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In tokamak plasmas, sheared flows perpendicular to the driving temperature gradients
can strongly stabilise linear modes. While the system is linearly stable, regimes
with persistent nonlinear turbulence may develop, i.e. the system is subcritical. A
perturbation with small but finite amplitude may be sufficient to push the plasma into
a regime where nonlinear effects are dominant and thus allow sustained turbulence.
The minimum threshold for nonlinear instability to be triggered provides a criterion
for assessing whether a tokamak is likely to stay in the quiescent (laminar) regime.
At the critical amplitude, instead of transitioning to the turbulent regime or decaying
to a laminar state, the trajectory will map out the edge of chaos. Surprisingly,
a quasi-travelling-wave solution is found as an attractor on this edge manifold.
This simple advecting solution is qualitatively similar to, but simpler than, the
avalanche-like bursts seen in earlier turbulent simulations and provides an insight into
how turbulence is sustained in subcritical plasma systems. For large flow shearing rate,
the system is only convectively unstable, and given a localised initial perturbation,
will eventually return to a laminar state at a fixed spatial location.
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1. Introduction
The strong effect of sheared flows on linear plasma instabilities results in a broad

range of subcritical configurations, which are linearly stable but allow long-lived
turbulence to develop given a large enough displacement from equilibrium. Such
subcritical configurations in plasmas (Rincon, Ogilvie & Proctor 2007; Friedman &
Carter 2015) and tokamaks more specifically (Casson et al. 2009; McMillan et al.
2009; Roach et al. 2009; van Wyk et al. 2016) have recently come under extensive
study. Computationally, the late-time properties of the turbulent state in a subcritical
plasma can be determined by giving the plasma a sufficiently large initial kick
(Casson et al. 2009), but whether or not an experimental plasma would enter this
regime depends both on the threshold for nonlinear instability, and details of the
experimental time history.

We specialise to microinstabilities in tokamak plasmas, and use a gyrokinetic
model. These equations time evolve the system state, which is captured by the

† Email address for correspondence: b.f.mcmillan@warwick.ac.uk

https://doi.org/10.1017/S0022377818001216 Published online by Cambridge University Press

mailto:b.f.mcmillan@warwick.ac.uk
https://doi.org/10.1017/S0022377818001216


2 B. F. McMillan, C. C. T. Pringle and B. Teaca

distribution function f , for a set of parameters, which capture the background
geometry and plasma profiles. In this article, we investigate the threshold in state
space (not parameter space as in some other studies (Highcock et al. 2011)) between
the quiescent (laminar) and turbulent state, the edge of chaos (Itano & Toh 2001;
Skufca, Yorke & Eckhardt 2006; Pringle, McMillan & Teaca 2017). We examine the
dynamics of the plasma on that threshold and well as practical questions about how
large an initial perturbation is required to induce long-lived turbulence in a tokamak
configuration. The behaviour and solutions found on the edge of chaos potentially
provide insight into the domain of existence and nature of the turbulent state. Related
questions have been explored via linear theory and dimensional analysis to capture
aspects of nonlinear threshold physics (Highcock et al. 2011; Schekochihin, Highcock
& Cowley 2012). Various new tools have been developed to understand the edge of
chaos, and applied to neutral fluid theory, and we aim to use these tools to illustrate
some questions in plasma physics; an earlier paper (Pringle et al. 2017), studying
a drift-wave model (which we refer to as the PI model), discussed the application
of these tools and the associated terminology in a plasma context. Essentially, this
work can be viewed as a study of whether features found in the edge of chaos in
a simplified drift-wave model (Pringle et al. 2017) are qualitatively recapitulated in
gyrokinetics. For example, are the relatively simple features of the edge dynamics in
the drift-wave model, such as the existence of an attractive relative periodic orbit in
the edge, a consequence of the simplicity of the drift model or a robust consequence
of the basic physics that will persist even in complicated gyrokinetic scenarios? The
complexity and computational intensiveness of the gyrokinetic model compared to
the fluid drift model mean that we do not attempt to replicate all the analyses in the
earlier paper, and require certain simplifications.

Knowledge of the threshold state potentially provides insight into how nonlinear
and linear terms combine to allow quasi-steady states in plasma turbulence. We find
a simple propagating state on the edge of chaos, and this allows us to provide a
relatively simple picture of how nonlinear effects can sustain the dynamics in a
linearly stable regime. This propagating edge state mirrors many of the features of
the propagating bursts/avalanches (Candy & Waltz 2003; McMillan et al. 2009) seen
in the turbulent regime.

Within chaotic motion, simpler exact solutions (steady states, travelling waves,
periodic orbits and so on) of the underlying equations are embedded. These solutions
are linearly unstable, but their presence can be observed in the dynamics as the flow
approaches these states before drifting away. For most subcritical problems, there
are two attracting states that the flow can end up in – laminar flow or statistically
steady turbulence. For a given choice of parameters, all initial conditions will evolve
into one of these two states depending on which state’s basin of attraction the initial
condition is in. The only exceptions to this are those states that fall precisely on the
boundary separating these two basins. This boundary is referred to as the edge of
chaos and any flow which begins on this edge must remain there forever.

