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Abstract. Motivated by approaches to the word problem for one-relation monoids arising from work
of Adian and Oganesian (1987), Guba (1997), and Ivanov, Margolis, and Meakin (2001), we study the
submonoid and rational subset membership problems in one-relation monoids and in positive one-
relator groups. We give the first known examples of positive one-relator groups with undecidable
submonoid membership problem, and we apply this to give the first known examples of one-
relation monoids with undecidable submonoid membership problem. We construct several infinite
families of one-relation monoids with undecidable submonoid membership problem, including
examples that are defined by relations of the form w = 1 but which are not groups, and examples
defined by relations of the form u = v where both of u and v are nonempty. As a consequence, we
obtain a classification of the right-angled Artin groups that can arise as subgroups of one-relation
monoids. We also give examples of monoids with a single defining relation of the form aUb = a
and examples of the form aUb = aVa, with undecidable rational subset membership problem.
We give a one-relator group defined by a freely reduced word of the form uv−1 with u, v positive
words, in which the prefix membership problem is undecidable. Finally, we prove the existence
of a special two-relator inverse monoid with undecidable word problem, and in which both the
relators are positive words. As a corollary, we also find a positive two-relator group with undecidable
prefix membership problem. In proving these results, we introduce new methods for proving
undecidability of the rational subset membership problem in monoids and groups, including by
finding suitable embeddings of certain trace monoids.

1 Introduction and summary of results

Central among algorithmic problems in combinatorial algebra is the word problem
which, given an algebraic structure defined by generators and relations, asks whether
there is an algorithm which takes two expressions over the generators and decides
whether they represent the same element. The word problem for finitely presented
semigroups was proved undecidable by Markov and, independently, Post in 1947.
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This was subsequently improved to the undecidability of the word problem in finitely
presented cancellative semigroups by Turing [57] resp. groups by Novikov in 1952
and, independently, Boone and Britton in 1958. In spite of, and of course unaware of,
these general impossibilities, Magnus [35] had proved in 1932 that the word problem
is decidable for all groups with only a single defining relation; such groups are now
called one-relator groups. By contrast, the word problem for monoids with one defining
relation – one-relation monoids – remains a tantalizing open problem, in spite of over
a century of investigations; see [45] for a recent survey of the problem.

The majority of the results on the word problem for one-relation monoids have
been focused on trying to obtain a positive solution. The problem has now been solved
positively in several cases. For example, Adian [2] proved that the word problem is
decidable for all special one-relation monoids, being those admitting a presentation
of the form M = Mon ⟨A ∣ w = 1⟩, and results of Adian and Oganesian [4, 5] show that
the word problem for a given Mon ⟨A ∣ u = v⟩ can be reduced to the word problem for
a one-relation monoid of the form Mon ⟨a, b ∣ bUa = aVa⟩ or Mon ⟨a, b ∣ bUa = a⟩.
In both of these cases, the word problem remains open.

There are several important reduction results in the literature that relate the
word problem in one-relation monoids to other natural decision problems in one-
relator groups, one-relation monoids, and also in a class that lies between these two
called inverse monoids. As we shall explain in more detail below, these reduction
results divide into three interrelated approaches to the word problem for one-relation
monoids – namely, (i) results of Ivanov, Margolis, and Meakin [22] that give a
reduction to the word problem in one-relator inverse monoids, (ii) results of Guba
[16] that give a reduction to the submonoid membership problem in positive one-
relator groups, and (iii) results of Adian and Oganesian [2, 3, 5] that give a reduction
to the problem of deciding membership in principal right ideals of certain one-relation
monoids. Here, a one-relator group is positive if it admits a presentation Gp ⟨A ∣ r = 1⟩
where no inverse symbol appears in r. Such groups were studied by, for example,
Baumslag [6], as well as by Perrin and Schupp [50], who proved that a one-relator
group is positive if and only if it is a one-relation monoid. There are also natural
connections between the three approaches above. For example, Guba’s reduction may
alternatively be expressed as a question asking for membership in the submonoid of a
one-relator group with defining relation of the form uv−1 = 1 generated by the prefixes
of the defining relation, where u, v are both positive words. This prefix membership
problem for one-relator groups also arises naturally in the work of Ivanov, Margolis,
and Meakin [22] where for cyclically reduced relator words, they show that word
problem for the inverse monoid reduces to the prefix membership problem for the
group. In the reduction result (iii), the principal right ideals of one-relation monoids
will not typically be finitely generated submonoids, but they are examples of rational
subsets of the monoid. Hence, one consequence of the reduction result (iii) of Adian
and Oganesian is that a necessary step for constructing one-relation monoids with
undecidable word problem is to first construct examples in which there are rational
subsets in which membership is undecidable. This provides a connection between
this approach and the approach of Guba to the word problem. Indeed, since by [50]
every positive one-relator group is in particular a one-relation monoid, the study of
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Figure 1: A summary of the main results of this article and how they relate to the three
approaches to the word problem for one-relation monoids given by reduction results of (i)
Ivanov, Margolis, and Meakin [22], (ii) Guba [16], and (iii) Adian and Oganesian [2, 3, 5]. The
arrows indicate implication of decidability. The problems in red are all proved to be undecidable
in this article in the results listed in the corresponding boxes. The problems in white boxes are
all open.

the submonoid membership problem for one-relation monoids has as a special case
the submonoid membership problem for positive one-relator groups. Hence, both of
these approaches lie within the broader study of decidability of membership in rational
subsets of one-relation monoids. These three approaches to the word problem for one-
relation monoids with their various interrelations are summarized in the diagram in
Figure 1. In addition to the motivation for their study coming from the connection
with the word problem for one-relation monoids, the decision problems listed there
(e.g., submonoid membership problem for one-relation monoids) are also natural
questions to study in their own right.

The connections explained above have led to extensive research, and numerous
positive decidability results have been obtained for special cases of these problems; see,
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for example, [16, 22, 23, 24, 25, 38, 40]. Until recently, all of the focus of this work has
been on showing that various special cases of these problems are decidable. However,
several recent striking undecidability results in this area have for the first time brought
into question the view that our attention should only be focused on seeking positive
solutions to such problems. First, Gray [14] proved the existence of a special one-
relator inverse monoid Inv ⟨A ∣ w = 1⟩ with undecidable word problem and at the
same time proved that there are one-relator groups with undecidable submonoid
membership problem. Then, Dolinka and Gray [12] went on to prove the existence of a
one-relator group Gp ⟨B ∣ r = 1⟩ with undecidable prefix membership problem (where
r is a reduced word). Given the reduction results of Guba [16] and Ivanov, Margolis,
Meakin [22] discussed above, if any of these problems had been decidable, it would
have resolved positively the word problem for one-relation monoids either in general,
or for one of the two main open cases.

These recent undecidability results give the first serious indication that the word
problem for one-relation monoids could in fact be undecidable. If it is undecidable,
then, of course, all of the other reduction results mentioned above must also have
negative answers. With that viewpoint in mind, the main goal of the current paper
is to present a collection of new undecidability results all of the type that if they had
been decidable, then it would have solved positively the word problem for one-relation
monoids (either in general, or in one of the two main open cases). For this, we will
conduct a detailed study of the rational subset, and submonoid, membership problems
in positive one-relator groups, and in one-relation monoids. We will also introduce
new tools for proving undecidability results of this kind.

Figure 1 gives a summary of the main undecidability results proved in this article
and how they relate to the three approaches to the word problem discussed above.
We shall now explain in more detail the reduction results discussed above, and
summarized in Figure 1, and in each case give an overview of the undecidability results
related to them that we shall prove in this paper.

The word problem for one-relation monoids of the form Mon ⟨a, b ∣ bUa = a⟩
remains open. We shall call these the monadic one-relation monoids. Important work
of Guba [16, Corollary 2.1] implies that the word problem for one-relation monoids
in this class reduces to the submonoid membership problem for positive one-relator
groups. In more detail, it follows from the results of Guba [16] that for every one-
relation monoid of the form M = Mon ⟨a, b ∣ bQa = a⟩, with a and b distinct, there
exists a group defined by a presentation of the form G = Gp ⟨a, b, C ∣ aUba−1 = 1⟩,
where C is a finite set of new generators and U is a positive word over {a, b} ∪ C, such
that if G has decidable prefix membership problem, then M has decidable word prob-
lem. In fact, Guba proves the equivalent dual result reducing the problem to the suffix
membership problem in Gp ⟨a, b, C ∣ a−1bUa = 1⟩. Note that Gp ⟨a, b, C ∣ abUa−1 = 1⟩
is a positive one-relator group, as it is isomorphic to Gp ⟨a, b, C ∣ bU = 1⟩. However,
in general, the prefix monoid of Gp ⟨a, b, C ∣ abUa−1 = 1⟩ and of Gp ⟨a, b, C ∣ bU = 1⟩
will not be the same and, related to this, decidability of the prefix membership problem
depends on the choice of presentation for a group rather than just its isomorphism
type. Clearly, if the positive one-relator group G has decidable submonoid member-
ship problem, then in particular, we can decide membership in the prefix monoid.
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Hence, this reduction result of Guba motivates the question of whether the submonoid
membership problem is decidable for positive one-relator groups. Further motivation
for this question comes from the fact that the submonoid membership problem is
decidable for all surface groups if and only if it is decidable in the positive one-relator
group with defining relation a2b2c2 = 1; see Subsection 3.1 for further discussion of
this important open problem. As mentioned above, it was only recently discovered in
[14] that there exist one-relator groups that contain finitely generated submonoids in
which membership is undecidable. The first example of such a one-relator group was
constructed by Gray [14] and has the single defining relation abba = baab. Recently,
Nyberg–Brodda [47] proved that the one-relator groups Gp ⟨a, b ∣ ambn = bn am⟩have
undecidable submonoid membership problem for every m, n ≥ 2. However, it may
be shown (see below) that none of these one-relator groups admits a one-relator
presentation with a positive defining relator word; that is, none of them are positive
one-relator groups. The starting point for the work in this paper is to build on the
examples from [47] to obtain positive one-relator groups with undecidable word
problem by allowing m and n to vary through all integer values. As with previous
examples, this is achieved by showing that the right-angled Artin group A(P4) of the
path with four vertices embeds in the group and then appealing to a theorem of Lohrey
and Steinberg [33, Theorem 2]. However, what makes doing this more difficult than in
the cases considered in [47] is that the embedded copies of A(P4) that we find in the
positive one-relator groups are no longer subgroups of finite index, so Reidemeister–
Schreier rewriting methods alone are not sufficient to obtain the result. This gives the
first main result of this paper (Theorem 3.8) where we exhibit an infinite family of
positive one-relator groups all with undecidable submonoid membership problem.

In another direction, Guba’s reduction motivates the question of whether the
prefix membership problem is decidable for all one-relator groups of the form G =
Gp ⟨a, b, C ∣ aUba−1 = 1⟩, where U is a positive word. Here, the defining relator is a
reduced word of the form uv−1, where u and v are both positive words. For words of
this form, we shall call the corresponding one-relator groups Gp ⟨A ∣ uv−1 = 1⟩ quasi-
positive. Quasi-positive one-relator groups have received attention in the literature in
the study of the word problem for the related class of inverse monoids motivated by
results of Ivanov, Margolis, and Meakin [22] discussed above and illustrated in the
implications in the bottom two lines of Figure 1. The prefix membership problem
for various families of quasi-positive one-relator groups has been solved positively by
Margolis, Meakin, and Šuniḱ [38, Corollary 2.6], and some cases of the word problem
for the corresponding class of inverse monoids have been resolved by Inam [20]. This
connects more generally with the study of groups and inverse monoids defined by,
so-called, Adian type presentations; see [55, 21]. In Section 4, we prove Theorem 4.1
showing that that there is a one-relator group of the form Gp ⟨A ∣ uv−1 = 1⟩, where u, v
are positive words and uv−1 is a reduced word, with undecidable prefix membership
problem. This is the first known example of a quasi-positive one-relator group with
undecidable prefix membership problem.

Our other main motivation for investigating membership problems in positive one-
relator groups was the connection with the open question of whether one-relation
monoids have decidable submonoid membership problem. When Magnus solved
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the word problem for one-relation groups, he actually proved a more general result:
membership in Magnus subgroups1 is decidable. However, the general subgroup
membership problem (also called generalized word problem) remains an important
open problem for one-relator groups; see [8, Problem 18]. The analogue of this
question for monoids asks whether one-relation monoids have decidable submonoid
membership problem. This problem has been shown to be decidable in several exam-
ples and families of one-relation monoids; see [23, 24, 26, 48, 51]. Since by [50] a one-
relator group is a one-relation monoid if and only if it is a positive one-relator group,
the positive one-relator groups with undecidable submonoid membership problem
that we give in this paper (Theorem 3.8) give the first known examples of one-relation
monoids with undecidable submonoid membership problem (Corollary 3.9). Building
on this, we shall construct several infinite families of one-relation monoids with
undecidable submonoid membership problem including examples that are groups,
examples that are defined by relations of the form w = 1 but are not groups, and
examples defined by relations of the form u = v where neither u nor v is equal to 1, so
these monoids have trivial groups of units; see Propositions 5.1 & 5.2, and Example 5.3.
As part of this, we also obtain a classification of exactly which right-angled Artin
groups can appear as subgroups of one-relation monoids; see Theorem 3.10.

