(HM)-SPACES AND MEASURABLE CARDINALS

BY IOSÉ A FACENDA AGUIRRE

ABSTRACT. A locally convex space E is called an (HM)-space if

E has invariant nonstandard hulls. In this paper we prove that if *E* is an (HM)-space, then *E* is a $T(\mu)$ -space, where μ is the first measurable cardinal. This is equivalent to say that in an (HM)-space, with dim $(E) \ge \mu$, does not exist a continuous norm. With this result, we prove that there exists an inductive semi-reflexive space *E* such that the bounded sets in *E* are finite-dimensional but *E* is not an (HM)-space. Thus, we answer negatively to an open problem raised up by Bellenot. In this paper, we do not use nonstandard analysis.

Let *E* be a locally convex space; a *nonstandard hull* of *E* is a standard locally convex space \hat{E} constructed from a nonstandard model for *E*. If the nonstandard hulls do not depend on the used nonstandard models, *E* is said to be an (*HM*)-space. [5, 9].

In Section 1, we prove that every (HM)-space is a $T(\mu)$ -space, where μ is the first measurable cardinal. That is equivalent to prove that it can not be defined a continuous norm on an (HM)-space with dim $(E) \ge \mu$. Applying this result, a part of a theorem of Henson and Moore [6] about the dimension of an (HM)-space is enlarged.

In Section 2, we prove assuming the existence of measurable cardinals, that there exists an inductive semi-reflexive [2] space E such that bounded sets in E are finite-dimensional but E is not an (HM)-space. This gives a negative answer to a question raised by Bellenot [1].

This is a part of the author's Ph.D. Thesis prepared at the University of Sevilla under the supervision of Professor Juan Arias de Reyna. I wish to thank Professor Arias de Reyna for his interest and advice.

In this paper, we do not use nonstandard analysis.

Notation. In the following, \mathbb{N} will denote the set of the positive integers; E a separated locally convex space over \mathbb{K} (\mathbb{R} or \mathbb{C} , real or complex numbers), E' the topological dual of E, E^* the algebraic dual and $\mathfrak{U}(E)$ the filter of all neighborhoods of 0 of the space E. If $A \subset E$ we denote by $\langle A \rangle$ the linear hull

AMS Subject Classification (1980): Primary 46A05, secondary 03E55.

Received by the editors August 20, 1982 and in revised form April 22, 1983.

[©] Canadian Mathematical Society 1984.

[March

of A. It is known that E is an (HM)-space if and only if every almost-bounded ultrafilter on E is a Cauchy ultrafilter [5], (an ultrafilter \mathfrak{F} is said to be almost-bounded if for every U in $\mathfrak{U}(E)$, there exists a positive integer n such that nU is in \mathfrak{F}).

It is easy to see that (HM)-spaces are stable for projective constructions (for instance, subspaces and products).

Let α be an infinite cardinal. The space E is said to be a $T(\alpha)$ -space if for every $U \in \mathfrak{U}(E)$, there exists a subspace M of E contained in U such that $\operatorname{cod}(M) < \alpha[4]$. A cardinal k is said to be *measurable* if it is uncountable and there exists a non-principal ultrafilter \mathfrak{F} on k that is k-complete, i.e. if A_i belongs to \mathfrak{F} for i < k, then $\bigcap \{A_i : i < k\}$ is in $\mathfrak{F}[3]$, p. 186. By ω we denote the least non-zero limit ordinal, and by μ the first measurable cardinal. A relationship between (HM)-spaces and measurable cardinals was obtained by Henson and Moore [6].

By $\omega(k)$, where k is an infinite cardinal we denote the space formed by all scalar families $\{x_{\alpha} : \alpha < k\}$ and by $\varphi(k)$ the space of all scalar families with finitely many non-zero coordinates. If $x = \{x_{\alpha} : \alpha < k\}$ is in $\omega(k)$ and $y = \{y_{\alpha} : \alpha < k\}$ is in $\varphi(k)$ we denote by $\langle x, y \rangle$ the canonical bilinear form, i.e. $\langle x, y \rangle = \sum_{\alpha < k} x_{\alpha} y_{\alpha}$ (see [7] p. 53, 56). We denote $\Omega = \omega(\aleph_0)$ and $\varphi = \varphi(\aleph_0)$. Finally, by $l^2(\mu)$ we denote the set of mappings x from μ to K such that $\sum_{\alpha < \mu} |x(\alpha)|^2$ is summable. This is a linear space under the usual operations, and an inner product is defined on it by $(x \mid y) = \sum_{\alpha < \mu} x(\alpha)\overline{y(\alpha)}$. With this product, $l^2(\mu)$ is a Hilbert space.