The edge of chaos can be isolated via an iterative process (Pringle et al. 2017).
Although disturbances within the edge must remain within the edge as they evolve, in
many systems the dynamics within the edge can still be complex. Typically the flow
is chaotic, but the chaos is of a slower, less energetic nature than the fully turbulent
flow. As such, there are exact solutions embedded within the edge giving the chaos
structure. These structures are linearly unstable, but the number of unstable directions
is important. If they only have one, then this direction must be out of the edge and so
when the dynamics is restricted to being within the edge, the state becomes stabilised
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FIGURE 1. Geometry of the plasma system near the outboard mid-plane. Black circles
indicate convective vortices generated by the drift instability. The velocity arrows indicate
the sheared background flow.

and acts as an attractor within the edge – that is to say it is an attractor for initial
conditions that are in the edge. Such behaviour has been observed in classical shear
flows such as pipe flow and plane-Couette flow, but only after sufficient restricting
symmetries have been applied.

The edge of chaos gives us insight into the full problem in four distinct ways.
Firstly, when trying to understand how transition occurs, the edge controls the
transition scenario – to trigger turbulence you must first ‘cross’ the edge, and
likewise to relaminarise. Secondly, when seeking to assess how stable the laminar
flow is (for instance to assess the effectiveness of control strategies or domain design)
the amplitude of the edge is the amplitude required to trigger turbulence – the larger
the amplitude the more stable the laminar state is. Thirdly, the chaos within the edge
is simpler and calmer than the full turbulence and so a more ready target for analysis.
This analysis should give insight into full turbulence as many of the mechanisms must
port across (the equations of motion are the same). Finally, the exact coherent states
within the edge which characterise the chaos should be more easily identified than for
full turbulence. In all classical flows considered, the exact solutions within the edge
can be continued through parameter space to find counterparts of them embedded
within full turbulence and hence the associated insight into the full problem.

2. The system analysed
This strongly magnetised plasma system, an idealised tokamak, is described via

a gyrokinetic (GK) framework (Hahm 1988). The GK equations describes particle
motion in magnetised plasmas in a self-consistent electromagnetic field by evolving
the gyrotropic particle distribution function f (x, y, θ, µ, v‖), where x, θ and y are
spatial coordinates and µ and v‖ are velocity-space coordinates. The x coordinate
parameterises the radial direction, θ is the poloidal (straight field line) angle and the y
coordinate is a field-line label, with y∝ (ζ −q(x)θ), with ζ the toroidal direction and q
the safety factor (Beer, Cowley & Hammett 1995). Note that changing y and keeping
other spatial variables fixed corresponds to a displacement in the toroidal direction of
symmetry. The x and y coordinate are scaled such that |∇x|, |∇y| ∼ 1.

The basic instability driving turbulence in this system is the ion temperature gradient
instability, driven by pressure gradients aligned with magnetic curvature. A sketch of
the geometry is provided in figure 1. Simulating tokamak turbulence in a kinetic rather
than fluid model allows certain details such as parallel Landau damping, perpendicular
particle resonances and finite-Larmor radius effects to be retained. These features are
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essential to recover a good quantitative match against experimental data: qualitatively,
however, many of the dynamical features match a highly simplified one-dimensional
model of turbulence (McMillan et al. 2009; Pringle et al. 2017). For the GK system
of interest, quantities peak near θ = 0 and vary slowly along the field line (with field-
line spatial dependence resembling linear eigenmodes), and we believe much of the
important nonlinear dynamics can be understood by examining the (x, y) dependence
on the θ = 0 mid-plane in our analysis.

The usual control parameter of interest in plasma microturbulence is the gradient
driving the instability, and a normalised measure is the drive rate compared to
the parallel streaming time. Due to all spatial scales being subject to Landau
damping by parallel streaming, but only some being favourable for instability drive,
a somewhat narrow range of wavelengths is strongly activated in a typical simulation
(especially in the simplified system here with only one active particle species). Finer
scale structures are generated through spatial and velocity-space mixing, but their
influence on collective behaviour is reduced due to gyro-averaging and velocity-space
integration. Physical or numerical dissipation provides a means of saturation for these
fine structures, but quantities like the spectrum of excited modes are often not very
sensitive to the value of this dissipation. This should be contrasted with the situation
in fluid turbulence where the typical control parameter is the Reynolds number,
which directly determines the size of the range of wavenumbers that are dynamically
relevant.