Generalizing the submonoid membership problem is the rational subset member-
ship problem, which asks for an algorithm to decide membership in the image of
an arbitrary regular language. In groups, this problem has been surveyed by Lohrey
[32]. The rational subset membership problem in one-relation monoids has also seen
some study. Kambites’ work [26] on small overlap conditions can be used to show
that almost all one-relation monoids, in a suitably defined sense, have decidable
rational subset membership problem (cf. also [45, p. 338]). Furthermore, the rational
subsets of the bicyclic monoid Mon ⟨b, c ∣ bc = 1⟩ have been fully described by Render
and Kambites [51], and more generally the rational subset membership problem in
any Mon ⟨A ∣ w = 1⟩ with virtually free group of units is decidable [48]. Results of
Adian and Oganesian [2, 3, 5] imply that if membership in principal right ideals
is decidable in all monoids of the form Mon ⟨a, b ∣ bUa = a⟩ and Mon ⟨a, b ∣ bUa =
aVa⟩, then the word problem for all one-relation monoids is decidable (see also the
related general statement [16, Lemma 3.1]). The principal right ideals of these monoids
will not typically be finitely generated submonoids, but they are rational subsets.
Motivated by this, in Section 6, we extend our investigation to the study of the rational
subset membership problem in these two classes of one-relation monoids. Further
motivation for studying this problem for monoids of the form Mon ⟨a, b ∣ bUa = a⟩
comes from the result [16, Theorem 4.1] relating the word problem in these monoids to
the membership problem in both principal left and principal right ideals. In Theorem
6.1, we give an infinite family of monoids of the form Mon ⟨a, b ∣ bUa = a⟩ all with
undecidable rational subset membership problem. Then in Remark 6.11, we explain
how these examples can be adapted to give examples of the form Mon ⟨a, b ∣ bUa =
aVa⟩ with the same property. To prove these results, it is necessary for us to introduce

1These are subgroups generated by a subset of the generating set omitting a generator that appears
in the defining relator word. Magnus called this specific membership problem the erweitertes Identität-
sproblem(i.e., “extended word problem.”)
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new techniques since the only groups that monoids in these classes can embed are
trivial groups, and hence, the usual approach of embedding A(P4) is not possible. For
this, we prove a new general result, Theorem 6.2, which shows that a left-cancellative
monoid has undecidable rational subset membership problem if it embeds a copy
of the trace monoid T(P4) that is generated by a set of elements that are all related
by Green’s L-relation. This result is in some ways surprising since any trace monoid
itself, unlike right-angled Artin groups, necessarily has decidable rational subset
membership problem, so the way in which the trace monoid embeds is crucial. As
another corollary to this new general result for left-cancellative monoids, we deduce
(Corollary 6.4) that any group containing the trace monoid T(P4) has undecidable
rational subset membership problem, and we then explore some applications of this
to proving the undecidability of the rational subset membership problem in groups.

In Section 7, we shall apply the results of the previous section to the word problem
for special inverse monoids. It was proved in [14] that there are special one-relator
inverse monoids Inv ⟨A ∣ w = 1⟩ with undecidable word problem. In all known exam-
ples, the word w is not a reduced word, and it remains an open problem whether the
word problem is decidable in that case. This is an important question since, if it is, then
by [22, Theorem 2.2] this would imply that all one-relation monoids have decidable
word problem. In particular, it is open whether there is a positive one-relator inverse
monoid with undecidable word problem. Motivated by this, in Section 7, we explain
how the word problem for one-relation monoids also reduces to the word problem
for positive 2-relator special inverse monoids, and then in Theorem 7.4, we show
the existence of a 2-relator special inverse monoid with undecidable word problem
and in which both defining words are positive words. We use this result to prove the
existence of a positive two-relator group with undecidable prefix membership problem
in Corollary 7.6.

2 Preliminaries

In this section, we fix some notation and recall some background definitions and
results from geometric and combinatorial group and monoid theory. Inverse monoids
will only be considered later in Section 7, and we defer giving the more involved nota-
tion and definitions for inverse monoids to that section. For additional background
we refer the reader to [36, 34] for combinatorial group theory, [19] for monoid and
semigroup theory, [53, Chapter 1] for monoid presentations, and [31] for the theory of
inverse monoids.

Monoid and group presentations

For a nonempty alphabet A, we use A∗ to denote the free monoid of all words over
A, including the empty word which we denote by ε. A monoid presentation is a pair
Mon ⟨A ∣ R⟩, where A is an alphabet and R is a subset of A∗ × A∗. The monoid defined
by this presentation is the quotient A∗/σ of the free monoid by the congruence σ on
A∗ generated by R. We usually write a defining relation (u, v) ∈ R as u = v. Similarly,
when working with a fixed monoid presentation Mon ⟨A ∣ R⟩ given any two words
α, β ∈ A∗, we write α = β to mean that α and β are σ-related; that is, they represent
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the same element of the monoid defined by the presentation. We write α ≡ β to mean
that α and β are equal as words in the free monoid A∗. A monoid presentation is called
special if all the defining relations are of the form w = 1.

A group presentation is a pair Gp ⟨A ∣ R⟩, where A is an alphabet and R is a subset
of (A ∪ A−1)∗ × (A ∪ A−1)∗, where A−1 = {a−1 ∶ a ∈ A} is disjoint from A. The group
defined by this presentation is then the quotient of the free group FA on A by the
normal subgroup generated by the set of all uv−1 for (u, v) ∈ R. As for monoids,
when working with a fixed group presentation, we write α = β to mean that the words
represent the same element of the group, and we write the defining relations in the
form u = v.

A one-relator monoid (also called one-relation monoid) is one defined by a
presentation of the form Mon ⟨A ∣ u = v⟩. Similarly, a one-relator group is one that
is defined by a presentation of the form Gp ⟨A ∣ w = 1⟩.

We often abuse terminology by talking about the group Gp ⟨A ∣ R⟩ or the monoid
Mon ⟨A ∣ R⟩ where we mean the group or monoid defined by the given presentation.

Given a subset X of a monoid, we use Mon ⟨X⟩ to denote the submonoid generated
by X, and similarly, if X is a subset of a group, then Gp ⟨X⟩ denotes the subgroup
generated by X.

Submonoid and rational subset membership problems

The set of all rational subsets of a monoid M is the smallest subset of the power set of M
which contains all finite subsets of M, and which is closed under union, product, and
Kleene hull. Here, the Kleene hull of a subset L of a monoid M is just the submonoid of
M generated by L. Clearly, every finitely generated submonoid of M is a rational subset.
If M is finitely generated by a set A, and ϕ ∶ A∗ → M is the corresponding canonical
homomorphism, then a subset L ⊆ M is rational if and only if L = ϕ(K) for some
rational subset K of A∗. Since by Kleene’s theorem the rational subsets of A∗ are the
same as those that can be recognized by a finite state automaton; in this case, K is the
language defined by some finite state automaton, and L is the set of all elements of M
represented by words in that language.

Let M be a monoid finitely generated by a set A, and let ϕ ∶ A∗ → M be the
corresponding canonical homomorphism. The submonoid membership problem for M
is the following decision problem:
• Input : A finite set of words Δ ⊆ A∗ and a word w ∈ A∗
• Question : ϕ(w) ∈ ϕ(Δ∗)?
Observe that ϕ(Δ∗) is equal to the submonoid of M generated by ϕ(Δ). The decid-
ability of this problem is independent of the choice of finite generating set for the
monoid. For a group G with finite generating set A, the set A ∪ A−1 is a finite monoid
generating set for G, and then the submonoid membership problem for G is defined
as above, where G is the monoid generated by A ∪ A−1. Let L(A) denote the language
recognized by a finite automaton A. Then the rational subset membership problem for
M is the decision problem
• Input : A finite automaton A over the alphabet A and a word w ∈ A∗
• Question : ϕ(w) ∈ ϕ(L(A))?
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Note that by the Kleene Theorem, the input to the rational subset membership
problem could alternatively be taken to be a rational expression over the alphabet A.
As for the submonoid membership problem, the rational subset membership problem
also applies to groups where we view the group as a monoid generated by A ∪ A−1. As
every finitely generated submonoid is a rational subset (being precisely the Kleene
hull of a finite set), decidability of the rational subset membership problem implies
decidability of the submonoid membership problem.

A priori, it may seem natural to assume that the rational subset membership
problem ought to be strictly harder than the submonoid membership problem.
However, whether this is actually the case remains an open problem; the problems
may be equivalent, and there are some reasons to believe that they may be (see [33]).

In the two decision problems above, the submonoid (resp. rational subset) is part of
the input. The non-uniform analogues of these problems can also be studied where one
considers a fixed finitely generated submonoid (or rational subset) and asks whether
there is an algorithm deciding membership in that particular subset. In general, for
any subset S of M, by the membership problem for S within M we mean the decision
problem
• Input : A word w ∈ A∗
• Question : ϕ(w) ∈ S?
Similarly, we talk about the membership problem for S within G, where G is a finitely
generated group. This non-uniform version is sometimes called the weak membership
problem, with the uniform being called strong (e.g., by Mikhailova [42] in the context
of the subgroup membership problem).

Decidability of these problems is preserved when taking substructures in the
following sense. Let M be a finitely generated monoid and let T be a finitely generated
submonoid of M. If M has decidable submonoid (resp. rational subset) membership
problem, then so does T. In addition to this, for any subset S of T, if the membership
problem for S within M is decidable, then the membership problem for S within T is
also decidable. See [32, §5] for more details on how to prove closure properties like
these.

RAAGs and trace monoids

For a finite simplicial graph Γ with vertex set V Γ, we use A(Γ) to denote the right-
angled Artin group (abbreviated to RAAG) determined by Γ, so A(Γ) is the group
defined by the presentation

Gp ⟨V Γ ∣ x y = yx if and only if x is adjacent to y in Γ⟩.

We will use T(Γ) to denote the corresponding trace monoid defined by

Mon ⟨V Γ ∣ x y = yx if and only if x is adjacent to y in Γ⟩.

We shall now record some facts from the theory of trace monoids and RAAGs that we
need later on. For more comprehensive background on RAAGs and trace monoids, we
refer the reader to [10, 11]. It was proved by Paris [49] that for any graph Γ, the identity
map on V Γ induces an embedding of the trace monoid T(Γ) into the corresponding
RAAG A(Γ).
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Much is known about the behavior of rational subsets of trace monoids (see, for
example, [11]). In particular, since trace monoids are defined by presentations where
the defining relations are all length preserving (so called “homogeneous presenta-
tions”), it follows that any trace monoid has decidable rational subset membership
problem. By contrast, not every RAAG has decidable rational subset membership.
Indeed, Lohrey and Steinberg [33] proved that a RAAG A(Γ) has decidable sub-
monoid membership problem if and only if it has decidable rational subset member-
ship problem if and only if Γ does not embed the path P4 with four vertices, or the
square C4 with four vertices, as an induced subgraph. A complete characterization of
RAAGs with decidable subgroup membership problem is not, however, known; it is,
for example, unknown whether A(C5) has decidable subgroup membership problem.

Inverse monoid presentations

We just give the essential definitions from combinatorial inverse semigroup theory
that we need. We refer the reader to [41] and [31] for a more comprehensive treatment
of the subject.

An inverse monoid M is a monoid with the property that for every m ∈ M, there
is a unique element m−1 ∈ M satisfying mm−1m = m and m−1mm−1 = m−1. For any
alphabet A, the free inverse monoid over A is the monoid defined by the presentation

Mon ⟨A ∪ A−1 ∣ uu−1u = u, uu−1vv−1 = vv−1uu−1 (u, v ∈ A∗)⟩,

where (a−1)−1 = a and (a1 . . . ak)−1 = a−1
k . . . a−1

1 . We use FIA to denote the free inverse
monoid on A. An inverse monoid presentation is a pair Inv ⟨A ∣ R⟩, where A is an
alphabet and the set of defining relations R is a subset of (A ∪ A−1)∗ × (A ∪ A−1)∗. The
presentation Inv ⟨A ∣ R⟩ defines the inverse monoid FIA/ρ, where ρ is the congruence
on the free inverse monoid FIA generated by R. By a special inverse monoid, we mean
one defined by a presentation where all the defining relations in the presentation are
of the form r = 1. The maximal group image of Inv ⟨A ∣ R⟩ is the group Gp ⟨A ∣ R⟩
defined by the same presentation, and the identity map on A defines a surjective
homomorphism from the inverse monoid onto its maximal group image.

3 Membership problems in positive one-relator groups

In this section, we construct positive one-relator groups with undecidable submonoid
membership problem. As discussed in the previous section, the following one-relator
groups

Gp ⟨a, b ∣ [ab, ba] = 1⟩, resp. ⟨a, b ∣ [am , bn] = 1⟩ (m, n ≥ 2),

were shown to have undecidable submonoid membership problem in work of Gray
[14] and Nyberg-Brodda [47], respectively. However, it is a consequence of Lyndon’s
identity theorem that none of these groups admits a positive one-relator presentation.
Indeed, it follows from Lyndon’s identity theorem that any one-relator group of the
form Gp ⟨A ∣ [u, v] = 1⟩ has second homology group H2(G;Z) ≅ Z, while on the other
hand, any positive one-relator group has H2(G;Z) = 0; see [9, II.4, Example 3].
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For m, n ∈ N, define a class of groups by the presentation

Gm ,n = Gp ⟨x , y ∣ xm yn = yn x−m⟩.(1)

Remark 3.1 If n = 1, then Gm ,1 = Gp ⟨x , y ∣ yxm y−1 = x−m⟩ is the unimodular
Baumslag-Solitar group BS(m, −m) which is known (see, for example, [47, paragraph
preceding Prop. 3.9]) to be virtually a direct product of Z and a finite rank free group,
and hence, Gm ,1 has has decidable rational subset membership problem.

The key property of the groups Gm ,n is the following.
Lemma 3.2 The group Gm ,n has decidable submonoid membership problem if and only
if m = 1 or n = 1. Furthermore, if m, n ≥ 2, then Gm ,n contains a fixed finitely generated
submonoid in which membership is undecidable.
Proof Decidability for n = 1 is discussed in Remark 3.1, while the case for m = 1 will
be covered in Remark 3.4. For m, n ≥ 2, we will obtain an injection i∶ A(P4) �→ Gm ,n
in Lemma 3.6. In [33], it is shown that A(P4) contains a fixed submonoid where
membership is undecidable. So, if m, n ≥ 2, then the submonoid membership problem
is undecidable in Gm ,n . ∎

Thus, to prove the above lemma, we must prove Lemma 3.6. We do this by a
Reidemeister–Schreier rewriting procedure.
Lemma 3.3 The subgroup Km ,n = Gp ⟨y2n , y i x y−i for 0 ≤ i ≤ 2n − 1⟩ of Gm ,n , has the
following presentation:

Gp ⟨β, α i for 0 ≤ i ≤ 2n − 1 ∣ αm
i αm

i+n = 1, [αm
i , β] = 1 for 0 ≤ i ≤ n − 1⟩,

where β corresponds to y2n , and α i corresponds to y i x y−i for all 0 ≤ i ≤ 2n − 1.
Proof Note that K = Km ,n is normal in G = Gm ,n , as it is closed under conjugation
by both x and y, with quotient equal to

G/K = Gp ⟨y ∣ y2n = 1⟩ ≅ C2n = cyclic group of order 2n.