1. The main theorem

THEOREM. Let E be an (HM)-space. Then the following conditions are satisfied:

(i) E is a $T(\mu)$ -space.

(ii) If $\dim(E) \ge \mu$, it can not be defined a continuous norm on E.

Proof. We first prove that (ii) implies (i). Assume that E is not a $T(\mu)$ -space. Then there exists $U \in \mathfrak{U}(E)$ such that for every subspace M of E contained in U, one has $\operatorname{cod}(M) \ge \mu$. Let N be the greatest subspace of E contained in U, and F an algebraic supplement of N. It is clear that F is an (HM)-space and $\dim(F) \ge \mu$. However, the Minkowski functional of $U \cap F \in \mathfrak{U}(F)$ is a continuous norm on F.

Let us prove (ii). Assume that p is a continuous norm on E. We construct, by transfinite induction, a family $\{e_{\alpha} : \alpha < \mu\}$ of elements of E such that for $\xi \neq \eta$, η , $\xi < \mu$, $p(e_{\xi} - e_{\eta}) \ge 1$.

Suppose that for $\alpha < \mu$, we have a family $\{e_{\beta} : \beta < \alpha\}$ satisfying $p(e_{\xi} - e_{\eta}) \ge 1$, for $\xi \neq \eta$, ξ , $\eta < \alpha$. Put $F_{\alpha} = \overline{\langle \{e_{\beta} : \beta < \alpha\} \rangle}$. Since every element in F_{α} is the limit for the topology on *E* defined by the norm *p*, of a sequence in $\langle \{e_{\beta} : \beta < \alpha\} \rangle$, we

(HM)-SPACES AND MEASURABLE CARDINALS

1984]

$$\dim(F_{\alpha}) \leq (\operatorname{card}(\alpha))^{\aleph_0} < (2^{\operatorname{card}(\alpha)})^{\aleph_0} = 2^{\operatorname{card}(\alpha)} < \mu$$

because μ is strongly inaccessible [3], p. 193. Hence there exists an element $x_{\alpha} \in E \setminus F_{\alpha}$. Writing $e_{\alpha} = \lambda x_{\alpha}$ for an adequate real number λ , the family $\{e_{\beta} : \beta \leq \alpha\}$ satisfies $p(e_{\xi} - e_{\eta}) \geq 1$ for $\xi \neq \eta$, ξ , $\eta \leq \alpha$.

Since μ is the first measurable cardinal, there exists a countably complete non-principal ultrafilter \mathfrak{F} on E such that the family $\{e_{\alpha} : \alpha < \mu\}$ is in \mathfrak{F} . By the given construction, \mathfrak{F} is not a Cauchy ultrafilter. Nevertheless, \mathfrak{F} is almostbounded, because if $V \in \mathfrak{U}(E)$ is absolutely convex, $E = \bigcup nV$ and there exists an $n \in \mathbb{N}$ such that $nV \in \mathfrak{F}$.

Remark. In this proof we have seen that (ii) implies (i). It is easy to see that (i) also implies (ii).

Recall that a nonempty class of locally convex spaces is said to be a variety if it closed under the operations of taking subspaces, quotient spaces, arbitrary cartesian products and isomorphic images. The variety generated by a class \mathfrak{C} of locally convex spaces is the intersection of all varieties containing \mathfrak{C} . If \mathfrak{C} consists of a single locally convex space, then the variety is said to be singly generated ([4]). It is proved in [4], theorem 2.7 that a variety \mathfrak{B} is singly generated if and only if there exists an infinite cardinal *m* such that every space in \mathfrak{B} is a T(m)-space.

Thus we can state:

COROLLARY. The variety generated by the (HM)-spaces, is singly generated.

DEFINITION. Let \mathfrak{P} , \mathfrak{Q} two families of seminorms on E. We say that \mathfrak{P} is equivalent to \mathfrak{Q} ($\mathfrak{P} \sim \mathfrak{Q}$) if they define the same topology on E. We call minimal cardinal of \mathfrak{P} (see [8]) to the cardinal:

$$\alpha(\mathfrak{P}) = \inf\{\operatorname{card}(J) : \{p_j : j \in J\} \sim \mathfrak{P}\}.$$

Then we have the next result:

PROPOSITION. Let E be an (HM)-space and \mathfrak{P} a family of continuous seminorms on E such that $\alpha(\mathfrak{P}) < \mu$. Then $\operatorname{cod}(N) < \mu$, where

$$N = \{x \in E : p(x) = 0, \forall p \in \mathfrak{P}\}$$

Proof. We may suppose that $\alpha(\mathfrak{P}) = \operatorname{card}(\mathfrak{P})$. For every $p \in \mathfrak{P}$ denote $N_p = \{x \in E : p(x) = 0\}$. Then $N = \bigcap \{N_p : p \in \mathfrak{P}\}$. Denote by G_p an algebraic supplement of N_p . Then G_P is an (HM)-space and p restricted to G_p is a continuous norm. Therefore $\dim(G_p) < \mu$ for every $p \in \mathfrak{P}$. Since $\alpha(\mathfrak{P}) < \mu$ we have $\operatorname{cod}(N) < \mu$.