Compared to fluids, the overall dissipative nature of kinetic systems is much
more complex. Collisions (Balescu 1960; Lenard 1960; Landau 1981) are ultimately
responsible for setting the dissipation scale. However, in typical under-resolved
‘collisionless’ simulations, anomalous dissipation (Eyink 2018) due to the truncation
of the physical nonlinear couplings can be seen as the cause for the effective removal
of energy from fine scales. In addition, hyperviscosity terms, such as the ones
employed in our work, can also play this role. They can be seen as the simplest
form of large eddy simulation models, applied to a gyrokinetic system (Navarro et al.
2014). Moreover, as the route to dissipation occurs in phase space (Schekochihin
et al. 2008), is linked to the phase-space mixing (Watanabe & Sugama 2006; Tatsuno
et al. 2009) and the energy cascade (Navarro et al. 2011; Watanabe et al. 2012;
Teaca, Navarro & Jenko 2014), non-intuitive behaviours can emerge (Schekochihin
et al. 2016). The dissipation for the GK problem occurs over a wide range of spatial
scales, including relatively large perpendicular spatial scales (Hatch et al. 2011, 2014),
so in conjunction with the injection of energy and subsequent weak energy cascade
(Howes et al. 2008), the overall turbulence dynamics may be considered strongly
dissipative. For example, in the fluid model of McMillan et al. (2009) and Pringle
et al. (2017), an explicit dissipation of order 1 in terms of the characteristic scales
is applied, which is modelling the effect of kinetic processes; this dissipative system
nonetheless qualitatively captures many of the aspects of the nominally collisionless
gyrokinetic system.

3. Formulation details and symmetry

We use the GKW code (Peeters et al. 2009) to evolve the electrostatic local
(flux-tube) gyrokinetic equations, with adiabatic electrons, in the presence of a
background poloidal flow shear with shearing rate S. The aim is to focus on a
somewhat simplified system, in which analysis is relatively straightforward, rather
than to perform a detailed device-relevant full-physics model. Our analysis treats this
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fairly standard simulation setup in some ways as a ‘black box’, so much of the detail
presented in this section will not be referred to in later discussion. Despite this, we
present the equations of this GK system for completeness, in direct space (rather than
spectral) form; more details are provided in the code reference paper (Peeters et al.
2009). The dynamics is found by solving a Vlasov equation for the perturbation δf
to the distribution function,

∂δf
∂t
=−Ż0 · ∇Zδf − Ṙ1 · ∇R( f0 + δf )− v̇‖1

∂

∂v‖
f0 +C(δf ), (3.1)

where f0 is the (Maxwellian) background distribution function, Z represents the
five-dimensional phase space (x, y, θ, µ, v‖), R the spatial coordinates (x, y, θ), Ż0

are the drift trajectories in the absence of the perturbing electrostatic field, Ṙ1 is the
E × B drift and v̇‖1 represents acceleration due to E‖. C stands in for the collision
operator(which is not used here), or for the numerical hyperviscosity.

For the zero-β, weak-flow, electrostatic case of interest, for ions of charge e, and
equal ion and electron temperatures, the equations of motion may be written as

Ż0 = (Ṙ0, v̇‖0, µ̇0)=

(
v‖b+ vD + vE0,−

µB
m

B · ∇B
B2

, 0
)

(3.2)

Ṙ1 = vE (3.3)

v̇‖1 =
1

mv‖
(−e[v‖b+ vD] · ∇〈φ〉α −µvE · ∇B), (3.4)

with

vE =
b×∇〈φ〉α

B
, (3.5)

where angle brackets with subscript α denote a gyro-average, vE0 = E0 × b/B and

vD =
1
e

[
mv2
‖

B
+µ

]
B×∇B

B2
. (3.6)

For the derivatives of the background distribution function we use

∂f0

∂v‖
= f0

mv‖
T

(3.7)

and

∇f0 =−f0

(
mv2
‖
+µB− 3T/2

T
1

LT
+

1
Ln

)
∇x, (3.8)

with

f0 =
n

(2πT)3/2
exp−

mv2
‖
+µB

T
, (3.9)

where Ln and LT are the density and temperature gradient scale lengths. The local limit
allows taking n, T , Ln and LT constant. The background electric field E0 = xB0S∇x
so that the shearing rate d(∇y · vE0)/dx∼ S.
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The quasineutrality equation relates the gyro-averaged charge density associated
with f to the perturbed electric field φ,∫

dZ
e
T

f0〈〈φ〉α − φ〉α −
ne
T
(φ − 〈φ〉)+

∫
dZe〈δf 〉α = 0. (3.10)

In the long-wavelength limit, explicit calculation of the first term on the right-hand
side yields (mn/eB2)∇2φ, which is the charge associated with the polarisation
response of the ions. The second term represents the adiabatic electron response, with
the angle bracket (without a subscript) indicating a zonal average (volume-weighted
integration in y and θ direction) as the electrons are bound to the flux surfaces and
do not respond to zonal charge fluctuations.