We proceed to find a presentation for K using the Reidemeister-Schreier procedure
(see [34]) with

G = Gp ⟨S ∣ R⟩, where S = {x , y}, and R = xm yn xm y−n .

A Schreier transversal for K in G is T = { y i ∣ 0 ≤ i ≤ 2n − 1}, giving a set of generators
for K as U = {ts(ts)−1 ∣ t ∈ T , s ∈ S , ts /∈ T} where w is the representative of w in T.

Any t ∈ T can be written as y i for 0 ≤ i ≤ 2n − 1, so

ts(ts)−1 = y i s(y i s)−1 =
⎧⎪⎪⎨⎪⎪⎩

y i x(y i x)−1 if s = x ,
y i y(y i y)−1 if s = y.

As x ∈ K, one has y i x = y i for all 0 ≤ i ≤ 2n − 1. Also, y i y = y i+1 for 0 ≤ i ≤ 2n − 2 and
y2n−1 y = 1. One obtains β = y2n and α i = y i x y−i for 0 ≤ i ≤ 2n − 1 as generators of K;
hence,

U = { β = y2n , α i = y i x y−i for 0 ≤ i ≤ 2n − 1}

gives a set of generators for K.
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To get relations for K, rewrite tRt−1 for t ∈ T and R = xm yn xm y−n , using generators
in U.

Write any t ∈ T as y i for some 0 ≤ i ≤ 2n − 1. One obtains

tRt−1 = y i(xm yn xm y−n)y−i =
⎧⎪⎪⎨⎪⎪⎩

(y i xm y−i)(y i+n xm y−i−n) if 0 ≤ i ≤ n − 1
(y i xm y−i)y2n(y i−n xm y−i+n)y−2n if n ≤ i ≤ 2n − 1

=
⎧⎪⎪⎨⎪⎪⎩

αm
i αm

i+n if 0 ≤ i ≤ n − 1,
αm

i βαm
i−n β−1 if n ≤ i ≤ 2n − 1.

The first relation gives αm
i+n = α−m

i for any 0 ≤ i ≤ n − 1; substituting it in the second
line, one obtains the relation [αm

i , β] for all 0 ≤ i ≤ n − 1.
So, V = { αm

i αm
i+n , [αm

i , β] ∣ 0 ≤ i ≤ n − 1} gives the relations of K, as desired. ∎

Remark 3.4 Note that for m = 1, the subgroup K1,n is actually a RAAG, isomorphic
to Z × Fn . In this case, the group G1,n is a finite extension of Z × Fn , implying that
it has decidable rational subset membership problem (so, a fortiori, also decidable
submonoid membership problem); see [33]).

Section 3 of article [47] treats a class of groups called right-angled Baumslag-Solitar-
Artin groups, for which the problem of decidable submonoid membership is studied.
One particular example is the family B(Sn ,m) with n, m ∈ Z, where m, n ≥ 0, defined
as

B(Sn ,m) = Gp ⟨d , c i for 0 ≤ i ≤ n − 1 ∣ [cm
i , d] = 1 for 0 ≤ i ≤ n − 1⟩.(2)

Another example is the family B(P3,m) with m ∈ Z where m ≥ 0, defined as

B(P3,m) = Gp ⟨w0 , w1 , w2 ∣ [w0 , w2] = 1, [w0 , wm
1 ] = 1⟩.(3)

Lemma 3.5 The group B(Sn ,m) injects in Gm ,n . In particular, the map

σ ∶ d ↦ y2n , c i ↦ y i x y−i (0 ≤ i ≤ n)(4)

defines an injective homomorphism σ ∶B(Sn ,m) → Gm ,n .

Proof Recall from Lemma 3.3 that the subgroup

Km ,n = Gp ⟨y2n , y i x y−i for 0 ≤ i ≤ 2n − 1⟩

of Gm ,n , has the following presentation:

Gp ⟨β, α i for 0 ≤ i ≤ 2n − 1 ∣ αm
i αm

i+n = 1, [αm
i , β] = 1 for 0 ≤ i ≤ n − 1⟩,

where β corresponds to y2n , and α i corresponds to y i x y−i for all 0 ≤ i ≤ 2n − 1. Let
K ≅ Km ,n denote the group defined by the above presentation, let B = B(Sn ,m), and
consider the two maps

s ∶ B �→ K given by s(d) = β, s(c i) = α i for any 0 ≤ i ≤ n − 1,
ρ ∶ K �→ B given by ρ(β) = d , ρ(α i) = c i , ρ(α i+n) = c−1

i for any 0 ≤ i ≤ n − 1.

Obviously, both s and ρ induce well-defined homomorphisms, as they respect the
relations. Moreover, one has ρ ○ s = idB , which implies that s is injective. It follows
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that there is an injective homomorphism σ ∶ B(Sn ,m) ↪ Gm ,n that maps d ↦ y2n and
c i ↦ y i x y−i for all 0 ≤ i ≤ n − 1. ∎

Lemma 3.6 There exists an embedding i∶ A(P4) ↪ Gm ,n from

A(P4) = Gp ⟨A, B, C , D ∣ AB = BA, BC = CB, CD = DC⟩

into Gm ,n given by

i(A) = yxm y−1 , i(B) = y2n , i(C) = xm , i(D) = x y2n x−1 .

Proof From the proof of Proposition 3.5 in [47] (see also Proposition 3.3 there), one
obtains an embedding of A(P4) in B(Sn ,m) for n, m ≥ 2. One such embedding is the
following:

j ∶ Gp ⟨A, B, C , D ∣ AB = BA, BC = CB, CD = DC⟩ ↪ B(Sn ,m),

given by j(A) = cm
1 , j(B) = d , j(C) = cm

0 , j(D) = c0dc−1
0 . Indeed, to show that j is an

embedding, we note that by Lemma 3.5, the group B(Sn ,m) injects into Gm ,n , where

B(Sn ,m) = Gp ⟨d , c i for 0 ≤ i ≤ n − 1 ∣ [cm
i , d] = 1 for 0 ≤ i ≤ n − 1⟩,

with d ↦ y2n , and for all 0 ≤ i ≤ n − 1, one has c i ↦ y i x y−i . In particular, the RABSAG
B(S2,m) (in the sense of [47]) defined by the graph

dc1 c0

m m

injects in B(Sn ,m). By [47, Proposition 3.5] and its proof, the group B(P3,m) injects
into B(Sn ,m), with one embedding being via the RABSAG defined by the graph

dcm
1

c0

m

Here, we have abused notation by letting the vertices of the graph P3,m above be labeled
by their images in B(Sn ,m) under the prescribed embedding. That is, inside B(Sn ,m),
defined as above, the elements cm

1 , d, and c0 generate an isomorphic copy of B(P3,m)
where, in terms of the presentation given in equation (3), this isomorphism is given by
mapping w0 to d, w2 to cm

1 , and w1 to c0. Continuing, and using the analogous slight
abuse of notation also for RAAGs, the RAAG defined by the graph

cm
1 d cm

0 c0dc−1
0

now embeds in our chosen copy of B(P3,m) by unpacking the proof of [47, Proposition
3.3] together with the generalization of that result explained in [47] in the paragraph
immediately after the proof of [47, Proposition 3.3]. That is, inside B(Sn ,m) as above,
the elements cm

1 , d , cm
0 , and c0dc−1

0 generate a copy of A(P4). It follows that j is indeed
an embedding of A(P4) into B(Sn ,m).
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Now the composition i = σ ○ j where σ is the injection σ ∶B(Sn ,m) ↪ Gm ,n defined
by (4), from Lemma 3.5, gives the desired embedding i∶ A(P4) ↪ Gm ,n . ∎

Putting it all together, we have now shown Lemma 3.2. In particular, for every
m, n ≥ 2, the one-relator group Gm ,n has undecidable submonoid membership prob-
lem. Importantly, these groups also have the following property:

Lemma 3.7 For every m, n ≥ 1, the group Gm ,n is a positive one-relator group.

Proof Consider the relation xm yn xm y−n . We want to change it to an equivalent
positive relation, so we introduce new generators a, b with y = a and x = ban . Now
we write the group relation in terms of a and b as

(ban)m an(ban)m a−n = (ban)m an(ban)m−1(ban)a−n

= (ban)m an(ban)m−1b
= (ban)m(anb)m .

This way, we obtain another equivalent presentation for Gm ,n as

Gm ,n ≅ Gp ⟨a, b ∣ (ban)m(anb)m = 1⟩.(5)

Thus, Gm ,n is a positive one-relator group. ∎

We have proved the following, which is the main result of this section:

Theorem 3.8 For all m, n ≥ 2, the group

Gm ,n ≅ Gp ⟨a, b ∣ (ban)m(anb)m = 1⟩

is a positive one-relator group that contains a fixed finitely generated submonoid in
which membership is undecidable. In particular, there are positive one-relator groups
with undecidable submonoid membership problem.

Note that if Mm ,n denotes the monoid with the same defining relation as in (5), then
b is invertible in Mm ,n , being both left- and right-invertible by virtue of the defining
relation. By cyclically permuting the letters b from the ends of the defining relation,
we similarly also conclude that a is invertible. Hence, Mm ,n is a group, so necessarily,
Mm ,n = Gm ,n . Thus, we conclude the following:

Corollary 3.9 There exists a one-relation monoid with undecidable submonoid mem-
bership problem. Furthermore, there exists such a monoid with a presentation of the
form Mon ⟨A ∣ w = 1⟩. Additionally, one can construct such monoids which contain a
fixed finitely generated submonoid in which membership is undecidable.

Using this, it is now not difficult to find the following classification of right-angled
Artin subgroups of one-relation monoids:

Theorem 3.10 Let Γ be a finite graph and let A(Γ) be the right-angled Artin group that
it defines. Then the following are equivalent.
(i) Γ is a forest;
(ii) A(Γ) embeds into a one-relator group;
(iii) A(Γ) embeds into a positive one-relator group;
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(iv) A(Γ) embeds into a one-relation monoid Mon ⟨A ∣ u = v⟩;
(v) A(Γ) embeds into a one-relation monoid of the form Mon ⟨A ∣ w = 1⟩.

Proof The equivalence of (i) and (ii) follows from [14, Remark 2.3].
(i) ⇒ (iii): By [28, Theorem 1.8], if Γ is a finite forest, then A(Γ) embeds in A(P4),

which in turn embeds in a positive one-relator group by Lemma 3.6 and Lemma 3.7
above.

(iii) ⇒ (v): This follows from the result of Perrin and Schupp [50] showing that any
positive one-relator group admits a one-relation monoid presentation.

(v) ⇒ (iv) is trivial.
(iv) ⇒ (ii): If A(Γ) embeds into Mon ⟨A ∣ u = v⟩, then it must embed in a maximal

subgroup of Mon ⟨A ∣ u = v⟩, which by the results of [30] must itself be a one-relator
group. Hence, A(Γ) embeds in a one-relator group. ∎

3.1 Positive one-relator groups and surface groups

The class of positive one-relator groups has received some attention in the literature.
They were first studied by Baumslag [6] in 1971, who proved that the intersection
of all terms in the lower central series in any positive one-relator group is trivial.
While Perrin and Schupp [50] observed that not all positive one-relator groups are
residually finite, Wise [58] later studied the residual finiteness of positive one-relator
groups, proving that any positive one-relator group with torsion is residually finite
(this result was later sharpened by Wise [59] by dropping the positivity condition).
In general, classifying which positive one-relator groups have decidable submonoid
membership problem seems difficult. It is even unknown whether every one-relator
group with torsion has decidable submonoid membership problem [27, Questions
20.68 & 20.69]. One-relator groups with torsion are hyperbolic by the B. B. Newman
Spelling Theorem; thus, a natural question in line with this was implicitly asked by
Ivanov, Margolis, and Meakin [22, p. 110]:

Question 3.11 Is the submonoid/rational subset membership problem decidable in
every surface group?

Here, a surface group G (of genus g ≥ 0) is one which is the fundamental group of
some compact 2-manifold; thus, either G ≅ Ng or G ≅ Sg , where

Ng = Gp ⟨a1 , . . . , ag ∣a2
1 a2

2 ⋅ ⋅ ⋅ a2
g = 1⟩ and Sg = Gp ⟨a1 , b1 , . . . , ag , bg ∣

g

∏
i=1

[a i , b i] = 1⟩.

We remark that the subgroup membership problem in all surface groups is, by contrast,
well-known to be decidable [54], but in general, hyperbolic groups can even have
undecidable subgroup membership problem by using the Rips construction [52].
Note further thatN2 ≅ Gp ⟨a, b ∣ a2b2 = 1⟩ and S1 ≅ Z

2 are virtually abelian and hence
have decidable rational subset membership problem [15]. All other surface groups
are hyperbolic one-relator groups. If Gromov’s famous Surface Subgroup Conjecture
holds for one-relator groups (see, for example, [13]), then any nonvirtually free
one-relator group contains a subgroup Sg for some g ≥ 2. Hence, understanding
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membership problems for surface groups can be seen as a key first step to understand-
ing membership problems in hyperbolic one-relator groups.

It is well-known (see, for example, [56, §4.3.7] or [17]) that the group N3 contains
a finite index copy of every hyperbolic surface group. Consequently, Question 3.11 is
equivalent to:

Question 3.12 Is the submonoid/rational subset membership problem decidable in the
positive one-relator group N3 = Gp ⟨a, b, c ∣ a2b2c2 = 1⟩?

