or
positively correlated. The mechanism behind this finding turns out to the same one that is behind
the beneficial properties of measuring more traits, that is, reducing the probability of individuals
having more extreme average trait scores. Accordingly, we can get away with measuring fewer
traits if some of those traits turn out to be negatively correlated. Two notes of caution: First, the
above statements apply only when, for all traits, higher values represent the desirable end of the
scale. Of course, we can invert some traits to artificially create negative inter-trait correlation,
but this does not, in fact, change anything. We simply switch labels so that unequally keyed item
pairs, between a higher-means-better trait and a lower-means-better trait, become the ones that
can well be matched for social desirability, whereas equally keyed item pairs suddenly become
practically problematic. Second, the correlations between traits are usually not something that it
under the control of the test developer. Instead, it is determined by the traits being considered as
relevant for the given high-stakes situation and the population of individuals taking the test. That
is, in some situations, we may be lucky and find these negative correlations between the measured
desirable traits, while in some situations, we may not. So we cannot rely on negative inter-trait
correlations in general, but it will help if they occur.

5.2. Practical Recommendations

In summary, the results of the present study suggest that achieving practically and ethically
acceptable estimation accuracy for inter-individual decision making using only equally keyed
item pairs is indeed possible but requires the careful consideration of several factors. For example,
acceptable reliabilities (Rel > 0.8) can be achieved if all of the following conditions are met or
exceeded: An ordinal measurement model with five response categories is applied to 90 item
pairs, ten traits are measured with some of them being negatively correlated, mean factor loadings
are high (0.8), and factor loading differences are medium (0.2). If we make some conditions more
restrictive, for example, increase the number of response categories or the number of item pairs,
other conditions may be relaxed while still retaining acceptably accurate estimates. As different
application contexts of comparative judgments may each come with their own idiosyncrasies, one
should understand these conditionsmore like rough guidelines not as definitive recommendations.
If in doubt, the analyses performed in this paper can be replicated with the materials provided
online (https://osf.io/2g76w/) and adjusted to the given application context.

5.3. Limitations and Future Research

There are several limitations of the present study which should be taken into account and
expanded upon in future research. First, most of the presented analytical proofs and numerical
experiments focus on latent linear TIRT models that provide an upper bound of the Fisher infor-
mation obtainable from ordinal (including binary) TIRT models. Thus, the obtained results only
indicate the maximal achievable accuracy by means of TIRT models in a given situation, which
will not be fully achieved in practice (although one may come quite close; see above). This choice
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was made to allow for an extensive mathematical analysis that is much harder for the ordinal
models themselves, due to the nonlinearity of the ordinal response categorization. Still, important
results such as the optimal designs for factor loadings turn out to also hold in the same manner for
ordinal models. This underlines the practical relevance of the obtained analytical and numerical
findings. What is more, extreme average trait scores that turned out to be difficult to estimate for
any kind of TIRT model, can be estimated by the ordinal models almost as well as by the latent
linear models. This is because the corresponding latent responses are located in the center of the
latent response distribution, where information of the ordinal models approaches optimality very
quickly.

Apart from the present study, existing research on ordinal TIRT models (Brown & Maydeu-
Olivares, 2018; Schulte et al., 2021) has only applied them in empirical settings, whereas com-
prehensive simulation studies on these models are still missing. They may also help to validate
the approximate results obtained in this paper. For example, we may use the average information
factor to adjust the Fisher information matrix of the latent linear model in order to approximate
the expected reliabilities and RMSEs obtained from ordinal models. However, until further vali-
dation, the goodness of this approximation remains unclear. Due to its already extensive scope,
bespoken simulations were not performed in this paper, but provide an interesting area for future
research.

