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ABSTRACT. A locally convex space E is called an (HM)-space if 
E has invariant nonstandard hulls. In this paper we prove that if E 
is an (HM)-space, then £ is a T(/x)-space, where jx is the first 
measurable cardinal. This is equivalent to say that in an (HM)-
space, with dim(£) ^ JUL, does not exist a continuous norm. With this 
result, we prove that there exists an inductive semi-reflexive space E 
such that the bounded sets in E are finite-dimensional but E is not 
an (HM)-space. Thus, we answer negatively to an open problem 
raised up by Bellenot. In this paper, we do not use nonstandard 
analysis. 

Let E be a locally convex space; a nonstandard hull of E is a standard 
locally convex space Ê constructed from a nonstandard model for E. If the 
nonstandard hulls do not depend on the used nonstandard models, E is said to 
be an (HM)-space. [5,9]. 

In Section 1, we prove that every (HM)-space is a T(fx)-space, where JLL is 
the first measurable cardinal. That is equivalent to prove that it can not be 
defined a continuous norm on an (HM)-space with dim(E)^|UL. Applying this 
result, a part of a theorem of Henson and Moore [6] about the dimension of an 
(HM)-space is enlarged. 

In Section 2, we prove assuming the existence of measurable cardinals, that 
there exists an inductive semi-reflexive [2] space E such that bounded sets in E 
are finite-dimensional but E is not an (HM)-space. This gives a negative 
answer to a question raised by Bellenot [1]. 

This is a part of the author's Ph.D. Thesis prepared at the University of 
Sevilla under the supervision of Professor Juan Arias de Reyna. I wish to thank 
Professor Arias de Reyna for his interest and advice. 

In this paper, we do not use nonstandard analysis. 

Notation. In the following, N will denote the set of the positive integers; E a 
separated locally convex space over K (1R or C, real or complex numbers), E' 
the topological dual of E, E * the algebraic dual and U(E) the filter of all 
neighborhoods of 0 of the space E. If A <= E we denote by (A) the linear hull 
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of A. It is known that E is an (HM)-space if and only if every almost-bounded 
ultrafilter on £ is a Cauchy ultrafilter [5], (an ultrafilter gf is said to be 
almost-bounded if for every U in 11(E), there exists a positive integer n such 
that nU is in g) . 

It is easy to see that (HM)-spaces are stable for projective constructions (for 
instance, subspaces and products). 

Let a be an infinite cardinal. The space E is said to be a T(a)-space if for 
every [ /e 11(E), there exists a subspace M of E contained in U such that 
cod(M)<a[4] . A cardinal k is said to be measurable if it is uncountable and 
there exists a non-principal ultrafilter $ on k that is k-complete, i.e. if At 

belongs to $ for i < k, then H ( A : i < k} is in §f [3], p. 186. By œ we denote 
the least non-zero limit ordinal, and by /UL the first measurable cardinal. A 
relationship between (HM) -spaces and measurable cardinals was obtained by 
Henson and Moore [6]. 

By o)(k), where k is an infinite cardinal we denote the space formed by all 
scalar families {xa : a<k} and by <p(fc) the space of all scalar families with 
finitely many non-zero coordinates. If x^{xa : a<k} is in co(k) and y = 
{v« :a<k} is in <p(fc) we denote by (x, y) the canonical bilinear form, i.e. 
<*, y} = I!a<kX«y« (see [7] p. 53, 56). We denote a = <o(N0) and <p = <p(X0). 
Finally, by P(JUL) we denote the set of mappings x from fx to K such that 
X«<n |x(a)|2 is summable. This is a linear space under the usual operations, and 
an inner product is defined on it by (x | y) = Z a < / x x(a)y(a). With this product, 
1\[L) is a Hilbert space. 

1. The main theorem 

THEOREM. Let E be an (HM)-space. Then the following conditions are 
satisfied: 

(i) E is a T(jui)- space. 
(ii) If dim(E) > JUL, it can not be defined a continuous norm on E. 