The word a2b2c2 has length 6. It is easy to see that any one-relator group G =
Gp ⟨A ∣ r = 1⟩ with ∣r∣ < 6 is either free or isomorphic to a free product of a free group
by a two-generated one-relator group H = Gp ⟨a, b ∣ r = 1⟩ with ∣r∣ < 6. There are only
seven (non-free) isomorphism types of such H – namely, C2 , C3 , C4 , C5 ,N2 ,Z2, and
the torus knot group Gp ⟨a, b ∣ a2b3 = 1⟩. All such groups have decidable rational
subset membership problem (see [47]), and hence, as decidability of the rational subset
membership problem is preserved by taking free products, we conclude that any G
as above (with ∣r∣ < 6) has decidable rational subset membership problem. Thus, the
group N3 is the smallest (in terms of relator word length) candidate for a one-relator
group with undecidable rational subset membership problem.

4 Prefix membership problems

We say that a one-relator group G is quasi-positive if it is given by a presentation
of the form G = Gp ⟨A ∣ uv−1 = 1⟩, where u, v ∈ A+ are positive words, and uv−1 is a
reduced word. As explained in the introduction, and summarized in the diagram of
implications in Figure 1, both results of Guba [16] and work of Ivanov, Margolis, and
Meakin [22] motivate the study of the prefix membership problem for quasi-positive
one-relator groups. The main result of this section is:

Theorem 4.1 There exists a one-relator group G = Gp ⟨A ∣ uv−1 = 1⟩, where u, v ∈ A+
and uv−1 is a reduced word, with an undecidable prefix membership problem.

Theorem 4.1 will be proved by encoding the submonoid membership problem for
a positive one-relator group into the prefix membership problem for a quasi-positive
one-relator group. The encoding uses a general construction that will also be used to
establish other undecidability results in this paper (e.g., for inverse monoids), so we
will explain it here so that it can be applied in each instance that it is needed.

Construction 4.2 Let G be a positive one-relator group and let Q be a finitely generated
submonoid of G. Let Mon ⟨A ∣ q = 1⟩ ≅ Gp ⟨A ∣ q = 1⟩ be a one-relation monoid presen-
tation for the group, which exists by [50] since G is a positive one-relator group, and let
a denote the first letter of the word q. Let Q be a finitely generated submonoid of G. Let
X = {w1 , . . . , wk} ⊆ A+ be a set of positive words such that Q = Mon ⟨w1 , . . . , wk⟩ ≤ G.
Such a set of positive words X exists since every element of G can be expressed by a positive
word over A, as this is true in the monoid M. For any w ∈ A+, let w ∈ A+ such that
w = w−1 in G (i.e., ww = ww = 1 in G). Let z i be word obtained from w i after replacing
a with tx for every letter a. Similarly, let z i be the word obtained by replacing a with tx
in w i for every occurrence of the letter a. Let r be the word obtained by replacing every
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occurrence of a with tx in the word q. Let B = A/{a}. Then r, z i , and z i for 1 ≤ i ≤ k
are all positive words over B ∪ {x , t}, and r begins with tx since the first letter of q is a.
Write r ≡ ts (i.e., making s the positive word obtained by deleting the first letter of r). In
particular, s begins with the letter x.

Using the data above, we define a two-relator group presentation

HG ,X = Gp ⟨B, x , t ∣ r = 1, tz1stz1s . . . stzk stzk s = 1⟩.

For future reference, we also use MG ,X to denote the corresponding inverse monoid
presentation

MG ,X = Inv ⟨B, x , t ∣ r = 1, tz1stz1s . . . stzk stzk s = 1⟩.

To establish Theorem 4.1, we will first prove a general result which shows how the
word problem in any finitely generated submonoid of a positive one-relator group can
be encoded in the prefix membership problem in a quasi-positive one-relator group,
and then we combine that with the examples from Section 3 to obtain Theorem 4.1.
To prove this general result, we will make use of a related general result (Theorem
7.5) about the prefix membership problem for positive two-relator groups that will be
proved in Section 7 below as an application of results proved there about the word
problem for two-relator inverse monoids.

Theorem 4.3 Let G be a positive one-relator group, and let Q be any finitely generated
submonoid of G. Then there exists a quasi-positive one-relator group G′ such that the
membership problem for Q in G reduces to the prefix membership problem for G′.
Furthermore, G′ can be chosen such that G′ ≅ G ∗Z.

Proof Let

HG ,X = Gp ⟨B, x , t ∣ r = 1, tz1stz1s . . . stzk stzk s = 1⟩

be the positive two-relator group given by Construction 4.2. Set H = HG ,X , Y = B ∪
{x , t}, u = r and v = tz1stz1s . . . stzk stzk s. It then follows from Theorem 7.5 and its
proof that the membership problem for Q in G reduces to the prefix membership
problem for H, that the identity map on Y induces an isomorphism Gp ⟨Y ∣ u = 1,
v = 1⟩ → Gp ⟨Y ∣ u = 1⟩, and that H ≅ G ∗Z. It follows that the identity map on Y
induces an isomorphism

Gp ⟨Y ∣ u = 1, v = 1⟩ → Gp ⟨Y ∣ vuv−1 = 1⟩,

and this group is isomorphic to G ∗Z. Now since v = 1 in this group, the pre-
fix monoids of Gp ⟨Y ∣ u = 1, v = 1⟩ and Gp ⟨Y ∣ vuv−1 = 1⟩ are both generated by
Pref(u) ∪ Pref(v). Hence, the isomorphism induced by the identity map on Y
maps the prefix monoid of Gp ⟨Y ∣ u = 1, v = 1⟩ bijectively to the prefix monoid of
Gp ⟨Y ∣ vuv−1 = 1⟩. Therefore, if Gp ⟨Y ∣ vuv−1 = 1⟩ has decidable prefix membership
problem, then so does Gp ⟨Y ∣ u = 1, v = 1⟩, which in turn by Theorem 7.5 implies that
the membership problem for Q in G is decidable. The result then follows by taking
G′ to be the one-relator group with generating set Y and defining relator the reduced
form of vuv−1. ∎

Applying this general result with our examples from earlier gives:
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Proof of Theorem 4.1. By Theorem 3.8, there exists a positive one-relator group G
with a fixed finitely generated submonoid Q such that the membership problem for Q
in G is undecidable. Hence, by Theorem 4.3, there is a quasi-positive one-relator group
G′ such that the membership problem for Q in G reduces to the prefix membership
problem for G′. Hence, G′ is a quasi-positive one-relator group with undecidable
prefix membership problem. ∎

5 Membership problems in one-relation monoids

The subgroup membership problem (also called the generalized word problem) is
open in general for one-relator groups. The analogous question for monoids asks
whether all one-relation monoids have decidable submonoid membership problem.
As well as being a natural question, another reason for studying the membership
problem in submonoids, and more generally rational subsets, of one-relation monoids
comes from the left (resp. right) divisibility problem (i.e. the problem of deciding
membership in the principal right (resp. left) ideal generated by a given element).
By a classical result of Adian and Oganesian [4, Corollary 3], decidability of the
divisibility problems in one-relation monoids Mon ⟨A ∣ u = v⟩ implies decidability of
the word problem. Clearly, these principal one-sided ideals are rational subsets of the
monoid. Furthermore, Guba [16] proved that for one-relation monoids of the form
Mon ⟨a, b ∣ bUa = a⟩, the decidability of the membership problem in principal right
ideals is equivalent to the word problem. This motivates the study of the membership
problem for rational subsets of one-relation monoids. As outlined in the introduction
above, several examples and families of one-relation monoid have been shown to have
decidable rational subset membership problem, and in some sense, most of them
do in the way that for a randomly chosen one-relation monoid this problem will be
decidable [26]; cf. [45, p. 338] for a discussion.

Since every positive one-relator group admits a one-relation monoid presentation,
the main result of §3 (Theorem 3.8) gave as a corollary (Corollary 3.9) the first known
examples of one-relation monoids for which the submonoid membership problem is
undecidable. Specifically, we have shown that the one-relation monoid

Mm ,n = Mon ⟨a, b ∣ (ban)m(anb)m = 1⟩

with m, n ≥ 1 has decidable submonoid membership problem (and rational subset
membership problem) if and only if m = 1 or n = 1. These are the first known examples
of one-relation monoids with undecidable submonoid membership problem (and
undecidable rational subset membership problem). Of course, all of these monoids
are in fact groups. Thus arises the question: are there one-relation monoids that are
not groups and have undecidable submonoid, or rational subset, membership? More
generally, we have the following problem:

Problem: Classify the one-relation monoids Mon ⟨A ∣ u = v⟩ with decidable rational
subset, or submonoid, membership problem.

Of course, this problem may well be difficult to answer given the fact that the word
problem for one-relation monoids remains open but, motivated by the connection
with the reduction results by Adian and Oganesian and Guba mentioned above, there
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is still strong motivation for developing a better understanding of the submonoid and
rational subset membership problems in one-relation monoids.

The general study of one-relation monoids Mon ⟨A ∣ u = v⟩ typically splits into
cases that, roughly speaking, give a measure of how far away the monoid is from
being a group. In more detail, the study of one-relation monoids naturally divides
into the investigation of so-called special, and more generally subspecial, monoids on
the one hand, and those that are not subspecial, on the other. As we will explain in
more detail below, associated with any one-relation subspecial monoid is a unique
positive one-relator group that arises as a maximal subgroup of the monoid, and the
algorithmic properties of the monoid (e.g., the word problem) are typically controlled
by properties of this positive one-relator group.

All of the remaining one-relation monoids (i.e., those that are non-subspecial) are
far away from being groups in the sense that the only idempotent such a monoid
contains is its identity, and the group of units of the monoid is trivial. Recall from above
that the word problem for one-relation monoids has been reduced to the problem of
solving the word problem for one-relation monoids of the form Mon ⟨a, b ∣ bUa =
aVa⟩ and of the form Mon ⟨a, b ∣ bUa = a⟩. All of the monoids in these two families
are non-subspecial, and it is natural to ask whether the rational subset membership
(or submonoid) problems are decidable in the non-subspecial case, and in particular
for monoids in these two classes. It is not difficult to show that the word problem in
such monoids, which are left cancellative, reduces to the left divisibility problem (i.e.,
the problem of deciding membership in the principal right ideals wA∗).

Any principal ideal is clearly a rational subset, so a better understanding of the
membership problem in rational subsets of monoids of this form is important for
the study of the word problem. We will see below how to construct monoids of both
forms Mon ⟨a, b ∣ bUa = a⟩ and Mon ⟨a, b ∣ bUa = aVa⟩ with undecidable rational
subset membership problem. Constructing such examples is more difficult than in
the subspecial case since the monoids do not embed any subgroups (apart from the
trivial group), so the usual approach of embedding the RAAG A(P4) is not available
to us in those cases. This will be discussed in more detail below.

5.1 Special and subspecial monoids

As we have already seen above, the one-relation monoids that are groups all admit
presentation of the form Mon ⟨A ∣ w = 1⟩. These are usually called special one-relation
monoids in the literature. It follows from results of Adian [2] that the group of units of
any special one-relation monoid is a positive one-relator group, and there is an algo-
rithm (called Adian’s overlap algorithm) that computes a presentation for the group
of units of the monoid. In more detail, the algorithm computes a factorization w ≡
u1 . . . uk into nonempty words u i that all represent invertible elements of the monoid,
and no proper nonempty prefix of u i represents an invertible element. The set of fac-
tors {u i ∶ 1 ≤ i ≤ k} is overlap-free, in the sense that no nonempty prefix (resp. suffix)
of a word in this set is equal to a nonempty suffix (resp. prefix) of another word in this
set. This is called the decomposition of the relator into minimal invertible pieces, and
the group of units of the monoid is then isomorphic to Mon ⟨B ∣ bu1 . . . buk ⟩, where B =
{bu i ∶ 1 ≤ i ≤ k}. So the group of units Mon ⟨B ∣ bu1 . . . buk ⟩ of M = Mon ⟨A ∣ w = 1⟩ is
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a positive one-relator group, and if that group has undecidable submonoid, or rational
subset, membership problem, then so does M. This gives the most straightforward way
of using our results to construct non-group one-relation monoids with undecidable
submonoid membership problem.

Proposition 5.1 Let m, n ≥ 2 and let A be a finite alphabet and let α, β ∈ A+ such that
{α, β} is overlap-free. Then the group of units of

N = Mon ⟨A ∣ (βαn)m(αn β)m = 1⟩

is isomorphic to Mm ,n , and hence, N contains a fixed finitely generated submonoid in
which membership is undecidable. The monoid N is a group if and only if ∣α∣ = ∣β∣ = 1.

Proof The fact that the group of units of N is Mm ,n follows by using the fact that
{α, β} are overlap-free and applying Adian’s overlap algorithm [2]. If ∣α∣ ≥ 2, then the
first letter of α is right-invertible but not left-invertible in N from which it follows that
N is not a group; similarly if ∣β∣ ≥ 2. ∎

For example taking α = x y and β = xx yy in Proposition 5.1 gives that the following
monoid, which is not a group since x is not invertible, has undecidable submonoid
membership problem

Mon ⟨x , y ∣ (xx yy(x y)n)m((x y)n xx yy)m = 1⟩

for m, n ≥ 2.
More generally, a one-relation monoid Mon ⟨A ∣ u = v⟩ with ∣v∣ ≤ ∣u∣ is called

subspecial if u ∈ vA∗ ∩ A∗v. The following proposition follows from known results and
explains the close connection between these one-relation monoids and the class of
positive one-relator groups.

Proposition 5.2 Let M be a subspecial one-relation monoid (i.e., let M = Mon ⟨A ∣ u =
v⟩ where ∣v∣ ≤ ∣u∣ and u ∈ vA∗ ∩ A∗v).
(i) If v = 1 is the empty word, then M is a special monoid with group of units H

isomorphic to a positive one-relator group.
(ii) If v ≠ 1, then the group of units is trivial, the monoid contains nontrivial idempo-

tents, and there is a fixed positive one-relator group H such that the maximal sub-
group (i.e., group H -class) associated to any nontrivial idempotent is isomorphic
to H.