The symmetries of these gyrokinetic equations may be found by inspecting the form
of these terms. The electrostatic field and hence the E× B drift can be expressed as
a linear function of δf , so we have Ż1= L(δf ). Due to axisymmetry and the flux-tube
limit, both L and Ż0 are spatially invariant to translations in the x and y directions.
The boundary conditions in the x and y directions are doubly periodic, but in the
θ direction, there is a twisted periodicity of the form f (x, y, π) = f (x, y + sx, −π),
with s dependent on magnetic shear. As a consequence, the overall system has a
continuous symmetry in the y (toroidal) direction, but only a discrete (not continuous)
translation symmetry in the x (radial) direction. There is also an inversion symmetry
(Parra, Barnes & Peeters 2011), which involves changing the sign of one of the
parameters (the flow shear), and allows us, as usual, to consider only cases with
S > 0, since results for S < 0 may be found using the symmetry. For example,
propagating structures exist with the same radial velocity but opposite sign for S< 0.

In the following, units for amplitudes use the local gyrokinetic convention, so the
electrostatic potential φ is in units of φ0 = ρ

∗eφ/Te, with ρ∗ = ρ0/R, so fluctuations,
although order 1 in these plots, are small in terms of relative density (here, Te is the
electron temperature ρ0= (mTe)

1/2/qB is the ‘ion sound gyroradius’, R is the tokamak
major radius).

The simulations use the standard set of CYCLONE parameters, with Ln = R/2.2,
q=1.4, (dq/dr)r/q=0.8, but with a slightly reduced temperature gradient, LT =R/6.0,
and a concentric circular equilibrium, with local aspect ratio 0.18. The size of the
simulation box is [Lx,Ly]= [157, 84]ρ0, with 20 toroidal modes used, 321x grid points
and 16, 16 and 32 grid points used in the θ , µ and v‖ directions. A normalised forth-
order numerical hyperviscosity parameter of 0.1 is chosen in the parallel, v‖ and x
directions (in addition to inevitable numerical diffusion); this corresponds to damping
oscillations at the grid scales in these directions on a time scale of 10t0, and helps to
avoid numerical problems of spectral pile up at fine scales without unduly influencing
the longer scales that will be of interest here.

Internally, GKW represents the distribution function using a Fourier series. Except
where specified otherwise, the simulations use an initialisation of the form

f (kx, ky, θ, v, µ)= Af0(v, µ) exp

{
−
(kx − kx0)

2

C2
x

−
(ky − ky0)

2

C2
y

}
1
2
(cos(θ)+ 1) (3.11)

representing a field-aligned density fluctuation with typical wavenumber (ky0, kx0)
modulated by a Gaussian envelope in the x and y directions with width parameterised
by Cx and Cy, with an overall amplitude A. Unless noted otherwise, values
kx0ρ0 = 0.24, Cxρ0 = 0.1601, ky0ρ0 = 0.37, Cyρ0 = 0.074 will be used.
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FIGURE 2. Heat flux versus time (gyroBohm units) for simulations with S= 0.12t−1
0 and

successive initial condition amplitudes chosen using a bisection method to approach the
critical amplitude. Red traces are restarted from t = 120, with the distribution function
rescaled to track the edge state.

4. The edge state
The black traces of figure 2 show the evolution of the heat flux in the system

for initialisations of varying amplitude versus time (in units of transit frequency t0 =

cs/R). The linear system is stable despite periods where the flux increases in time,
and simulations with sufficiently small amplitude initialisations decay. Given a large
enough initialisation, however, sustained turbulence is triggered.

The amplitude of the initial perturbation was systematically varied, by a bisection
technique (Pringle et al. 2017), to find the threshold amplitude below which the
system decays to a laminar state, but above which it remains in a turbulent regime
at late time. The simulations very close to threshold remain for some time near
the separator between the stable and unstable manifold in the system, i.e. the edge
of chaos, before diverging away. In figure 2 the near-stationary flux (log10[flux]
≈ −1) of the edge state indicates that the edge dynamics is considerably simpler
than the turbulent dynamics. The ‘steps’ that appear in decaying simulations (log10
[flux] ≈−4) are associated with a time dependent (‘Floquet mode’) behaviour (Waltz,
Dewar & Garbet 1998); in this case this dynamics is too slow to play a role in the
transition to turbulence.

The edge of chaos represents the separatrix between the attractors for the laminar
and turbulent dynamical states, and is an unstable manifold for the system. When the
dynamics is restricted to the edge (by careful choice of initial trajectory), however, we
find a local attractor within the edge, which we refer to as the edge state. To analyse
this state, in addition to standard simulations, we use a series with a very small y
domain (narrow simulations), one fifth the size of the standard domain (in units of
the thermal gyroradius ρ0). In the narrow simulations, the non-zonal component is
dominated by the longest-wavelength mode that fits in the y direction (at late time
more than 90 % of the vorticity is in this mode). We use the narrow simulations to
focus more directly on the relevant dynamics in a simpler system with fewer degrees
of freedom. The properties of the edge state are qualitatively and quantitatively very
similar for standard and narrow simulations.
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(a) (b)

FIGURE 3. (a) Mean φ2 (averaged over y) at the mid-plane versus time and position in
the travelling-wave frame x− vt for the edge state in narrow simulations with S= 0.12t−1

0 .
A periodicity over 3.2t0 is visible. (b) Non-zonal potential φ at outboard mid-plane
versus x and y for edge state at t = 120t0 for S= 0.12t−1

0 for (top) narrow and (bottom)
standard simulations.