Proof. We first prove that (ii) implies (i). Assume that E is not a T(JUL)-

space. Then there exists UeVi(E) such that for every subspace M of E 
contained in U, one has cod(M) > JUL. Let N be the greatest subspace of E 
contained in U, and F an algebraic supplement of N. It is clear that F is an 
(HM)-space and dim(F)>ja. However, the Minkowski functional of UDF G 
U(F) is a continuous norm on F. 

Let us prove (ii). Assume that p is a continuous norm on E. We construct, by 
transfinite induction, a family {ea : a < fx} of elements of E such that for | ^ 7], 
TJ, £<|u, p(eè-ev)>l. 

Suppose that for a < JUL, we have a family {e^ : j3 < a} satisfying p(e€ - e^) > 1, 
for £7^ TJ, 4 TJ < a. Put Fa = ({e3 : |8 < a}). Since every element in F a is the limit 
for the topology on E defined by the norm p, of a sequence in ({e3 : |8 < a}), we 
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have: 

dim(FJ < (card(a))K° < (2card(a))*o = 2card(a) < ^ 

because JUL is strongly inaccessible [3], p. 193. Hence there exists an element 
xoteE\FOL. Writing eOL = kxOL for an adequate real number À, the family 
{e3 : |3 < a } satisfies p(e€ - e j > 1 for £^ TJ, | , TJ < a . 

Since \L is the first measurable cardinal, there exists a countably complete 
non-principal ultrafilter ^ o n £ such that the family {ea : a < JUL} is in g. By the 
given construction, $ is not a Cauchy ultrafilter. Nevertheless, $ is almost-
bounded, because if VeU(E) is absolutely convex, E=\J nV and there exists 
a n n e N such that n V e g . 

Remark. In this proof we have seen that (ii) implies (i). It is easy to see that 
(i) also implies (ii). 

Recall that a nonempty class of locally convex spaces is said to be a variety if 
it closed under the operations of taking subspaces, quotient spaces, arbitrary 
cartesian products and isomorphic images. The variety generated by a class © 
of locally convex spaces is the intersection of all varieties containing (£. If (S 
consists of a single locally convex space, then the variety is said to be singly 
generated ([4]). It is proved in [4], theorem 2.7 that a variety S3 is singly 
generated if and only if there exists an infinite cardinal m such that every space 
in S3 is a T(m)-space. 

Thus we can state: 

COROLLARY. The variety generated by the (HM)-spaces, is singly generated. 

DEFINITION. Let 5$, Q two families of seminorms on E. We say that ^ is 
equivalent to G 0$~<Q) if they define the same topology on E. We call 
minimal cardinal of ?$ (see [8]) to the cardinal: 

a($) = inf{card(J) : {Pj :jeJ}~$}. 

Then we have the next result: 

PROPOSITION. Let E be an (HM)-space and 9$ a family of continuous 
seminorms on E such that a(^)<jLx. Then cod(N)<jLt, where 

N = {xeE:p(x) = 0,Vpe<$} 

Proof. We may suppose that a0£) = card0£). For every pe9$ denote NP = 
{xeE : p(x) = 0}. Then N=C\ {Np : pG$}. Denote by Gp an algebraic supple
ment of A/p. Then GP is an (HM)-space and p restricted to Gp is a continuous 
norm. Therefore dim(Gp)<fx for every pe?$. Since a(^)<jut we have 
cod(N)<fx. 

Applying this proposition we prove a corollary that enlarges a part of a result 
of Henson and Moore [6], Theorem 2. 
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COROLLARY. Assume that the topology of an (HM)-space E is defined by a 
family of seminorms ?$ such that a(^S)<fx. Then dim(E)<fx. 

2. A counter-example. Assuming the existence of measurable cardinals we 
answer to a problem raised up by Bellenot [1], 

THEOREM. Assuming the existence of measurable cardinals, there exists an 
inductive semi-reflexive space E, such that bounded sets in E are finite-
dimensional but E is not an (HM)-space. 