In both cases, there is an algorithm that computes a presentation and a generating set
for the positive one-relator group H from the given presentation of M. In particular, if M
has decidable submonoid (resp. rational subset) membership problem, then so does the
positive one-relator group H.

There is evidence in the literature that the converse of this proposition should be
true in the case of rational subset membership; that is, in both cases of Proposition 5.2,
we expect that the monoid M will have decidable rational subset membership problem
if and only if the positive one-relator group H does. For instance, if the group H is a
virtually free group (and hence has decidable rational subset membership problem),
then it was proved in [48, 43] that M has decidable rational subset membership
problem. In this sense, we expect the problem of classifying subspecial monoids with
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decidable rational subset membership problem to be equivalent to the problem of
classifying the positive one-relator groups with this property.

Given that we now have examples of positive one-relator groups with undecidable
submonoid membership problem, Proposition 5.2 gives a recipe for constructing
many more subspecial examples, by realizing our examples as the group H in the
proposition. Rather than developing that theory in full here, we content ourselves by
giving an example from which it should be clear that many other examples could be
constructed using the same approach.

Example 5.3 For m, n ≥ 1 define Tm ,n to be the monoid

Mon ⟨z, t∣((ztz2 t)2(ztz3 t)2(ztz2 tztz3 t)n)m((ztz2 tztz3 t)n(ztz2 t)2(ztz3 t)2)m = zt⟩.

If we compress this monoid (in the sense of [30, 29]) with respect to zt, we obtain the
monoid

Mon ⟨x , y ∣ (xx yy(x y)n)m((x y)n xx yy)m = 1⟩,

and from above, the group of units of this monoid is isomorphic to

Mm ,n = Mon ⟨a, b ∣ (ban)m(anb)m = 1⟩.

It then follows from [30] that Tm ,n contains non-identity idempotents, and the
maximal subgroup of any of these idempotents is isomorphic to the positive one-
relator group Mm ,n . It follows that for all m, n ≥ 2, the monoid Tm ,n embeds the group
A(P4) and hence contains a fixed finite generated submonoid in which membership
is undecidable.

5.2 Non-subspecial monoids

As explained in the beginning of this section, all of the remaining one-relation
monoids (i.e., those that are non-subspecial) are far away from being groups, contain-
ing no nontrivial subgroups. These non-subspecial monoids will be the topic of the
remainder of this section, and also the next section where we develop new methods for
constructing examples of these forms with undecidable rational subset membership
problem. We now turn our attention to the class of monadic one-relation monoids
Mon ⟨a, b ∣ bUa = a⟩ discussed in the introduction to this paper. As explained there,
one major motivation for the work done in this paper is the work of Guba [16], which
reduces the word problem in these monoids to the membership problem in certain
submonoids of particular positive one-relator groups. In the next section, we will
give an infinite family of monadic one-relation monoids Mon ⟨a, b ∣ bUa = a⟩, each
of which has undecidable rational subset membership problem.

In his paper [16], Guba associates with any Mon ⟨a, b ∣ bUa = a⟩ a positive one-
relator group G such that the word problem in Mon ⟨a, b ∣ bUa = a⟩ reduces to
solving the membership problem within a certain submonoid of G. Of course, if G
has decidable submonoid membership problem, then Mon ⟨a, b ∣ bUa = a⟩ will have
decidable word problem, so the only cases of interest now are those where the positive
one relator group G does not have decidable submonoid membership problem. We
now know from the results above that such positive one-relator groups G do exist, so
the next step is to seek monoids Mon ⟨a, b ∣ bUa = a⟩ such that the associated positive
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one-relator groups arising from Guba’s theory are isomorphic to the positive groups
Gm ,n that we defined and investigated above. We will now identify one such class of
monadic one-relation monoids and give some of their basic properties before going
on to study rational subset membership in this class in depth in the next section (§6).

Let Gm ,n = Gp ⟨x , y ∣ xm yn xm y−n⟩. By Remark 3.6, the subgroup

H = Gp ⟨yxm y−1 , y2n , xm , x y2n x−1⟩

is isomorphic to A(P4) in Gm ,n .
The substitution y ↦ a, x ↦ ban defines an isomorphism between Gm ,n and the

group:
Mm ,n = Mon ⟨a, b ∣ (ban)m(anb)m = 1⟩.

We know from the results in §3 that Mm ,n is a one-relator group defined by a positive
word and with an undecidable submonoid membership problem.

In the new presentation, the subgroup H is given as
H = Gp ⟨a(ban)m a−1 , a2n , (ban)m , ba2nb−1⟩.

Let Wm ,n ≡ (ban)m(anb)m , and let Qm ,n be the longest proper suffix of Wm ,n (i.e.,
Wm ,n ≡ bQm ,n). Consider the monoid

Rm ,n = Mon⟨ a, b ∣ a = bQm ,n a ⟩.

Applying Oganesian’s algorithm (see [16]) to the monoid Rm ,n , we see that the suffix
monoid of Rm ,n embeds in the one-relator group

Gm ,n = Gp⟨ a, b ∣ (ban)m(anb)m = 1 ⟩ = Mm ,n .

Indeed, the suffixes of Qm ,n a that start with a are left-divisible by a (which is the first
suffix), while the suffixes of Qm ,n a that start with b, start with ba as well; so, these
suffixes are left-divisible by ba (which is the second suffix). Moreover, as a = bQm ,n a ≡
(ban)m(anb)m , a is left-divisible by ba. By Oganesian’s algorithm, this suffices to
show that the suffix monoid of Rm ,n embeds in Gm ,n .

In the next section, we will prove the undecidability of the rational subset mem-
bership problem in the monoid Rm ,n . Before doing so, we will solve the word problem
in Rm ,n . We will do so by means of a finite complete rewriting system. First, note
that the word bQm ,n a has self-overlaps; in fact, all the words of the form (ban)i ba
(for 0 ≤ i ≤ m − 1) are both a prefix and a suffix. Thus, while the rewriting system
bQm ,n a → a defines Rm ,n , it is not complete. It can, however, be completed to one:
Lemma 5.4 The monoid Rm ,n admits a finite complete rewriting system S on the
alphabet {a, b}, and with the following rules:
(i) (ban)m(anb)m a �→ a,

(ii) (ban)m(anb)m−i an a �→ (anb)m−i an(anb)m a (1 ≤ i ≤ m).
We will denote rule (i) as α0 → β0, and (ii) as α i → β i (1 ≤ i ≤ m), respectively.

To show that the system S in Lemma 5.4 is complete, it is enough to show that it is
Noetherian and locally confluent by Newman’s Lemma (see, for example [18, Lemma
12.15]). Obviously, it is Noetherian, as can be seen by using the shortlex order. We must
therefore only show that our system is locally confluent. For this, we use the following
lemma:

https://doi.org/10.4153/S0008414X24000798 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000798


Membership problems for one-relator groups and monoids 23

Lemma 5.5 (Lemma 12.17 in [18]) The system S is locally confluent if and only if for
all pairs of rules (l1 , r1), (l2 , r2) ∈ S, the following conditions are satisfied:
(i) If l1 = us and l2 = sv with u, s, v ∈ {a, b}∗ and s ≠ ε, then there exists w ∈ {a, b}∗

with r1v →∗ w, and ur2 →∗ w.
(ii) If l1 = usv and l2 = s with u, s, v ∈ {a, b}∗ and s ≠ ε, then there exists w ∈ {a, b}∗

with r1 →∗ w, and ur2v →∗ w.
Proof of Lemma 5.4. Note that the second condition of Lemma 5.5 does not apply
to our system, as none of the α i is a subword of another α j .

Note also that the first condition of Lemma 5.5 can only be applied for l1 = α0 and
l2 = α i for 0 ≤ i ≤ m, because other pairings do not overlap.

For l1 = α0 and l2 = α i , set s j = (ban) jba for 0 ≤ j ≤ m − 1. We want α0 = u js j and
α i = s jv i , j , so, u j = (ban)m(anb)m−1− j an ; v0, j = an−1(ban)m−1− j(anb)m a; while for
all other i > 0, one has v i , j = an−1(ban)m−1− j(anb)m−i an a.

Now we want to find a word w i , j with β0v i , j →∗ w i , j , and u j β i →∗ w i , j . Recall that
β0 = a, and β i = (anb)m−i an(anb)m a. Actually, one can see that w i , j = β0v i , j = av i , j ;
that is, w i , j = β0v i , j is reduced with respect to our system, and u j β i gets reduced to
w i , j . ∎

6 Undecidability in monadic one-relation monoids

The goal of this section is to prove the following result, the proof of which will use the
results of the previous sections.
Theorem 6.1 For all m, n ≥ 2, the monoid

Rm ,n = Mon ⟨a, b ∣ (ban)m(anb)m a = a⟩

contains a fixed rational subset in which membership is undecidable.
Since the first letters of the two sides of the defining relation are distinct, the monoid

Rm ,n is left-cancellative by Adian [1, Theorem 3], so the only idempotent in Rm ,n is
the identity. The group of units in Rm ,n is trivial since the defining relation is not of
the form w = 1. Hence, Rm ,n does not contain any nontrivial groups; in particular,
Rm ,n does not embed A(P4). So Theorem 6.1 cannot be proved by embedding A(P4),
or embedding any other group for that matter. Theorem 6.1 gives the first known
examples of non-subspecial one-relation monoids with undecidable rational subset
membership problem.

To prove the theorem, we will need to introduce a new approach which involves
embedding the trace monoid T(P4) into Rm ,n in a certain way. It is not the case that
every left-cancellative monoid that embeds T(P4) has undecidable rational subset
membership problem. For example, T(P4) itself is left-cancellative (it is even group-
embeddable) and has decidable rational subset membership problem [11]. So the way
in which the trace monoid embeds into Rm ,n will be vital.

Recall [19, Chapter II] that two elements x, y in a monoid T are said to be L-
related if Tx = Ty. Also note that it is immediate from the definition that L is a
right congruence (i.e. if xLy, then xzLyz for any z ∈ T). This will be used implicitly
throughout our proofs below. We will prove the following general result and then show
that the hypotheses are satisfied by the one-relation monoid Rm ,n above.
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Theorem 6.2 Let M be a finitely generated left-cancellative monoid and let U ⊆ M such
that uvLv for all u, v ∈ U. If Mon ⟨U⟩ is isomorphic to the trace monoid T(P4), then M
contains a fixed rational subset in which membership is undecidable.

By the trace semigroup of P4, we mean the semigroup defined by the semigroup
presentation Sgp ⟨a, b, c, d ∣ ab = ba, bc = cb, cd = dc⟩.

Corollary 6.3 If a left-cancellative monoid embeds a copy of the trace semigroup of P4
that is contained in a single L-class of the monoid, then the monoid contains a fixed
rational subset in which membership is undecidable.

In addition to applying to our one-relation monoid example, the general result
Theorem 6.2 also has the following application to groups, since in a group, every pair
of elements are clearly L-related.

Corollary 6.4 If G is a finitely generated group which embeds the trace monoid
T(P4), then G contains a fixed rational subset in which rational subset membership is
undecidable.

Given this, a natural question is whether a group can embed T(P4) but not A(P4);
this will be discussed at the end of this section.

Before proving Theorem 6.2, we will show how it can be applied to prove Theo-
rem 6.1. For that, we need the following lemma about the L-relation in one-relation
monoids of the same form as our example.

Lemma 6.5 Let

M = Mon ⟨a, b ∣ ba i1 ba i2 . . . ba ik ba = a⟩

with i j ≥ 1 for all 1 ≤ j ≤ k. Then wLa in M for every word w ∈ {a, ba}+.

Proof Set r ≡ ba i1 ba i2 . . . ba ik ba. Since r begins and ends with ba, we can write r ≡
αba ≡ baγ. As a = r = baγ in M and γ ends in the letter a, it follows that aγLa. In M,
we have aγ = αbaγ = αa; hence, αaLa. Since r ≡ αba and ik ≥ 1, it follows that the
last letter of α equals a, so we can write α ≡ α′a. But now, αaLa implies α′a2La so
δα′a2 = a for some word δ. It follows that a2La in M.

Next, observe that baLa since ba is a suffix of r, from which it follows that
ba(ba)La(ba) and also ba(a)La(a). Also abaLa since aba is a suffix of r.
We have shown aaLa, a(ba)La, (ba)(ba)LabaLa, and (ba)aLaaLa; that is,
all two-factor products of the words {a, ba} are L-related to a. Now the result
follows by induction since setting w1 ≡ a, w2 ≡ ba, for any product w i1 w i2 . . . w ik

with k ≥ 3 from above, we have w i1 w i2La from which, since L is a right congru-
ence, it follows that w i1 w i2 w i3 . . . w ikLaw i3 . . . w ik where by induction, aw i3 . . . w ik ≡
w1w i3 . . . w ikLa. ∎

The key to applying Theorem 6.2 to Rm ,n is to find an appropriately embedded copy
of the trace monoid T(P4). This is achieved in the following lemma.

Lemma 6.6 For all m, n ≥ 2 the submonoid T4 = Mon ⟨X⟩ of Rm ,n generated by

X = {a(ban)m−1ban−1 , a2n , (ban)m , ban a2n(ban)m−1}

is isomorphic to the trace monoid T(P4).
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Proof Set

α = a(ban)m−1ban−1 , β = a2n , γ = (ban)m , μ = ban a2n(ban)m−1 .