Another limitation of the present study is that the item parameters were considered known
instead of being estimated from the data. Again, this choice wasmade to enable a deeper analytical
treatment of the TIRT models. Of course, in practice, item parameters will almost always be
estimated, which makes a big difference with regard to the required estimation algorithms and
their stability (e.g., Bürkner et al., 2019b; van der Linden & Hambleton, 2013). However, with
respect to the estimation accuracy of trait scores, this choice may actually not be that relevant: In
the TIRT simulation study of Schulte et al. (2020), estimation accuracy of trait scores saturated
alreadywith 300 (ormore) individuals. This indicates that uncertainty in item parameters becomes
irrelevant to trait score accuracyquite quickly.When applying IRTmodels in practice, it is common
to measure several hundreds or perhaps even thousands of people. Accordingly, in practice, the
assumption of known itemparameters is unlikely to affect the information obtained on individuals’
trait scores to a relevant degree.

A related limitation, again motivated by the requirements of mathematical analysis, was the
fixation (rather than estimation) of the inter-trait correlation matrix. What is more, a lot of the
presented numerical results were obtained by fixing the correlation matrix to its true value. To
investigate the robustness of these results to prior-misspecification, the same experiments were run
using a diagonal prior correlation matrix, essentially assuming traits to be uncorrelated a-priori.
This kind of misspecification turned out to only affect estimation accuracy noticeably for higher
number of traits and even then only in situation where the test design provided comparably little
information (e.g., small average factor loadings or small factor loading differences). To better
put this into perspective, two things should be considered: First, the assumption of a-priori zero
correlations constitutes a strong prior misspecification given that chosen true correlation matrices
based on the NEO-PI-R contain a lot of highly nonzero values (Costa & McCrae, 1992). Second,
estimation accuracy was found to be sufficient for individual diagnostics only under conditions
where there is quite a lot of test design information; conditions were sensitivity to the prior was
low anyway. In practice, the correlation matrix usually represents a hyper-parameter estimated
jointly from the data of all individuals. Previous simulation studies have shown the trait correlation
matrix tends to be estimated inaccurately and with substantial bias precisely in those situations
where individual trait scores are estimated inaccurately as well (Brown & Maydeu-Olivares,
2011; Bürkner et al., 2019b). Conversely, if trait scores were estimated accurately, so was their
correlation matrix. In summary, with regard to results of the present paper, it appears unlikely that
the conditions identified as yielding sufficiently accurate trait score estimation would yield much
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different results if the correlation matrix was estimated from the data as part of the model fitting
procedure. A more systematic investigation of this topic is desirable and could be an interesting
area for future research.

Lastly, a highly important area for future research is to better understand faking behavior
of individuals and faking resistance of personality tests. Comparative judgments are commonly
understood as being able to reducing faking because they prevent all items from being endorsed
maximally at the same time (Cao & Drasgow, 2019; Wetzel et al., 2016). Honest-faking stud-
ies have shown that TIRT models of comparative judgments can indeed decrease score inflation
compared to standard rating scale models (Schulte et al., 2021; Wetzel et al., 2020; see also
Cao & Drasgow, 2019). However, one of these studies (Schulte et al., 2021) not only considered
score-inflation but also the correlation between honest and faking scores as a metric of faking
resistance. Unexpectedly, they found that rating scales lead to higher (better) honest-faking cor-
relations. These inconsistent findings also call for more theoretical research to properly define
faking resistance in the first place, on which basis a better understanding of faking and faking
resistance can then be obtained by further empirical studies.

6. Conclusion

In this paper, I have investigated the information obtainable from comparative judgments by
means of TIRTmodels using a combination of analytical and numerical approaches. The obtained
results suggest that it is indeed possible to design personality tests that yield trait score estimates
sufficiently accurate for individual-level diagnostic decisions, while having a realistic potential
to prevent faking in high-stakes situations. However, reaching this goal requires the careful joint
consideration of several aspects of test design, including number of response categories, number
of item pairs, number of measured traits, correlations between traits, average factor loadings,
and factor loading differences. While these results are encouraging and ground-breaking, they
remain to be validated empirically to demonstrate that tests meeting the given requirements can
indeed be constructed and successfully applied in practice in high-stakes situations. If that practical
validation succeeds, thiswould be amajor breakthrough for the fields of psychological diagnostics,
differential psychology, and their areas of application.
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Appendix