Proof. Let E be the space <p(/x) and F the linear space of all families 
{aa : a<fx} where aa is a scalar and card({a<fx : a a^0}) is countable. The 
bilinear form (x, a) = £ xaaa where a = {aa : a < ja} is in F and x = {xa : a < JUL} 
is in E defines a duality between E and F. For every a in F, we define the 
seminorm on E: 

Pa(*) = Z K * J (a={aa:a< JUL>; X = {xa : a < JUL}) 

Let T0 be the topology defined on E by the seminorms {pa : aeF\. It is easy 
to see that F is the dual of E(T0). 

1. Every bounded set in E(T0) is finite-dimensional. 
For every xeE (resp. aeF) define supp(x) = {a<(x : xa^0} (resp. 

supp(a) = {a < JLL : a a ^0}) . Let B be a bounded set in E(T0). We will prove 
that A = (J{supp(x):XGB} is a finite set. Otherwise there exists a sequence 
{xn : n e N } in B such that supp(xn) is not contained in (J {supp(xl) : l < i < 
n - 1 } . 

Choose an G supp(xn)\ (J {supp(xl) : 1 < i < n — 1} and a e F defined by aa = 
0 if a £ a» ; a^ = n/x^. 

It is clear that pa(xn)>M. Thus B is not a bounded set. 
Let T be the topology defined on E by the seminorms {pa : aeF} and p; 

where p is the usual norm of the Hilbert space !2(/x). It is easy to prove that F 
is the dual space of E(T). 

2. Since T>T0, every bounded set in E(T) is finite-dimensional. But by (ii), 
E(T) is not an (HM)-space. 

3. E(T) is an inductive semi-reflexive space. 
It suffices to prove that JE(T0) is an inductive semi-reflexive space. Let 

u e £ ' * be a linear form that is bounded on the equicontinuous subsets of E'. 
For every aeF, consider a normal covering Ma ={{ba : a<jut} : | b a | < | a a | , 
Va < JLL}. Denoting Ua ={xeE : p a (x )< l} , it is known that Ma = U°a [7], 
30.2(3). Therefore {Ma : a eF} is a basis of equicontinuous sets of E'. 

Assume that A <= ^ is countable and let a l s a 2 , . . . , a n , . . be a enumeration 
of A. Then the space { a e F : supp(a)c: A} is isomorphic to ft. To see that 
consider a mapping / : f t—>F such that /({xn : n eN}) = {aa : a<jui} where 
aa = 0 if a<£A and aa = xn if a = an. Define a mapping g : <p —> E such that 
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g({zn : n e N}) = {yOL : a < JLL} where ytt = 0 if a £ A and yOL = zn if a = an. For 
every ze<p and y e £1 it is clear that (z, y) = (g(z), /(y)). The space cp, endowed 
with the finest locally convex topology is complete and nuclear, hence it is an 
inductive semi-reflexive space [2]. 

Since u°fe<p'* is bounded on equicontinuous subsets of <p', there exists 
zAecp such that (u°/)(x) = (zA ,x) = (g(zA), /(*)) for every x e f l , i.e. u(a) = 
(xA, a) for every aeF such that supp(a)c A and xA G R 

Let jut be equal to U {Aa : a < JU,} where each A a is a countable set (for 
instance, A a = [aco, (a + 1)Û))). There exists for every a < fx an element x(ot) in 
E such that w(a) = (x(od), a) for every aeF with supp(a)<= Aa . We prove that 
all x(a) are zero except at most finitely many of them. Otherwise let a 1 ? . . . , 
an,... be a sequence such that x(<*i}^0 and N = U {A«. : ieN}. Since N is a 
countable set there exists xNeE such that u(a) = (xN, a) for every aeF with 
supp(a) <= iV. Since xN restricted to Aa. is equal to x(<Xi\ xN has infinitely many 
coordinates non-zero. 

Consider x=YJx
(<x)eE. For every a e F we have u(a) = (x, a). Indeed, 

choose M = supp(a) and xMeE such that u(b) = (xM, b) for every beF with 
supp(b)<=M. If a<fx and supp(b) c= M H A a we have u(b) = (x,b). Thus x is 
equal to x M in M n A t t for every a<jix. Therefore x is equal to xM in M 
and u(a) = (xM, a) = (x, a). 
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