Let H = Gp ⟨a(ban)m a−1 , a2n , (ban)m , ba2nb−1⟩ ⩽ Mm ,n , and denote by A, B, C , D
its 4 generators, in the given order, recalling that Mm ,n = Gp ⟨a, b ∣ (ban)m(anb)m a =
a⟩. In Section 3, Remark 3.6 was applied to show that H ≅ A(P4) with A, B, C, and
D corresponding to the vertices in the path P4 in this order. It then follows from a
sequence of easy Tietze transformations that Gp ⟨α, β, γ, μ⟩ ≤ Mm ,n is also isomorphic
to A(P4) since α = a(ban)m−1ban−1 is equal to A in Mm ,n , β = B, γ = C, and

μ = ban a2n(ban)m−1 = ba2n an(ban)m−1 = ba2nb−1(ban)m = DC

is equal to DC in Mm ,n . Since any trace monoid naturally embeds in its corresponding
right-angled Artin group, it follows that Mon ⟨α, β, γ, μ⟩ ≤ Mm ,n is isomorphic to the
trace monoid T(P4), where α, β, γ, μ correspond to the vertices on the path P4 in this
order. Let ϕ be the homomorphism ϕ ∶ Rm ,n → Mm ,n induced by the identity map on
{a, b}. Then

ϕ(T4) = ϕ(Mon ⟨X⟩) = Mon ⟨ϕ(X)⟩ = Mon ⟨α, β, γ, μ⟩ ≤ Mm ,n

is isomorphic to the trace monoid T(P4), where T4 = Mon ⟨X⟩ = Mon ⟨α, β, γ, μ⟩ ≤
Rm ,n . So ϕ induces a surjective homomorphism from T4 onto ϕ(T4) ≤ Mm ,n . To show
that this defines an isomorphism between T4 and ϕ(T4), we need to show that ϕ is
injective on the set T4 which, since ϕ(T4) is isomorphic to T(P4), means we need to
show that the defining relations of the trace monoid hold between the generators of T4
in the monoid Rm ,n . Hence, to complete the proof, we just need to show that αβ = βα,
βγ = γβ and γμ = μγ all hold in Rm ,n .

Using the rewriting rule (ii) for i = m from Lemma 5.4, we obtain

(ban)m an a = an(anb)m a.(6)

Multiplying Equation (6) by an−1 on the right, we obtain (ban)m a2n = a2n(ban)m ;
that is, γβ = βγ in Rm ,n . Multiplying Equation (6) by a on the left and an−2 on the
right (note that n ≥ 2), and writing m = (m − 1) + 1, we obtain

[a(ban)m−1ban−1]a2n = a2n[a(ban)mban−1],

which means that αβ = βα in Rm ,n . Lastly, note that γ = (ban)m commutes with all
the words ban , a2n , and (ban)m−1. So we obtain

μγ = [ban a2n(ban)m−1]γ = γ[ban a2n(ban)m−1] = γμ,

as required. ∎

We are now in a position to prove the main result of this section, which we
presented at the very beginning.

Proof of Theorem 6.1. Let m, n ≥ 2, and set Rm ,n = Mon ⟨a, b ∣ (ban)m(anb)m a =
a⟩. By Lemma 6.6, the submonoid T4 = Mon ⟨X⟩ of Rm ,n generated by

X = {a(ban)m−1ban−1 , a2n , (ban)m , ban a2n(ban)m−1}
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is isomorphic to the trace monoid T(P4), and since every word in X belongs to
{a, ba}+, it follows from Lemma 6.5 that all nonempty products of elements of X are
L-related to each other, since they are all L-related to a. Since M is left cancellative by
Adian [1, Theorem 3], the result now follows by applying Theorem 6.2. ∎

The remainder of this section will be devoted to proving Theorem 6.2 and then
discussing some of its other consequences.

First, the following result identifies a sufficient condition for constructing rational
subsets of left-cancellative monoids in which membership is undecidable.
Theorem 6.7 Let M be a left-cancellative monoid with a finite generating set A. Suppose
that there exist rational languages L, K , L ⊆ A∗, a surjective map α ∶ L �→ L with
α(l) = l , and a fixed word w ∈ A∗, satisfying the following properties:
(i) l lw = w in M, for all l ∈ L, and

(ii) it is undecidable whether there exists a pair (l , k) ∈ L × K satisfying lw i = k in M,
for a given i ∈ N.

Then the rational language LK ⊆ A∗ defines a fixed rational subset of M in which
membership is undecidable.
Proof The language LK ⊆ A∗ is clearly rational as both L and K are.

Let i ∈ N. Since M is left cancellative, it follows that for any (l , k) ∈ L × K, we have
lw i = k in M if and only if l lw i = l k. Applying condition (i) gives l lw i = l lww i−1 =
w i ; hence, lw i = k in M if and only if w i = l k.

It follows that for a given i ∈ N, there exists (l , k) ∈ L × K satisfying lw i = k if and
only if there exists (l , k) ∈ L × K satisfying w i = l k which is true if and only if w i ∈ LK,
since α being surjective implies that L = {l ∶ l ∈ L}. But the former problem is unde-
cidable by assumption (ii), and hence, the latter problem must also be undecidable
(i.e., membership in the rational subset LK of M is undecidable). ∎

Condition (ii) in the above theorem comes from the following result of Lohrey and
Steinberg [33] about the trace monoid T(P4).
Lemma 6.8 (Corollary of Proof of Theorem 2 in [33]) Let T be the trace monoid of
P4 defined by

T = Mon ⟨u1 , u2 , u3 , u4 ∣ u1u2 = u2u1 , u2u3 = u3u2 , u3u4 = u4u3⟩.

Then there are two fixed rational subsets Q , R ⊆ {u1 , u2 , u3 , u4}∗, with Q not containing
the empty word, such that it is undecidable whether there exists a pair (x , y) ∈ Q × R
satisfying x(u2)i = y in T, for a given i ∈ N.
Proof In the paper [33, Proof of Theorem 2], the authors take Σ = {a, b, c, d} and
work in the trace monoid S = Mon ⟨Σ ∣ ab = ba, bc = cb, cd = dc⟩. They show that
there is a fixed rational language L ⊆ Σ∗ and a family of languages Km ,n with m, n ∈ N
such that it is undecidable whether Km ,n ∩ L ≠ ∅ for given m, n ∈ N. For our purposes,
the important thing is that Km ,n = b2m 3n

Ω, where Ω ⊆ Σ∗ is a certain fixed rational
language with the property that Ω does not contain the empty word.2 Their argument

2In fact, in [33, Proof of Theorem 2], the authors use Km ,n = b2m 3n
Ω, where Ω = a(d(cb)+a)∗dc∗.

However, this definition appears to have a typo, since for the equality in the displayed equation in the
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shows that it is undecidable whether b2m 3n
Ω ∩ L ≠ ∅ for given m, n ∈ N. It follows

from the defining relations in the trace monoid S that for any two words u, v ∈ Σ∗, we
have u = v in S if and only if rev(u) = rev(v) in S where rev denotes the reverse of a
word. Hence, if we set Ω′ = {rev(u) ∶ u ∈ Ω} and L′ = {rev(l) ∶ l ∈ L}, then Ω′ and L′
are rational subsets of Σ∗, since word reversal clearly preserves the property of being
a regular language. Furthermore, Ω′ and L′ have the property that it is undecidable
whether Ω′b2m 3n

∩ L′ ≠ ∅ for given m, n ∈ N. In particular, this means that there are
fixed rational subsets Ω′, L′ ⊆ Σ∗ such that it is undecidable whether Ω′b i ∩ L′ ≠ ∅ for
given i ∈ N. Finally, if we translate this into the notation of the trace monoid as defined
in the statement of the lemma by substituting a ↦ u1, b ↦ u2, c ↦ u3, and d ↦ u4, we
obtain the result, where Q does not contain the empty word since Ω does not. ∎

We will also need the following lemma about a certain mapping on words that
preserves the property of being a regular language.

Lemma 6.9 Let A = {a1 , . . . , an} and for every pair (i , j) of natural numbers with
i , j ∈ {1, . . . , n}, choose and fix some b i , j ∈ A∗. For every word w = a i1 a i2 . . . a ik−1 a ik ∈
A∗ of length at least two, define

ϕ(a i1 a i2 . . . a ik−1 a ik ) = b ik−1 , ik b ik−2 , ik−1 . . . b i2 , i3 b i1 , i2 .

If L ⊆ A∗ is a regular language, and every word in L has length at least two, then ϕ(L) ⊆
A∗ is also a regular language.

Proof Let L ⊆ A∗ be a regular language, and suppose that every word in L has length
at least two. Let σ ∶ A∗ → A∗ be the homomorphism defined by a i ↦ a2

i and set L1 =
σ(L). Since the class of regular languages is closed under taking homomorphisms, it
follows that L1 is a regular language. Since every word in L has length at least two,
it follows that every word in L1 has length at least four. Now let L2 be the language
obtained by taking each word from L1 and deleting the first letter and the last letter.
Note that every word in L2 has even length and has length at least two. Since the left
or right quotient of a regular language is again regular, and deletion of the last resp.
first letter is an example of taking a left resp. right quotient of a language by a regular
language, it follows that L2 is a regular language. Let g ∶ L1 → L2 be the map that deletes
the first and last letter of the input word, and L3 the reversal of the language L2 (i.e.,
the language obtained by reversing every word).

Now define a new alphabet C = {c i , j ∶ 1 ≤ i , j ≤ n} and a homomorphism θ ∶ C∗ →
A∗ defined by c i , j ↦ a i a j . Note that the homomorphism θ is clearly injective with
image the set of all word in A∗ of even length. Since regularity is preserved under
taking inverse images of homomorphisms, it follows that for any regular language
W ⊆ A∗, the language θ−1(W) ⊆ C∗ is regular. Let ρ ∶ C∗ → C∗ be the word reversing
map which also preserves regularity.

Now, given any word w = a i1 a i2 . . . a ik−1 a ik ∈ A∗ of length at least two, we have

g(σ(w)) = a i1 a i2 a i2 a i3 a i3 . . . a ik−2 a ik−2 a ik−1 a ik−1 a ik

fourth-from-last line of their proof to be true, one should really take Ω to be a(d(cb)+a)∗dc+ because
of the condition jl ≥ 1. This small change does not have any impact on the conclusion of their result or
on our application of it.
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is a nonempty word of even length and then

(ρ ○ θ−1 ○ g ○ σ)(w) = c ik−1 , ik c ik−2 , ik−1 . . . c i2 , i3 c i1 , i2 .

Finally, let γ ∶ C∗ → A∗ be the homomorphism defined by c i , j ↦ b i , j , so that

(γ ○ ρ ○ θ−1 ○ g ○ σ)(a i1 a i2 . . . a ik−1 a ik ) = b ik−1 , ik b ik−2 , ik−1 . . . b i2 , i3 b i1 , i2 .

It follows that the mapping ϕ in the statement of the lemma satisfies ϕ = γ ○ ρ ○ θ−1 ○
g ○ σ , and since as explained above, all of the maps in this composition preserve
regularity of follows that ϕ(L) is a regular language. ∎

We now have everything we need to prove our general theorem.

Proof of Theorem 6.2. Let M be a finitely generated left-cancellative monoid and let
U ⊆ M such that uvLv for all u, v ∈ U , and Mon ⟨U⟩ is isomorphic to the trace monoid
T(P4). Since every generating set of T(P4) must contain the four standard generators
of the monoid that correspond to the four vertices of the path P4 (this follows from the
fact that the relations in the presentation of T(P4) are length preserving so one cannot
recover the letters as products of words of greater length), it follows that U contains
a subset Y = {u1 , u2 , u3 , u4} corresponding to the standard generators of the trace
monoid. Since the rational subsets of a monoid do not depend on the choice of finite
generating sets, without loss of generality, we can take the generating set A for M in the
statement of the theorem to be a finite generating set for M so that it contains the subset
Y ⊆ A. So Y ⊆ A with Y = {u1 , u2 , u3 , u4}, where T = Mon ⟨Y⟩ is isomorphic to the
trace monoid T(P4) with the generators u1 , u2 , u3 , u4 corresponding to the vertices in
the path P4 with u i adjacent to u i+1 for all i, and by the assumptions in the statement
of the theorem u i u jLu j for all u i , u j ∈ Y .

Next, for every pair i , j ∈ {1, 2, 3, 4}, we fix a word v i , j ∈ A∗ such that v i , ju i u j = u j .
This is possible since u i u jLu j . Then for any nonempty word w = u i1 u i2 . . . u in ∈ Y∗,
we define

w = v in ,2v in−1 , in v in−2 , in−1 . . . v i3 , i4 v i2 , i3 v i1 , i2

and observe that

wwu2 = v in ,2v in−1 , in v in−2 , in−1 . . . v i3 , i4 v i2 , i3 v i1 , i2 u i1 u i2 . . . u in u2 = v in ,2u in u2 = u2

in M.
By Theorem 6.8, there are two fixed rational subsets Q , R ⊆ Y∗, with Q not

containing the empty word, such that it is undecidable whether there exists a pair
(x , y) ∈ Q × R satisfying x(u2)i = y in M, for a given i ∈ N. Since Y ⊆ A, it follows
that Q , R are also rational subsets of A∗ satisfying this property.

Set Q = {w ∶ w ∈ Q}. We claim that Q is a rational subset of A∗. To see this, note
that Q is a rational subset of A∗ not containing the empty word, from which it follows
that Qu2 is a rational subset of A∗ in which every word has length at least two. For
every word w = u i1 u i2 . . . u ik−1 u ik ∈ A∗ of length at least two, define

ϕ(u i1 u i2 . . . u ik−1 u ik ) = v ik−1 , ik v ik−2 , ik−1 . . . v i2 , i3 v i1 , i2 .
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Since Qu2 is a rational subset of A∗, it follows from Lemma 6.9 that ϕ(Qu2) is
a rational subset of A∗. But Q = ϕ(Qu2), and hence, Q is a rational subset of A∗,
completing the proof of the claim.

Hence, we have a left-cancellative monoid M with finite generating set A, rational
languages Q , R, Q ⊆ A∗, a surjective map α ∶ Q �→ Q with α(x) = x, and a fixed word
u2 ∈ A∗, satisfying the following properties:
(i) xxu2 = u2 in M, for all x ∈ Q,

(ii) it is undecidable whether there exists a pair (x , y) ∈ Q × R satisfying x(u2)i = y
in M, for a given i ∈ N.

Then by Theorem 6.7, the rational language QR ⊆ A∗ defines a fixed rational subset of
M in which membership is undecidable. ∎

A natural question is the following:

Question 6.10 If m = 1 or n = 1, then does Rm ,n = Mon ⟨a, b ∣ (ban)m(anb)m a = a⟩
have decidable rational subset membership problem?