Proof of Corollary 2.1. Consider the Fisher information ITIRT(η) of an ordinal TIRT model from
Eq. (9) and the Fisher information I(η) of the corresponding linear normal model from Eq. (10).
Choose observation n arbitrarily and choose the K inner thresholds τk such that sk = τk − Xnη

for some arbitrary choice of design matrix X with nonzero nth row. Then, comparing the Fisher
information matrices reveals

0 ≤
K+1∑
k=1

(φ(sk) − φ(sk−1))
2

�(sk) − �(sk−1)
< 1, (48)

where the first inequality is because of the positive (semi-)definiteness of the Fisher information
and the second inequality is due to Theorem 1.4 in Online Supplement A. The equality to 1 in the
limit of infinite thresholds ∞∑

k=1

(φ(sk) − φ(sk−1))
2

�(sk) − �(sk−1)
= 1 (49)

is now an immediate consequence of Theorem 1.5 in Online Supplement A.

Proof of Theorem 3.1. In case of standardized item parameters (which we can assume without
loss of generality), we have

ϕ2
n = ψ2

n1 + ψ2
n2 = 2 − λ2n1 − λ2n2 (50)

as the square of the denominator occurring in the nth row Xn of the design matrix. Let us start
with the minimal non-trivial design of T = 2 traits and R12 = 2 comparisons between the 1st
and the 2nd trait, so that we have a total of N = 2 comparisons. Then, we obtain the Fisher
information as

M = X1XT
1 + X2XT

2 = 1

ϕ2
1

(
λ211 −λ11λ12

−λ11λ12 λ221

)
+ 1

ϕ2
2

(
λ221 −λ21λ22

−λ21λ22 λ222

)
(51)

and the determinant evaluates to

det(M) =
(

1

ϕ2
1

λ211 + 1

ϕ2
2

λ221

) (
1

ϕ2
1

λ212 + 1

ϕ2
2

λ222

)
−

(
− 1

ϕ2
1

λ11λ12 − 1

ϕ2
2

λ21λ22

)2

. (52)

Clearly, the first of the two additive terms is maximized if λin ∈ {−λmax, λmax} for all 1 ≤ i, n ≤
2 (note that φ2

1 and φ2
2 are also minimized by this choice), while the second additive term is

minimized if

− 1

ϕ2
1

λ11λ12 − 1

ϕ2
2

λ21λ22 = 0 (53)

This equation has many solutions, one of which is given by λ11 = λ21 = λ22 = λmax and
λ12 = −λmax. But this solution also maximizes the first term which proves its optimality in case
of T = 2 and R12 = 2.
For arbitrary T ≥ 2 number of traits and even Ri j ≥ 0 number of comparisons between traits
i �= j , we note that every comparison contributes information only to two traits and corresponding
four elements of M , while all other elements remain unchanged due to additivity of the Fisher

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 20:37:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1468 PSYCHOMETRIKA

information. That is, having already included an even number of Ñ < N comparisons to the
design, adding two more comparisons Ñ + 1 and Ñ + 2 of traits i �= j , we get

(MÑ+2)i i =(MÑ )i i + 1

ϕ2
(Ñ+1)

λ2
(Ñ+1)1

+ 1

ϕ2
(Ñ+2)

λ2
(Ñ+2)1

(MÑ+2) j j =(MÑ ) j j + 1

ϕ2
(Ñ+1)

λ2
(Ñ+1)2

+ 1

ϕ2
(Ñ+2)

λ2
(Ñ+2)2

(MÑ+2)i j =(MÑ )i j − 1

ϕ2
(Ñ+1)

λ
(Ñ+1)1λ(Ñ+1)2 − 1

ϕ2
(Ñ+2)

λ
(Ñ+2)1λ(Ñ+2)2

(MÑ+2) j i =(MÑ ) j i − 1

ϕ2
(Ñ+1)

λ
(Ñ+1)1λ(Ñ+1)2 − 1

ϕ2
(Ñ+2)