Applying this proposition we prove a corollary that enlarges a part of a result of Henson and Moore [6], Theorem 2.

COROLLARY. Assume that the topology of an (HM)-space E is defined by a family of seminorms \mathfrak{P} such that $\alpha(\mathfrak{P}) < \mu$. Then dim $(E) \leq \mu$.

2. A counter-example. Assuming the existence of measurable cardinals we answer to a problem raised up by Bellenot [1].

THEOREM. Assuming the existence of measurable cardinals, there exists an inductive semi-reflexive space E, such that bounded sets in E are finite-dimensional but E is not an (HM)-space.

Proof. Let *E* be the space $\varphi(\mu)$ and *F* the linear space of all families $\{a_{\alpha} : \alpha < \mu\}$ where a_{α} is a scalar and $\operatorname{card}(\{\alpha < \mu : a_{\alpha} \neq 0\})$ is countable. The bilinear form $\langle x, a \rangle = \sum x_{\alpha} a_{\alpha}$ where $a = \{a_{\alpha} : \alpha < \mu\}$ is in *F* and $x = \{x_{\alpha} : \alpha < \mu\}$ is in *E* defines a duality between *E* and *F*. For every *a* in *F*, we define the seminorm on *E*:

$$p_{\alpha}(x) = \sum |a_{\alpha}x_{\alpha}| (\alpha = \{a_{\alpha} : \alpha < \mu\}; \qquad x = \{x_{\alpha} : \alpha < \mu\})$$

Let T_0 be the topology defined on E by the seminorms $\{p_a : a \in F\}$. It is easy to see that F is the dual of $E(T_0)$.

1. Every bounded set in $E(T_0)$ is finite-dimensional.

For every $x \in E$ (resp. $a \in F$) define $\operatorname{supp}(x) = \{\alpha < \mu : x_{\alpha} \neq 0\}$ (resp. $\operatorname{supp}(a) = \{\alpha < \mu : a_{\alpha} \neq 0\}$). Let *B* be a bounded set in $E(T_0)$. We will prove that $A = \bigcup \{\operatorname{supp}(x) : x \in B\}$ is a finite set. Otherwise there exists a sequence $\{x^n : n \in \mathbb{N}\}$ in *B* such that $\operatorname{supp}(x^n)$ is not contained in $\bigcup \{\operatorname{supp}(x^i) : 1 \le i \le n-1\}$.

Choose $\alpha_n \in \operatorname{supp}(x^n) \setminus \bigcup \{\operatorname{supp}(x^i) : 1 \le i \le n-1\}$ and $a \in F$ defined by $a_\alpha = 0$ if $\alpha \ne \alpha_n$; $a_{\alpha_n} = n/x_{\alpha_n}^n$.

It is clear that $p_a(x^n) \ge n$. Thus B is not a bounded set.

Let T be the topology defined on E by the seminorms $\{p_a : a \in F\}$ and p; where p is the usual norm of the Hilbert space $l^2(\mu)$. It is easy to prove that F is the dual space of E(T).

2. Since $T \ge T_0$, every bounded set in E(T) is finite-dimensional. But by (ii), E(T) is not an (HM)-space.

3. E(T) is an inductive semi-reflexive space.

It suffices to prove that $E(T_0)$ is an inductive semi-reflexive space. Let $u \in E'^*$ be a linear form that is bounded on the equicontinuous subsets of E'. For every $a \in F$, consider a normal covering $M_a = \{\{b_\alpha : \alpha < \mu\} : |b_\alpha| \le |a_\alpha|, \forall \alpha < \mu\}$. Denoting $U_a = \{x \in E : p_a(x) \le 1\}$, it is known that $M_a = U_a^0$ [7], 30.2(3). Therefore $\{M_a : a \in F\}$ is a basis of equicontinuous sets of E'.