We know from above that the group with the same presentation does have decidable
rational subset membership problem when m = 1 or n = 1.

Remark 6.11 We have seen that for all m, n ≥ 2, the monoid Rm ,n contains a fixed
rational subset in which membership is undecidable. There are easy modifications of
this example that can be used to obtain monoids of the form Mon ⟨a, b ∣ bUa = aVa⟩
with the same property. One simple way to do this would be to replace a by aaa and
b by bbb to obtain the family of monoids

Mon ⟨a, b ∣ [bbb(aaa)n]m[(aaa)nbbb]m aaa = aaa⟩.

It is straightforward to show that the submonoid of this monoid generated by
{aaa, bbb} is isomorphic to Rm ,n , and hence, for every m, n ≥ 2, this monoid contains
a fixed rational subset in which membership is undecidable, and this monoid has the
form Mon ⟨a, b ∣ bUa = aVa⟩.

Remark 6.12 In a very similar way to Example 5.3, the monadic examples con-
structed above can be combined with the theory of compression [30, 29] to obtain
many more examples of non-subspecial monoids with undecidable rational subset
membership problem. Indeed, it is not difficult to show that one-step compression
by an overlap-free word (in the sense of Kobayashi [29]) preserves the property of
having decidable rational subset membership problem. So if a monoid compresses in
finitely many steps to one of our monadic examples above with undecidable rational
subset membership problem, then the original monoid will have the same property.
To give an example, for m, n ≥ 1, the monoid

T = Mon ⟨x , y ∣ (x yyx y(x yxx y)n)m((x yxx y)n x yyx y)m x yxx y = x yxx y⟩

is sealed by the self-overlap free word x y, and when we perform one-step compression
with respect to this, we obtain the monoid

Rm ,n = Mon ⟨a, b ∣ (ban)m(anb)m a = a⟩.

It follows that for m, n ≥ 2, the monoid T above contains a fixed rational subset in
which membership is undecidable. Clearly, T is not a subspecial monoid. There is
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evidence that the converse should be true; that is, a compressible one-relation monoid
has decidable rational subset membership problem if and only if its full compression
does. Combining this with the comments above on subspecial monoids, the authors
believe that the problem of classifying one-relation monoids with decidable rational
subset membership problem should reduce to solving the problem for positive one-
relator groups (for the subspecial case) and solving it for incompressible monoids (in
the non-subspecial case).

6.1 An application to the rational subset membership problem in groups

Corollary 6.4 shows that if G is a finitely generated group which embeds the trace
monoid T(P4), then G contains a fixed rational subset in which rational subset
membership is undecidable. Currently, all known examples of one-relator groups with
undecidable rational subset membership problem embed A(P4). This motivates the
following question:

Question 6.13 Is there a one-relator group which embeds the trace monoid T(P4) but
does not embed A(P4)?

If such an example exists, it would show that for one-relator groups, embeddability
of A(P4) is sufficient but not necessary for undecidability of the rational subset
membership problem.

In the following proposition, we will give an example of a group H with a finite
subset X such that Mon ⟨X⟩ is isomorphic to the trace monoid T(P4) but Gp ⟨X⟩
is not isomorphic to A(P4). In particular, since H is a group embedding T(P4), it
follows from Corollary 6.4 that H contains a rational subset in which membership is
undecidable. We do not know whether the group H embeds A(P4). And the only way
we know of proving that H has undecidable rational subset membership problem is
by using the fact that it embeds T(P4). This shows that Corollary 6.4 can be usefully
applied to examples.

Proposition 6.14 Let

H = Gp ⟨x , y, z, t ∣ tx = xt, xz = zx , zy = yz, y2x = x y⟩,

and set X = {t, x , z, x y}. Then
(i) Mon ⟨X⟩ is isomorphic to the trace monoid T(P4), while

(ii) Gp ⟨X⟩ is not isomorphic to the right-angled Artin group A(P4).
In particular, the group H contains a rational subset in which membership is undecidable.

Proof (i) Let K = Gp ⟨x , y, z ∣ xz = zx , yz = zy, y2x = x y⟩. Then T = Mon ⟨x , y, z ∣
xz = zx , yz = zy, y2x = x y⟩ naturally embeds in the group K.

To see this, observe that with K1 = Gp ⟨z ∣ ⟩ and K2 = Gp ⟨x , y ∣ y2x = x y⟩, we have

K = K1 × K2 ≅ Z × BS(1, 2),

while setting T1 = Mon ⟨z ∣ ⟩ and T2 = Mon ⟨x , y ∣ y2x = x y⟩, we have

T = T1 × T2 ≅ N0 × Mon ⟨x , y ∣ y2x = x y⟩.
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Both T1 and T2 are group embeddable; T1 is free, and T2 is left and right cycle-free,
and so is group-embeddable [1, Theorem 5]. Hence, the natural maps ϕ i ∶ Ti → K i for
i = 1, 2 define injective homomorphisms. But then it follows that the map ϕ∶ T1 × T2 →
K1 × K2 defined by (t1 , t2) ↦ (ϕ1(t1), ϕ2(t2)) defines an injective homomorphism
from T into K. Hence, T is group embeddable, and thus, T embeds naturally into
the group with the same presentation; that is, the identity map on {x , y, z} defines an
injective homomorphism from T into K.

Then T = Mon ⟨x , y, z ∣ xz = zx , yz = zy, y2x = x y⟩ is a finite complete presen-
tation for the monoid T, and if we consider the submonoid of T generated by
{x , x y, z}, we see that the reduced form of any word in {x , x y, z}∗ belongs to the
set {z}∗{x , x y}∗ since the rewrite rule y2x = x y can never be applied to a word in
{x , x y, z}∗. We conclude that the submonoid of T, and hence also of K, generated by
{x , x y, z} is isomorphic to N0 × {c, d}∗; that is, it is isomorphic to the trace monoid
T(P3), where the vertices of P3 are x , z, x y in that order (with z being the middle
vertex of the path).

Now apply Theorem 6.15 below to the HNN-extension H of K, where

H = Gp ⟨x , y, z, t ∣ xz = zx , zy = yz, y2x = x y, txt−1 = x⟩.

From the previous paragraph, the submonoid of K generated by {x , z, x y} is isomor-
phic to the trace monoid Mon ⟨x , b, c ∣ xb = bx , bc = cb, cd = dc⟩.

Then by Theorem 6.15, it follows that the submonoid of H generated by X =
{t, x , z, x y} is isomorphic to Mon ⟨t, x , b, c ∣ tx = xt, xb = bx , bc = cb, cd = dc⟩ ≅
T(P4), as required.

(ii) Gp ⟨X⟩ ≅ H which has abelianisation Z
3 and hence cannot be isomorphic to

A(P4) which has abelianisation Z
4. ∎

The proof of Proposition 6.14 uses the following general result about submonoids
of HNN extensions of groups, which is also of independent interest.
Theorem 6.15 Let G ≅ Gp ⟨B ∣ Q⟩, let A ⊆ B, fix a ∈ A, and set

H = Gp ⟨B, t ∣ Q , tat−1 = a⟩,

which is an HNN-extension of G with respect to the automorphism fixing the cyclic
subgroup of G generated by a. Let M be the submonoid Mon ⟨A⟩ of G generated by A,
and let Mon ⟨A ∣ R⟩ be a presentation for M with respect to the generating set A. Then

Mon ⟨M ∪ {t}⟩ ≅ Mon ⟨A, t ∣ R, at = ta⟩.

Before giving the proof, we recall the normal form in HNN-extensions, which is
an immediate consequence of Britton’s Lemma (see [34, Ch. IV]):
Lemma 6.16 (cf. Lemma 6.2 in [12]) An equality of two reduced forms

g0 tε1 g1 tε2 ⋅ ⋅ ⋅ tεn gn = h0 tδ1 h1 tδ2 ⋅ ⋅ ⋅ tδm hm

holds in the HNN-extension G∗t ,Φ∶N1→N2 if and only if n = m, ε i = δ i for all 1 ≤ i ≤ n,
and there exist 1 = α0 , α1 , . . . , αn , αn+1 = 1 ∈ N1 ∪ N2 such that for all 0 ≤ i ≤ n, we have
α i ∈ N1 if ε i = −1, α i ∈ N2 if ε i = 1, and

h i = α−1
i g i(tε i+1 α i+1 t−ε i+1).
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Proof of Theorem 6.15. Set N = Mon ⟨A, t ∣ R, at = ta⟩. There is an obvious mor-
phism j∶ N → H, given by j(a) = a for any a ∈ A, and j(t) = t.

Moreover, the image j(N) in H is equal to Mon ⟨M ∪ {t}⟩. To prove the result, it
is enough to show that j is injective as well. Let

g0 tg1 t ⋅ ⋅ ⋅ tgn = h0 th1 t ⋅ ⋅ ⋅ thm(7)

be an equality of elements in j(N) = Mon ⟨M ∪ {t}⟩, where M = Mon ⟨A⟩; that is,
g i , h j ∈ M for all 0 ≤ i ≤ n, and 0 ≤ j ≤ m.

Equality (7) holds in the group H as well, so we can use Lemma 6.16 for G ≅
Gp ⟨B ∣ Q⟩, N1 = N2 = ⟨a⟩ ≅ Z, H = G∗

t ,Φ∶⟨a⟩ id
�→⟨a⟩

, and we obtain

n = m, and there are1 = α0 , α1 , . . . , αn , αn+1 = 1 ∈ ⟨a⟩withh i = α−1
i g i(tα i+1 t−1).

Since tαt−1 = α for any α ∈ ⟨a⟩, we obtain h i = α−1
i g i α i+1 in H.

Claim Let α i+1 = as for some 0 ≤ i ≤ n. The following equalities hold in N:

h0 th1 t ⋅ ⋅ ⋅ th i = g0 tg1 t ⋅ ⋅ ⋅ tg i α i+1 , if s ≥ 0;
h0 th1 t ⋅ ⋅ ⋅ th i α−1

i+1 = g0 tg1 t ⋅ ⋅ ⋅ tg i , if s < 0.
∎

Proof of Claim. From the equality h i = α−1
i g i α i+1 in H, for i = 0, one obtains h0 =

g0α1. Multiplying by t on the right and using α1 t = tα1 (because α1 ∈ ⟨a⟩), we obtain
the desired conclusion for i = 0.

Assume the result holds for a given i < n. We want to show that it holds for i + 1 as
well. Set α i+2 = as .
(1) Assume first that h0 th1 t ⋅ ⋅ ⋅ th i = g0 tg1 t ⋅ ⋅ ⋅ tg i α i+1 in N. Multiplying by th i+1, and

using the commutation α i+1 t = tα i+1 we obtain

h0 th1 t ⋅ ⋅ ⋅ th i th i+1 = g0 tg1 t ⋅ ⋅ ⋅ tg i tα i+1h i+1(8)

(a) If s ≥ 0, one has α i+1h i+1 = g i+1α i+2 in N, which substituting in Equation (8),
gives the desired conclusion.

(b) If s < 0, one has α i+1h i+1α−1
i+2 = g i+1 in N. Multiplying Equation (8) by α−1

i+2 on
the right and substituting α i+1h i+1α−1

i+2 by g i+1, we obtain again the desired
equality for i + 1.

(2) Assume now that h0 th1 t ⋅ ⋅ ⋅ th i α−1
i+1 = g0 tg1 t ⋅ ⋅ ⋅ tg i in N. Multiplying by tg i+1, and

using the commutation α−1
i+1 t = tα−1

i+1, we obtain

h0 th1 t ⋅ ⋅ ⋅ th i tα−1
i+1 g i+1 = g0 tg1 t ⋅ ⋅ ⋅ tg i tg i+1(9)

(a) If s ≥ 0, one has h i+1 = α−1
i+1 g i+1α i+2 in N. Multiplying Equation (9) by α i+2 on

the right and substituting α−1
i+1 g i+1α i+2 by h i+1, we obtain again the desired

equality for i + 1.
(b) If s < 0, one has h i+1α−1

i+2 = α−1
i+1 g i+1 in N, which substituting in Equation (9),

gives the desired conclusion.
This shows the proof of our claim. ∎

Now the proof of the theorem is obtained by taking i = n in our claim.
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7 The word problem for positive special inverse monoids

It is an open question whether the word problem is decidable for all one-relation
inverse monoids Inv ⟨A ∣ w = 1⟩ where w is a reduced word. This problem is important
since if the answer is yes, then it would solve positively the longstanding open question
of whether all one-relation monoids have decidable word problem. In particular, this
question is open in the case when w ∈ A+ is a positive word. Interesting examples
of positive one-relator special inverse monoids with counterintuitive behavior have
been studied in the literature (e.g., the O’Hare monoid [39], and subsequent simpler
examples [46]). Given that the question for positive one-relator inverse monoids
remains open, it is natural to consider what happens in the case of two positive relators.
Further motivation for studying positive two relator inverse monoids comes from the
fact that for any pair of positive words u, v ∈ A+, there is an isomorphism

Inv ⟨A ∣ uv−1 = 1⟩ ≅ Inv ⟨A, t ∣ ut = 1, vt = 1⟩

which is a positive two-relator inverse monoid, and it follows from [22] that the
word problem for one-relation monoids reduces to the word problem for inverse
monoids of this form. So the word problem for one-relation monoids reduces to the
word problem for positive two-relator inverse monoids of the above form. While that
question remains open, in this section, we will show that in general, the word problem
for two-relator inverse monoids is not decidable.

Theorem 7.1 There is a positive two-relator inverse monoid Inv ⟨A ∣ u = 1, v = 1⟩, where
u, v ∈ A+, with an undecidable word problem. Furthermore, the example may be chosen
to be E-unitary.

Remark 7.2 Given that the word problem for two-relator groups is open, and also
for two-relator monoids is open, it is natural to ask whether the groups or monoids
defined by the presentations given by Theorem 7.1 have decidable word problem. It
is a consequence of the proof of Theorem 7.1 that the corresponding groups are in
fact isomorphic to one-relator and hence have decidable word problem by Magnus’
theorem. It is less obvious whether the corresponding two relator special monoids
have decidable word problem, but by Makanin [37, 44], they have groups of units that
are two-relator groups, and the word problem reduces to that of the group of units.
So those monoids are likely to have decidable word problem, else we would have an
example of a two-relator group with undecidable word problem (namely, the group of
units of the monoid), and the word problem for two-relator groups is a famous open
problem; cf. [27, Problem 9.29]

The following standard lemma will be helpful in proving the main result of this
section; for a proof see, for example, [14, Corollary 3.2].