λ
(Ñ+2)1λ(Ñ+2)2 (54)

and (MÑ+2)kl = (MÑ )kl for all other elements, where MÑ and MÑ+2 denote the Fisher infor-

mation after a total of Ñ and Ñ + 2 comparisons, respectively.
If we plug in our solution from the T = R12 = 2 case above, that is, choose λ

(Ñ+1)1 = λ
(Ñ+2)1 =

λ
(Ñ+2)2 = λmax and λ

(Ñ+1)2 = −λmax, we see that the i j and j i increments are 0 such that
(MÑ+2)i j = (MÑ )i j and (MÑ+2) j i = (MÑ ) j i , while the diagonal elements i i and j j increase
maximally in the space of all admissible factor loadings. We apply this solution to all such sets
of two item pairs, while ensuring that all traits appear in the same number of pairs in total. We
denote the resulting Fisher information of this design (suggestively) as Mmax. By induction, we
see that all off-diagonal elements (Mmax)i j = 0, and thus the determinant then simply equals

det(Mmax) =
T∏
i=1

(Mmax)i i . (55)

The diagonal elements of any M are of the form

Mii =
∑
j∈Ji

1

ϕ2
n j

λ2j , (56)

where Ji is the index set of all items belonging to the i th trait and n j is the comparison with which
the j th item belongs. Since the total number of factor loadings sums to

∑T
i=1 |Ji | = 2N , the

product
∏T

i=1 Mii ismaximal if each 1
ϕ2
n j

λ2j ismaximal and allMii are equal (squaremaximization

property), both of which are satisfied by Mmax.
It remains to be shown that det(Mmax) is indeed maximal within the space of all admissible
designs not just within the space of all design implying a diagonal Fisher information. For this
purpose, we apply Cholesky decomposition to M such that M = LLT of lower triangular matrix
L . This is always possible if M is positive definite; and if M was only positive semi-definite,
we had det(M) = 0 and thus a degenerate design, which is certainly not optimal. We obtain
det(M) = det(L) det(LT ) = det(L)2 and, since L is lower triangular, det(L) = ∏T

i=1 Lii .
Further, as Mmax is diagonal, we see that Lmax is also diagonal and (Lmax)i i = √

(Mmax)i i . We
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now only need to show that Lii ≤ (Lmax)i i for every admissible design. Applying the Cholesky-
Banachiewicz algorithm to determine L , we see that

Lii =
√√√√Mii −

i−1∑
j=1

L2
i j . (57)

From
∏T

i=1 Mii ≤ ∏T
i=1(Mmax)i i and L2

i j ≥ (Lmax)
2
i j = 0 for i �= j , we obtain maximality of

(Lmax)i i and hence the maximality of det(Mmax).

Proof of Theorem 3.2. Under the assumptions of Theorem 3.1, we need to show that the design
λn1 = λmax and λn2 = (−1)nλmax for all comparisons n ∈ {n, . . . , N }, which leads to the
design matrix Mmax, minimizes

∑T
i=1(M

−1)i i . This is equivalent to minimizing the sum of the
(univariate) variances of any efficient estimator.
Let us first consider all designs such that M is diagonal. In that case, M−1 is also diagonal with
diagonal entries (M−1)i i = 1/Mii . From the proof of Theorem 3.1, we see that

∑T
i=1 Mii is

bounded and maximized by any design with λn1 = ±λmax and λn2 = ±λmax, a class of designs
to which the Mmax design belongs. Because the function

f (x, y) = 1

x + y
+ 1

x − y
(58)

with support in x > y ∈ R
+ is minimized at y = 0 for any fixed x ∈ R

+, it follows that∑T
i=1(M

−1)i i is minimized if both
∑T

i=1 Mii is maximized and Mii = Mj j for all traits i, j ∈
{1, . . . , T }. These requirements are fulfilled by Mmax, proving its A-optimality within the space
all designs that imply a diagonal Fisher information.
It remains to be shown that the Mmax design is indeed A-optimal within the space of all admissible
designs. For this purpose, we will again use Cholesky decomposition such that M = LLT with
a lower triangular matrix L . We first note that M−1 = (L−1)TL−1, by standard rules of matrix
inversion. Since L is lower triangular, L−1 is also lower triangular and (L−1)i i = 1/Lii . Together,
this implies