We also considered simulations initialised from a white noise perturbation, where
independent normally distributed pseudorandom numbers are loaded into the numerical
grid of the distribution function as an initial condition, and multiplied by the
background distribution function f0. Performing the same bisection method to search
for the critical amplitude yields an effectively identical edge state (shifted in the x
direction). The insensitivity of the result to the initial perturbation is an indication
that the edge state is in fact an attractor within the entire edge manifold.

For narrow simulations, the edge state is found to be very close to a travelling
wave. We determined the radial velocity v of this translating structure using a
linear fit of the x position of the peak root-mean-square (r.m.s.) amplitude of the
non-zonal potential φ2 versus time. Detailed inspection (figure 3a), reveals a small
time oscillation, with period (3.2t0) equal to the distance between lowest-order rational
surfaces in the system (here there are 60 of these surfaces in the domain) divided by
the travelling-wave velocity. This is a consequence of the fact that for finite magnetic
shear, local gyrokinetics has a discrete, rather than continuous, spatial translation
symmetry. The edge state for narrow simulations is thus a relative periodic orbit
rather than an exact traveling wave. The r.m.s. variation from exact periodicity (when
sampled once every 3.2t0) is found to be 0.5 % over a period 64t0. For the standard
simulations, plots of zonal quantities solutions also suggest a near-periodic orbits on
the 12-fold discrete radial symmetry of the larger system, with zonal averages similar
to the narrow simulations.

The quasi-travelling-wave solution in both narrow and standard simulations
(figure 3b) consists of a tilted finite ky travelling-wave mode, fed by the gradient
drive, that produces a travelling zonal shear flow ahead (leftwards) of the pulse,
that opposes the background shear flow (figure 4a). The travelling perturbation
strengthens the temperature gradient ahead of the pulse, and weakens the gradient
behind, as expected from the energy transport equation, given the localised heat flux
associated with the burst (the change in gradient in figure 4(a) is of comparable size
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(a) (b)

FIGURE 4. (a) Mean (time averaged from 40 to 120t0) temperature gradient (blue)
and zonal shear flow d〈E〉/dr (red), both normalised to background gradients, versus
position x − vt (in the travelling-wave frame) of the edge state, for S = 0.12, and both
narrow (dashed) and standard (solid) simulations. (b) Mean (time averaged from 90 to
150t0) temperature gradient (blue) and zonal shear flow d〈E〉/dr (red), both normalised
to background gradients, versus position x − vt (in the approximate burst frame) for a
turbulent simulation state, for S= 0.16.

(a) (b) (c)

FIGURE 5. Mean of squared non-zonal potential φ2 (averaged over y) at the mid-plane
versus time and x for (a) S=0.15t−1

0 , (b) 0.16t−1
0 and (c) for an edge state with S=0.12t−1

0 .
In (a), long-lived turbulence is seen in a slowly expanding region centred around the
excitation front. In (b), turbulence is excited transiently over a period of 100t0, remaining
localised near the travelling excitation front but then decays. The edge state (c) is much
simpler and smoother, but also of considerably lower amplitude.

to the background gradient). Those two mechanisms would be compatible with a
travelling wave in either direction (McMillan et al. 2009; Pringle et al. 2017), but
when the nonlinearity in the simulation is turned off, the ky 6= 0 mode amplitude
continues to propagate (not shown) in the same direction for 10a/cs due to the group
velocity, which depends on the mean kx value and thus the sign of S (McMillan
et al. 2009). Note that narrow simulations do not permit a vortex pair (Horton &
Hasegawa 1994) advection mechanism, where a spatially localised ‘blob’ self-advects
across the domain, as they are dominated by one ky mode (unlike y-localised features
seen elsewhere (van Wyk et al. 2017)). Time snapshots (figure 3b) of the mid-plane
potential for narrow and standard simulations show similar tilting and localisation in
x for the two simulations, but despite close similarities in y-averaged diagnostics, the
standard simulation does not decay towards the narrow edge state. The spatial scale
of the edge structure is of order 10ρ0 in the x direction, and the typical wavelength
in the y direction is approximately 16ρ0; this is of similar scale to the wavelength of
the most unstable mode, at kρ0∼ 0.5; this is also comparable to typical scales in the
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FIGURE 6. Intensity of the non-zonal field φ (averaged over the y-direction) versus x for
t= 60t0 at the mid-plane for the edge state found in a standard (blue trace) and doubled-
resolution simulation (green trace).

fully turbulent simulations here and elsewhere (Dimits et al. 2000). The combination
of linear physics and nonlinear interaction with zonal flows that set the relevant
length scales in the turbulence physics (Plunk, Navarro & Jenko 2015) also appears
to be responsible for sustaining the edge state. So the radial (x direction) scales of the
edge state might also be estimated by considering the wavenumber of the secondary
instability that drives zonal flows (Rogers, Dorland & Kotschenreuther 2000); this
also gives a scale in the x direction of approximately 10ρi.