Lemma 7.3 Let M = Inv ⟨A ∣ R⟩. If xaa−1 y ∈ (A ∪ A−1)∗ is right-invertible in M,
where a ∈ A ∪ A−1 and x , y ∈ (A ∪ A−1)∗, then xaa−1 y = x y in M.

The main result of this section, Theorem 7.1, will follow from the following general
result that shows how to encode the submonoid membership problem in any positive
one-relator group into a positive two-relator inverse monoid.
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Theorem 7.4 Let G be a positive one-relator group, and let Q be any finitely generated
submonoid of G. Then there exists a positive two-relator inverse monoid M = Inv ⟨A ∣ u =
1, v = 1⟩, with u, v ∈ A+, such the membership problem for Q in G reduces to the word
problem of M. Furthermore, M can be chosen to be E-unitary and have maximal group
image isomorphic to G ∗Z.

Proof Let M be the inverse monoid defined by the two-relator positive presentation

M = MG ,X = Inv ⟨B, x , t ∣ r = 1, tz1stz1s . . . stzk stzk s = 1⟩

given by Construction 4.2. We claim that if M has decidable word problem, then the
membership problem for Q within G is decidable. Furthermore we shall show that M
is E-unitary and has maximal group image isomorphic to G ∗Z.

To establish this, we will perform a series of Tietze transformations on the presen-
tation. This will come in two stages. First, we will apply a set of Tietze transformations
to prove that M ≅ T where

T = Inv ⟨B, x , t ∣ r = 1, (tz1 t−1)(tz−1
1 t−1) = 1, . . . , (tzk t−1)(tz−1

k t−1) = 1⟩.

Since Mon ⟨A ∣ q = 1⟩ is a group, it follows that every letter from a is invertible in
this monoid. From this, it follows that in the monoid Mon ⟨B, x , t ∣ r = 1⟩, where r is
the word defined above obtained from q by replacing a by tx everywhere it appears,
the element tx is invertible. Indeed, the map a ↦ tx and identity on every other letter
defines a homomorphism from Mon ⟨A ∣ q = 1⟩ to Mon ⟨B, x , t ∣ r = 1⟩ which must
map units to units, and since a is a unit in the former monoid, tx is a unit in the
latter monoid.

Since tx is a unit in Mon ⟨B, x , t ∣ r = 1⟩, it follows that tx is a unit in the inverse
monoid M, since M has r = 1 as a defining relation. The fact that tx is invertible in M
implies (tx)−1 = x−1 t−1 is also invertible in the inverse monoid M. The first letter of s
is x, so tz1x is right-invertible in M since it is a prefix of the second defining relator;
hence, the product tz1xx−1 t−1 of two right-invertible elements is right-invertible, and
hence, by Lemma 7.3, it is equal in M to tz1 t−1. We conclude that tz1 t−1 is right-
invertible in M.

Now w1w1 =w1w1 = 1 in Mon ⟨A ∣ q= 1⟩ implies z1z1 = z1z1 = 1 in Mon ⟨B, x , t ∣ r = 1⟩
since the map between these monoids given by a ↦ xt, and identity on all other gen-
erators, defines a homomorphism with z1 the image of w1 under this homomorphism,
and z1 is the image of w1. Since r = 1 in M, it then follows that z1z1 = z1z1 = 1 in M;
hence z−1

1 = z1 in M. Since tz1 t−1 is right-invertible in M, we have tz1 t−1 tz−1
1 t−1 = 1 in

M. Then since z−1
1 = z1 in M, and r = 1 in M, it follows that tz1 t−1rtz1 t−1r = 1 in M.

Since this word equals 1, it is right-invertible, and hence, by Lemma 7.3, it is equal in
M to the word obtained by canceling the t−1 with the first letters of r. It follows that

tz1stz1s = tz1 t−1rtz1 t−1r = 1

in M. Hence,

tz2stz2s . . . stzk stzk s = tz1stz1s . . . stzk stzk s = 1
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in M. It follows that tz2x is right-invertible since s begins with x, and we can repeat
the argument above to deduce that tz2 t−1 is right-invertible in M and

tz2stz2s = tz2 t−1rtz2 t−1r = 1

in M. Repeating this for all j, we can prove that tz j t−1 is right-invertible in M, and we
have

tz jstz js = tz j t−1rtz j t−1r = 1

in M. In particular, since tz j t−1 is right-invertible in M, this means that the defining
relations (tz j t−1)(tz−1

j t−1) = 1 from the presentation for T all hold in M for 1 ≤ j ≤ k.
Conversely, since z jz j = z jz j = 1 in Mon ⟨B, x , t ∣ r = 1⟩, and r = 1 in T, it follows

that z−1
j = z j in T for all 1 ≤ j ≤ k. It follows that

(tz1 t−1)(tz1 t−1) . . . (tzk t−1)(tzk t−1) = (tz1 t−1)(tz−1
1 t−1) . . . (tzk t−1)(tz−1

k t−1) = 1

in T which, since r = 1, implies that

(tz1 t−1)r(tz1 t−1)r . . . r(tzk t−1)r(tzk t−1)r = 1

holds in T. Since the word equals one and so right is invertible by Lemma 7.3, we can
reduce canceling the t−1 t in each subword t−1r and deduce that the following relation
holds in T:

tz1stz1s . . . stzk stzk s = 1.

We have proved the second defining relator of M holds in T, and the second defining
relator of T holds in M. Since the first defining relators are the same, and the generating
sets are the same, we conclude that M ≅ T . In fact, we have proved that these are
equivalent presentations in the sense that the identity map on B ∪ {x , t} induces an
isomorphism between them.

To complete the proof, we now prove a second sequence of Tietze transformations
to the presentation for T to obtain a presentation to which the main construction from
[14] can then be applied to finish the proof. To do this, we first we add a redundant
generator a and relation a = tx to obtain

Inv ⟨B, a, x , t ∣ r = 1, (tz1 t−1)(tz−1
1 t−1) = 1, . . . , (tzk t−1)(tz−1

k t−1) = 1, a = tx⟩.

Next, in every z i and in r, we can replace every occurrence of xt by the letter a
obtaining, since A = B ∪ {a}, the presentation

Inv ⟨A, x , t ∣ q = 1, (tw1 t−1)(tw−1
1 t−1) = 1, . . . , (twk t−1)(tw−1

k t−1) = 1, a = tx⟩.

By assumption, the relations aa−1 = 1 and a−1a = 1 are both consequences of q = 1;
hence, from a = tx, we can deduce that 1 = a−1a = a−1 tx in this inverse monoid.
Hence, we can deduce x = t−1a in this inverse monoid, giving the following presenta-
tion:

⟨A, x , t ∣ q = 1, (tw1 t−1)(tw−1
1 t−1) = 1, . . . , (twk t−1)(tw−1

k t−1) = 1, a = tx , x = t−1a⟩.

Now the relation (tw1 t−1)(tw−1
1 t−1) = 1 implies that tt−1 = 1 in this inverse monoid,

and so from x = t−1a, we can deduce the relation tx = tt−1a = a. Since this relation is
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a consequence of the others, we can now remove it obtaining the presentation

Inv ⟨A, x , t ∣ q = 1, (tw1 t−1)(tw−1
1 t−1) = 1, . . . , (twk t−1)(tw−1

k t−1) = 1, x = t−1a⟩

for the same monoid. Now x is a redundant generator which can be removed. This has
no impact on the other relations since neither x nor x−1 appears in any of those words.
Hence, we arrive at the following presentation

Inv ⟨A, t ∣ q = 1, (tw1 t−1)(tw−1
1 t−1) = 1, . . . , (twk t−1)(tw−1

k t−1) = 1⟩

for T. Finally, by assumption, the relations cc−1 = 1 and c−1c = 1 for c ∈ A are all
consequences of q = 1, so we can add them to obtain

⟨A, t ∣ q = 1, cc−1 = 1, c−1c = 1 (c ∈ A), (tw1 t−1)(tw−1
1 t−1) = 1,

. . . , (twk t−1)(tw−1
k t−1) = 1⟩.

Now it follows from [14, Theorem 3.8] that M ≅ T is an E-unitary inverse monoid,
and if M ≅ T has decidable word problem, then the membership problem for Q =
Mon ⟨w1 , . . . , wk⟩ ≤ G within G is decidable. The fact that [14, Theorem 3.8] applies
to the presentation above follows from [14, Lemma 3.3] (see line three of the proof of
Theorem 3.8 in [14]). The maximal group image of T is isomorphic to

⟨A, t ∣ q = 1, cc−1 = 1, c−1c = 1 (c ∈ A), (tw1 t−1)(tw−1
1 t−1) = 1,

. . . , (twk t−1)(tw−1
k t−1) = 1⟩,

which is isomorphic to Gp ⟨A ∣ q = 1⟩ ∗ FG(t) ≅ G ∗Z, completing the proof of the
theorem. ∎

By combining this general theorem with the earlier results from this paper, we can
now prove the main result of this section.

Proof of Thoerem 7.1. Let G be a positive one-relator group and let Q be a
finitely generated submonoid in which the membership problem is undecidable; such
examples exist by Theorem 3.8. Then by Theorem 7.4, there is a E-unitary positive two-
relator inverse monoid M = Inv ⟨A ∣ u = 1, v = 1⟩, with u, v ∈ A+, such that decidability
of the word problem for M would imply decidability of the membership problem for Q
in G. Hence, M is an E-unitary positive two-relator inverse monoid with undecidable
word problem.

As a second application, we now show how Theorem 7.4 can be used to relate
the membership problem in positive one-relator groups to the prefix membership
problem in positive two-relator groups. It remains an open question whether there is a
one-relator group presentation with cyclically reduced relator and undecidable prefix
membership problem [7, Question 13.10]. In particular, it is not known whether there
are positive one-relator groups with undecidable prefix membership problem. Using
Theorem 7.1 and its proof, we will show that if one allows two relators, then examples
with positive relators do exist. The following result is also the key ingredient used in
the proof of Theorem 4.1 above that shows there are quasi-positive one-relator groups
with undecidable prefix membership problem.
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Theorem 7.5 Let G be a positive one-relator group, and let Q be any finitely generated
submonoid of G. Then there is a positive two-relator group H = Gp ⟨A ∣ u = 1, v = 1⟩,
where u, v ∈ A+, such that the membership problem for Q in G reduces to the prefix
membership problem for H. Furthermore, the group H may be chosen such that the
identity map on A induces an isomorphism Gp ⟨A ∣ u = 1, v = 1⟩ → Gp ⟨A ∣ u = 1⟩, and
such that H ≅ G ∗Z.

Proof Let K be the group defined by the two-relator positive presentation

K = HG ,X = Gp ⟨B, x , t ∣ r = 1, tz1stz1s . . . stzk stzk s = 1⟩

given by Construction 4.2. We claim if the prefix membership problem for the
positive two-relator group K is decidable, then the membership problem for Q in G is
decidable. To see this, note that it is shown in the proof of Theorem 7.4 that

M = Inv ⟨B, x , t ∣ r = 1, tz1stz1s . . . stzk stzk s = 1⟩

is E-unitary, and if M has decidable word problem, then the membership problem for
Q in G is decidable. It is also shown there that the inverse monoid M has maximal
group image isomorphic to G ∗Z which is a one-relator group and thus has decidable
word problem by Magnus’ Theorem. It then follows from [22, Theorem 3.3] that M has
decidable word problem. But in Theorem 7.4, it is proved that decidability of the word
problem for M implies decidability of the membership problem for Q in G; hence, the
membership problem for Q in G is decidable, as claimed.

In the proof of Theorem 7.4, it is shown that the identity map on B ∪ {x , t} induces
an isomorphism between the inverse monoids

M = Inv ⟨B, x , t ∣ r = 1, tz1stz1s . . . stzk stzk s = 1⟩

and

T = Inv ⟨B, x , t ∣ r = 1, (tz1 t−1)(tz−1
1 t−1) = 1, . . . , (tzk t−1)(tz−1

k t−1) = 1⟩.

It follows that the identity map induces an isomorphism between the maximal group
images of these inverse monoids

Gp ⟨B, x , t ∣ r = 1, tz1stz1s . . . stzk stzk s = 1⟩ → Gp ⟨B, x , t ∣ r = 1⟩.

(In general, if the identity map induces an isomorphism Inv ⟨A ∣ R⟩ → Inv ⟨A ∣ S⟩, then
for any additional set of relations T, the identity map will also induce an isomorphism
between Inv ⟨A ∣ R ∪ T⟩ → Inv ⟨A ∣ S ∪ T⟩ since S and R are consequence of each other,
and hence, the same is true of S ∪ T and R ∪ T . And so in particular, it is true when
T is the set of relations aa−1 = 1 = aa−1 added to get the maximal group image.) Now
set u ≡ r and v ≡ tz1stz1s . . . stzk stzk s and Y = B ∪ {x , t}. Then the identity map on Y
induces isomorphisms

Gp ⟨Y ∣ u = 1, v = 1⟩ → Gp ⟨Y ∣ u = 1⟩.

It follows from Theorem 7.4 that the maximal group image of M is isomorphic to G ∗
Z. But the group Gp ⟨Y ∣ vuv−1 = 1⟩ we have constructed is isomorphic to the maximal
group image Gp ⟨Y ∣ u = 1, v = 1⟩ of M, so this completes the proof of the theorem. ∎
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Corollary 7.6 There is a positive two-relator group Gp ⟨A ∣ u = 1, v = 1⟩, where u, v ∈
A+, with an undecidable prefix membership problem.

Proof This follows from Theorem 7.5 together with Theorem 3.8 that shows there
are positive one-relator groups containing finitely generated submonoids in which
membership is undecidable. ∎
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