Assume that $A \subseteq \mu$ is countable and let $\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots$ be a enumeration of A. Then the space $\{a \in F : \operatorname{supp}(a) \subseteq A\}$ is isomorphic to Ω . To see that consider a mapping $f : \Omega \to F$ such that $f(\{x_n : n \in \mathbb{N}\}) = \{a_\alpha : \alpha < \mu\}$ where $a_\alpha = 0$ if $\alpha \notin A$ and $a_\alpha = x_n$ if $\alpha = \alpha_n$. Define a mapping $g : \varphi \to E$ such that $g(\{z_n : n \in \mathbb{N}\}) = \{y_\alpha : \alpha < \mu\}$ where $y_\alpha = 0$ if $\alpha \notin A$ and $y_\alpha = z_n$ if $\alpha = \alpha_n$. For every $z \in \varphi$ and $y \in \Omega$ it is clear that $\langle z, y \rangle = \langle g(z), f(y) \rangle$. The space φ , endowed with the finest locally convex topology is complete and nuclear, hence it is an inductive semi-reflexive space [2].

Since $u \circ f \in \varphi'^*$ is bounded on equicontinuous subsets of φ' , there exists $z^A \in \varphi$ such that $(u \circ f)(x) = \langle z^A, x \rangle = \langle g(z^A), f(x) \rangle$ for every $x \in \Omega$, i.e. $u(a) = \langle x^A, a \rangle$ for every $a \in F$ such that $\sup_{x \in I} (a) \subset A$ and $x^A \in E$.

Let μ be equal to $\bigcup \{A_{\alpha} : \alpha < \mu\}$ where each A_{α} is a countable set (for instance, $A_{\alpha} = [\alpha\omega, (\alpha+1)\omega)$). There exists for every $\alpha < \mu$ an element $x^{(\alpha)}$ in E such that $u(a) = \langle x^{(\alpha)}, a \rangle$ for every $a \in F$ with $\operatorname{supp}(a) \subset A_{\alpha}$. We prove that all $x^{(\alpha)}$ are zero except at most finitely many of them. Otherwise let $\alpha_1, \ldots, \alpha_n, \ldots$ be a sequence such that $x^{(\alpha_i)} \neq 0$ and $N = \bigcup \{A_{\alpha_i} : i \in \mathbb{N}\}$. Since N is a countable set there exists $x^N \in E$ such that $u(a) = \langle x^N, a \rangle$ for every $a \in F$ with $\operatorname{supp}(a) \subset N$. Since x^N restricted to A_{α_i} is equal to $x^{(\alpha_i)}, x^N$ has infinitely many coordinates non-zero.

Consider $x = \sum x^{(\alpha)} \in E$. For every $a \in F$ we have $u(a) = \langle x, a \rangle$. Indeed, choose $M = \supp(a)$ and $x^M \in E$ such that $u(b) = \langle x^M, b \rangle$ for every $b \in F$ with $\supp(b) \subset M$. If $\alpha < \mu$ and $supp(b) \subset M \cap A_\alpha$ we have $u(b) = \langle x, b \rangle$. Thus x is equal to x^M in $M \cap A_\alpha$ for every $\alpha < \mu$. Therefore x is equal to x^M in M and $u(a) = \langle x^M, a \rangle = \langle x, a \rangle$.

REFERENCES

1. S. F. Bellenot, On nonstandard hulls of convex spaces, Canad. J. Math. vol. XXVIII, 1 (1976), 141-147.

2. I. A. Berezanskii, Inductively reflexive locally convex spaces, Soviet Math. Doklady, 9(2) (1969), 1080-1082.

3. W. W. Comfort and S. Negrepontis, The theory of ultrafilters, (Springer-Verlag, New York, 1974).

4. J. Diestel, S. A. Morris and S. A. Saxon, Varieties of linear topological spaces. Trans. Amer. Math. Soc. **172** (1972), 207–230.

5. C. W. Henson and L. C. Moore, Jr, *The nonstandard theory of topological vector spaces*, Trans. Amer. Math. Soc. **172** (1972), 405–435.

6. —, Invariance of the nonstandard hulls of locally convex spaces, Duke Math. J. 40 (1973), 193–206.

7. G. Kothe, Topological Vector Spaces 1, (Springer-Verlag, New York, 1969).

8. H. Pfister, Uber das Gewicht und den Uberdeckungstyp von uniformen Raumen und einige formen des Satzes von Banach-Steinhaus, Manuscripta Math. 20 (1977), 51-72.

9. K. D. Stroyan and W. A. J. Luxemburg, Introduction to the theory of infinitesimals, (Academic Press, New York, 1976).

Facultad de Matemáticas Universidad de Sevilla c) Tarfia s/n. Sevilla (12) Spain.