Even though the numerical resolution chosen is known to be sufficient to obtain
converged results for turbulence simulations of this case, it is possible that the
slightly different quantities of interest related to the edge state require higher
numerical resolution. We therefore found the edge state (using the bisection method)
in simulations with doubled resolution in each of the five phase-space directions,
with the hyper-diffusivity in code units reduced by a factor of 16, for S = 0.12.
Qualitatively, there are no striking differences observed (figure 6); the propagating
edge state obtained for the high-resolution simulation has a mean squared amplitude,
width, and propagation velocity within 9 %, 2 % and 1 % of that found in standard
simulations (with these quantities averaged over the time period 45 − 75t0). We
therefore conclude that these phenomena are very insensitive to the value of the
numerical diffusivity in the simulation and numerical resolution in general.

5. Transition to a turbulent state
In typical simulations with a uniform shear flow, an isolated perturbation of

sufficient amplitude produces a spreading region of turbulence. For sufficient shear
flow (figure 5), the propagation of turbulence is entirely in one direction, and isolated
propagating disturbances are seen in the simulation, described variously as avalanches
and bursts in previous work (Candy & Waltz 2003; McMillan et al. 2009; van
Wyk et al. 2016). Propagating phenomena have been frequently observed in tokamak
turbulence simulations, especially when a background shear flow is imposed. Although
these features are also present when no overall background flow shear is imposed
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(a) (b)

FIGURE 7. Non-zonal potential φ at outboard mid-plane versus x and y for (a) the
standard simulation at near-critical shear value 0.15 and (b) a low aspect ratio simulation
with zero magnetic shear at a near-critical shear value.

(McMillan et al. 2009), we see very clear propagating features for large shears, and,
as in other works (van Wyk et al. 2016), these become more isolated as the shearing
rate approaches the critical value. The propagating edge state (figure 4a) has some
features in common with the late-time nonlinear state (figures 5a and 4b), such
as similar propagation velocities (to within 10 %) and spatial scales (a comparison
of typical amplitudes can be seen in figure 10). Both are associated with a moving
turbulence front supporting a moving zonal electric field that destabilises the system in
front of the turbulence front, so can both be seen as a travelling excitation wave. Near
the critical flow shear beyond which turbulence is quenched, there structures are not
particularly localised in the y-direction (figure 7a), unlike those seen in certain more
detailed simulations (van Wyk et al. 2016); the detailed structure of the propagating
features is somewhat parameter dependent, and we present a second example of a
propagating state in a lower aspect ratio, zero magnetic shear simulation (figure 7b).
The phenomenological commonalities between all these observations of propagating
structures in gyrokinetic simulations with background shear flows are so striking
that a common origin seems like the simplest explanation. Curved and elongated
eddies, associated with a self-driven radially propagating zonal shear flow appear to
be a ubiquitous phenomenon in tokamak turbulence simulations. Understanding what
physical and numerical parameters control the details of these structures, however,
still requires further study.

As in neutral fluid simulation, if the shear is increased beyond a certain point
(here, S ∼ 0.15t−1

0 ) we observe relatively long-lived turbulence that unpredictably
decays to the quiescent state. It is clear from figures such as figure 5(a) that for
large shear (S & 0.1t−1

0 ), the excited region of turbulence has an overall drift, so that
‘puffs’ of excited turbulence travel through the system, returning to a locally quiescent
state after the puff has passed. Unlike in, say, pipe flow turbulence (Wygnanski &
Champagne 1973), where these puffs travel in the direction of fluid flow, the bursts
here travel either aligned or anti-aligned with the direction of the temperature gradient.
In these simulations an unphysical periodic boundary condition is applied in the x
direction, so that the turbulence gradually fills the domain. We consider a simulation
at S = 0.12t−1

0 using an ‘open’ boundary condition (in this case applying Dirichlet
conditions to f and the electrostatic potential), with the standard initial condition
displaced in x so that it peaks at x = 80xMAX. Here, the system becomes quiescent
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(a) (b)

(c) (d)

FIGURE 8. Mean φ2 (averaged over y) at the mid-plane versus time and position in a
simulation with S = 0.06t−1

0 with (a) Dirichlet and (b) periodic boundary conditions and
S= 0.12t−1

0 with (c) Dirichlet and (d) periodic boundary conditions.