(M−1)i i = ((L−1)TL−1)i i

= (L−1)i i +
T∑
i+1

(L−1)Ti j (L
−1) j i

= 1

L2
i i

+
T∑
i+1

(L−1)2j i . (59)

For any non-diagonal M , we have
∑T

i+1(L
−1)2j i ≥ 0, and thus, together the results from the

diagonal case, we conclude
T∑
i=1

(M−1)i i ≥
T∑
i=1

(M−1
max)i i , (60)

which completes the proof.
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Proof of Theorem 3.3. Consider an ordinal model with latent linear normal structure and arbitrary
but fixed number of thresholds K . Let X+ be the optimal design matrix and τ+ be the optimal
threshold vector of that ordinal model. Let τ � be the optimal threshold vector given the choice of
X� as design matrix that is optimal under the latent linear model. We need to show that

C(ITIRT(X�, τ �)) = C(ITIRT(X+, τ+)). (61)

Let OK be the set of all real ordered vectors of length K and let smax := argmaxs∈OK IK (s)
be the ordered vector maximizing the Information factor IK in the parameterization of Eq. (11).
It follows that τ+

nk = smax,k + X+
n η and τ �

nk = smax,k + X�
nη for each k ∈ {1, . . . , K } are the

optimal thresholds belonging to X+ and X�, respectively. These solutions are always valid as
smax is ordered and both X+

n η and X�
nη are independent of k, thus τ+

n = (τ+
n1, . . . , τ

+
nK ) and

τ �
n = (τ �

n1, . . . , τ
�
nK ) are ordered as well. Accordingly, we get I �

nK = I+
nK = IK (smax) =: cmax,

where I �
nK and I+

nK are the information factors based on τ �
n and τ+

n , respectively. Notice that cmax
is independent of n.
Define M+

n := X+T
n X+

n . If (X�, τ �) was not optimal for the ordinal model, we would have

C(ITIRT(X�, τ �)) = C

(
N∑

n=1

I �
nK M�

n

)
> C

(
N∑

n=1

I+
nK M+

n

)
= C(ITIRT(X+, τ+)), (62)

which implies

C

(
cmax

N∑
n=1

M�
n

)
> C

(
cmax

N∑
n=1

M+
n

)
(63)

because I �
nK = I+

nK = cmax for all n. However, due to optimality of X� for the linear model, we
have

C

(
N∑

n=1

M�
n

)
= C(ILM (X�)) ≤ C(ILM (X+)) = C

(
N∑

n=1

M+
n

)
. (64)

Thus, by assumption on C , it follows that

C

(
cmax

N∑
n=1

M�
n

)
≤ C

(
cmax

N∑
n=1

M+
n

)
, (65)

which contradicts (63). Accordingly, X� must also be an optimal design matrix for the ordinal
model. As the ordinal model was arbitrary chosen, this conclusions holds for all such ordinal
models.

Proof of Corollary 3.4. Using basic properties of the determinant, we see that the D-optimal
criterion CD defined in (16) satisfies CD(c M) = CD(M)/c for any c ∈ R

+. Similarly, using
basic properties of matrix inversion, we see that the A-optimal criterion CA defined in (19)
satisfies CA(c M) = CA(M)/

√
c. Accordingly, the assumptions of Theorem 3.3 are satisfied for

both criteria as
CD(c M�) = CD(M�)/c ≤ CD(M)/c = CD(c M) (66)

and
CA(c M�) = CA(M�)/

√
c ≤ CA(M)/

√
c = CA(c M) (67)

for any permissible Fisher information matrix M . This completes the proof as the design matrix
X in ordinal TIRT models only depends on the factor loadings λ.
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