after the puff travels to the boundary (figure 8c,d). On the other hand, at lower flow
shear the boundary conditions have less influence on the interior of the domain, and
late-time behaviour is similar (figure 8a–c). The sensitivity to boundary conditions
is surprising in some sense because turbulent structures are very much smaller (in
the x direction) than the system size, and one might expect the local turbulence
properties to mostly depend on local gradients, rather that the conditions at the x
boundaries. Nonetheless, the propagating bursts allow for patterns of activation to
be set up that transmit information over longer length scales in the x direction. We
performed a scan in S, and find that turbulence can be sustained over a wider range
of flow shear values in a periodic simulation than a bounded simulation (figure 9)
which may explain some of the differences in earlier benchmarks (Casson 2011).
The more effective quenching of the flux by background flow shear in the Dirichlet
simulations does not appear to be a consequence of the specific initial conditions
chosen; a simulation started with S= 0, and restarted after turbulence has attained a
near steady state with S= 0.12 also decays to the laminar state.

6. Scaling of the transition threshold with background flow shear

The minimal seed is the initial simulation state of minimal amplitude that allows
transition to a turbulent state in a subcritical system. The amplitude of the minimal
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FIGURE 9. Volume-averaged heat flux versus S for Dirichlet versus periodic simulations.

seed may be seen as a ‘safety threshold’ below which all perturbations will eventually
decay to the laminar regime. The amplitude of the minimal seed can also be used to
quantify the degree to which linear and nonlinear processes can allow amplification
of small fluctuations up to turbulent levels. Examining the minimal seed amplitude
compared to the edge-state amplitude and the turbulence amplitude thus provides a
quantification of important pieces of subcritical physics. In general the amplification
factor from the minimal seed level to the edge-state amplitude is not equal to the
transient linear amplification factor, and in many fluids the nonlinear processes allow
overall amplification factors orders of magnitude larger than linear transient growth
alone.

For a general initial perturbation, the value of the transition threshold depends on
the functional form of the initialisation. We varied the parameters of a wavepacket-like
initialisation to find the ‘most dangerous’ state with a minimal nonlinear instability
threshold as an approximation to the ‘minimal seed’. It is in principle be possible to
perform a complete minimisation (Pringle, Willis & Kerswell 2012) which optimises
over all possible initial states, and we were able to do this for a drift-wave model
(Pringle et al. 2017). However, in the gyrokinetic context, in would require writing
an adjoint gyrokinetic solver and performing subsequent computationally demanding
simulations. The choice of a wavepacket type initialisation (that is, equation (3.11))
is motivated by earlier study (Pringle et al. 2017) that found this to approximately
capture the true minimal seed in a drift-wave model. We performed scans of
initialisation parameters at a fixed shearing rate value 0.04 to determine the values
that allowed transition at the lowest A value for the standard simulation, finding
kx0ρ0= 0.24, Cxρ0= 0.1601, ky0ρ0= 0.37, Cyρ0= 0.074 for the multi-mode simulations.
In the narrow simulations other parameters are the same but we take Cy→ 0.

To compare these state amplitudes here, we use two different measures. Because
the minimal seed and edge states are radially localised, to compare amplitudes to the
typical turbulent state, we use the maximum squared potential in x (the ratio between
these values should be relatively independent of the system size in x unlike a spatial
average measure). The other measure used is a global average vorticity. The transition
threshold with shearing rate (figure 10) scales roughly like exp(−1/S), except that
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(a) (b)

FIGURE 10. (a) Logarithm of maximum value of squared non-zonal potential
maxx〈φ(x, y)2〉y and (b) of mean vorticity versus initial flow shear for several simulation
phases, for narrow (red trace) and standard (blue trace) simulations. The amplitude of
the critical state for the baseline initial perturbation shape is shown as solid traces, and
the amplitude of the edge state is shown as dashed traces. At larger shearing rates
S> 0.06t−1

0 these results for both simulation types are similar.

for standard simulations at small S the transition threshold drops more rapidly. Very
small initial amplitudes produce instability in the small S limit. The linear transient
amplification also scales with exp(1/S) in these systems (Waltz et al. 1998).

For large enough shear (S & 0.1t−1
0 ), the transition threshold found based on the

wavepacket initialisation is actually slightly higher than the edge-state amplitude, when
measured using the maximum measure (figure 10a) (rather than the r.m.s. measure
(figure 10b)): since the true minimum seed would have a lower transition threshold
than any other state, this demonstrates that the wavepacket initialisation is not the
minimum seed in this norm. This is not surprising since the reasoning used to suggest
a wavepacket-like minimum seed (Pringle et al. 2017) is clearly not valid except in the
regime of large transient growth at low shear. Also, the amount of nonlinear transient
growth depends quite strongly on which norm is used; this is expected even in linear
problems, where the amount of transient amplification is a direct consequence of the
choice of norm.

The edge-state amplitude gives an estimate of the amplitude for which the linear
and nonlinear terms balance; this reduces with small flow shear. On the basis that the
scaling of the transition threshold can be explained based on linear transient growth,
the overall pathway for a near-critical mode to become unstable is hypothesised
to be transient linear growth amplifying an initial perturbation, pushing it slightly
beyond the edge-state amplitude, after which the unstable trajectory departing from
the edge state allows access to the turbulent regime. The typical situation in neutral
fluid experiments, is that the transition involves several stages of linear growth
chained together as a result of nonlinear effects (Pringle et al. 2012). This more
complex situation appears to arise for small flow shear in the gyrokinetic simulations,
where the additional toroidal modes in the standard simulation allows transition
to turbulence at lower initial amplitudes (and lower edge-state amplitudes) through
coupling between non-zonal modes. The idea that scaling of subcritical thresholds in
gyrokinetic systems (in that case for the maximum shearing rate at which turbulence
can be sustained) can be found by considering linear transient amplification was
suggested by the results of van Wyk et al. (2017). This also appears to be the case
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in our simulations, except at low shearing rates, where the details of the nonlinear
dynamics becomes more important (as in neutral fluids).

A travelling-wave-type edge state is found for all shear rates for the narrow
simulations and for S > 0.04t−1

0 for the standard simulations. The amplitudes of
the edge state and the critical perturbation amplitude are not affected strongly
by increasing the simulation box width for S > 0.06t−1

0 where the edge states
are qualitatively similar, and the relevant nonlinearity in the critical transition to
turbulence is the drift-mode/zonal-flow (and zonal gradient) interaction.

7. Conclusions and discussions

The behaviour of the edge of chaos is qualitatively similar to simple plasma-
interchange (PI) model (Pringle et al. 2017), strengthening the thesis (McMillan
et al. 2009) that qualitative features in the dynamics are the consequence of fluid-like
behaviour, rather than details of tokamak geometry, or subtleties in the kinetic
physics. Despite the complexity of GK model compared to neutral fluid models, the
edge manifold contains a quasi-travelling-wave attractor, which is also seen in the PI
model (note that this is attractive only within the edge manifold, not globally). The
increasing amplitude of the edge state to levels comparable to the turbulent fluctuation
level (figure 10a) near the maximum background flow shear for which turbulence
can be sustained, in conjunction with the relative simplicity of the edge state hints
that, as in fluid turbulence theory, analysis of periodic orbits in plasma turbulence
could be a powerful tool for understanding how and where turbulent states exist. The
resemblances between the quasi-travelling wave in the edge of chaos, and the bursts
seen in the turbulent state are notable, but as in the PI system, the nature of the
relationship between these two phenomena is still unclear. We have found a way to
estimate the transition threshold in this system, to quantify how robust the laminar
state is against external forcings. The scaling of the transition threshold matches the
PI model, except at very low shear, and the gyrokinetic system follows the same
pathway to turbulence in this parameter space.

Propagating features seen in the turbulence (avalanches/bursts) have qualitative
features that echo the travelling-wave edge state, with similar propagation velocities,
but have stronger amplitudes and are more disordered. A simple state was seen in
the limit where the flow shear was increased to just below the threshold for sustained
turbulence in van Wyk et al. (2017): these investigations of the critical behaviour in
these systems hint at the importance of periodic orbits in the critical dynamics of such
systems. Because of the simplicity of the edge state, the mechanisms that allows the
edge state to propagate could be illustrated in detail; the travelling wave destabilises
the region in front of itself by removing the background shear flow and increasing
the temperature gradient, and the tilting of the drift waves leads to a finite group
velocity of the wavepacket-like finite ky modes. These propagation mechanisms appear
to carry over to the avalanche/burst features in the fully turbulent state (McMillan
et al. 2009). Long range propagation of features allows powerful nonlocality in these
systems: at large flow shearing rate, the system is only convectively unstable, so at
a fixed spatial location, the system will eventually return to a zero-flux state. On
the other hand, there are a broad range of shearing rates (figure 10a) for which a
local perturbation 10 % as large as the typical turbulence level is required to initiate
turbulence.

Ideas around the edge of chaos and exact solutions are well established in
subcritical, neutral fluid problems. Some progress has also been made in applying
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them in astrophysical plasmas (Rincon et al. 2007). Here we have taken the first
steps in applying them to study tokamaks. The results show that these methods can
reveal intriguing aspects of this problem, but pose as many questions as they answer.
Is the edge always dominated by a simple quasi-travelling wave for all parameter
regimes? Do other such states exist? Can these states be extended into the turbulent
attractor? How densely is state space packed with such solutions, and how are they
connected?

The quasi-travelling wave presented could only be isolated as it was linearly stable
within the edge. Even with this advantage, the bisection technique required is time
consuming. To pursue these problems further more advanced techniques are required.
Such techniques (primarily matrix-free Newton–Krylov solvers) have been widely
applied in classical fluids to find, track and analyse steady states, travelling waves
and other, more complex, classes of exact solution. Implementing these techniques
within existing plasma codes is an ambitious but feasible problem which this paper
motivates and begins to open the door to.
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