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This DNS study considers transition to turbulence in plane Couette flow (pCf) with a rough
stationary wall and a smooth moving wall. The roughness elements are square ribs of
height k = 0.2h (where h is the half-channel height). Two different pitch separations, λ =
2k and 10k, are considered, i.e. d-type and k-type roughness, respectively. The transition
in both rough pCf cases takes place through a stage of alternate laminar–turbulent bands
aligned in an oblique fashion. However, roughness causes a shift in the transitional
Reynolds number (Re) range. In the k-type roughness, stable bands are observed in the
range Re ∈ [300, 325], which is a downwards shift from the transitional Re range for the
smooth pCf (Re ∈ [325, 400]). The d-type roughness, on the other hand, surprisingly shifts
the transitional Re range upwards to Re ∈ [350, 425]. This peculiar behaviour is associated
with the ability of the ribs to shed and regenerate vorticity. Large-scale components
extracted using a filtering process relate to the transition bands and flow parallel to
the oblique laminar–turbulent boundaries. Counter-rotating vortices are present in the
turbulent regions of the flow field, which exist in tandem with the high- and low-velocity
streaks. Another interesting observation is the secondary Reynolds shear stresses, −v′u′
and −w′v′, which are non-zero in the transitional regime, in contrast to the turbulent
regime where they are negligible.

Key words: turbulence simulation, turbulent transition, turbulent boundary layers

1. Introduction

In fluid mechanics, plane Couette flow (pCf) demonstrates the flow of a viscous fluid
between two infinite parallel plates in relative motion. This shear-driven flow has attracted
attention from researchers for many decades. It is distinct from other wall-bounded flows
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in the sense that the total shear stress in pCf is constant across the channel. As in
other canonical flows, turbulence brings complexity to pCf. Therefore, specially designed
experiments and direct numerical simulations (DNS) are required to study pCf when it is
in the turbulent regime. El Telbany & Reynolds (1980) conducted experiments to study
the velocity distribution in fully turbulent pCf and formulated empirical descriptions for
velocities in various sublayers. In a follow-up study (El Telbany & Reynolds 1981), they
also developed an empirical explanation for stresses near the walls and in the channel core.
Experiments to study the various aspects of pCf have an inherent challenge of capturing
all higher-order statistics due to complications arising from a moving boundary (Aydin &
Leutheusser 1979). DNS do not have such limitations and a study done by Lee & Kim
(1991) explored the flow structures in fully turbulent pCf and compared their results with
those of the plane Poiseuille flow. The major difference that they have noticed in pCf is
the existence of large-scale high- and low-velocity structures elongated in the streamwise
direction, which fill the entire channel in the wall-normal direction. The secondary flow
that they reported consists of large counter-rotating vortices or roll cells. Later researchers
such as Kristoffersen, Bech & Andersson (1993) and Bech et al. (1995) also reported
roll cells but the mechanism which gave rise to these vortices was not clear. In the
investigation by Hamilton, Kim & Waleffe (1995) the mechanism of formation of roll
cells and their role in sustaining the elongated streaks was elaborated. They proposed the
concept of a regeneration cycle, which comprises three stages: formation of elongated
streaks from the streamwise vorticity associated with roll cells, breakdown of streaks to
generate three-dimensional vorticity and regeneration of streamwise vorticity. It appears
that this cycle sustains the streaks and counter-rotating vortices which are salient to the
fully turbulent regime in pCf.

Only a few decades before, research was successful in discovering the flow features
that accompany transition in pCf. The earliest transition studies in pCf were reported by
Aydin & Leutheusser (1991), Tillmark & Alfredsson (1992), Daviaud, Hegseth & Bergé
(1992) and Malerud, Målo/y & Goldburg (1995). Prigent et al. (2003) were one of the
first researchers to study detailed flow features in transitional pCf. They discovered that
the transition takes place through a stage of oblique laminar–turbulent bands, which are
periodic in the streamwise and spanwise directions. These bands exist within the range of
Re ∈ [325, 415]. Thus, the flow is fully turbulent above the upper threshold (Ret ≈ 415)
and laminar below the lower threshold (Reg ≈ 325). Their experiments were performed
in a large-aspect ratio set-up owing to the large wavelengths of the bands. Performing
a DNS in a large domain is computationally challenging. Barkley & Tuckerman (2005)
were the first to capture transition bands using DNS. They used a tilted domain in place
of a large-aspect-ratio domain and thereby save the computational cost. In another study
(Barkley & Tuckerman 2007), they focused on the mean flow aspect of transitional pCf.
One main highlight from the aforementioned study is that the mean streamwise velocity
in the laminar zones in the transitional regime is not linear, which is why research
community refer to these regions in the pattern as quasi-laminar. Another significant
outcome from their study is a model which connects the wall-normal profiles of mean
flow and the Reynolds stresses. The appearance of laminar–turbulent bands does not
always require a fully resolved DNS simulation. Under-resolved simulations can also
capture the transition pattern but with a reduction in the transitional Reynolds number
range (Manneville 2011; Manneville & Rolland 2011). Apart from the difference in critical
Reynolds number, all other aspects of the bands remain the same. As mentioned earlier,
alternating laminar–turbulent bands demand the computational domain to be very large.
The question of how large a domain is needed is of interest. Philip & Manneville (2011)
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suggested an answer to this question by simulating transitional pCf in domains of different
diagonal lengths (L =

√
L2

x + L2
y , where Lx and Ly are the domain dimensions in the

streamwise and spanwise directions, respectively). They found that the spatiotemporal
dynamics associated with pattern formation require a domain with a diagonal length
of at least 87.3h as domains of size less than that yield an abrupt transition from the
turbulent regime to the laminar regime without an intermediate pattern stage. Duguet,
Schlatter & Henningson (2010) performed a DNS in a large-aspect-ratio system to capture
the competition between bands with different angles, which is otherwise impossible to
capture in short domains. They also found that a pattern angle of 40◦ is more probable
to arise during band formation as it requires the least initial energy to carry on. Duguet
& Schlatter (2013) studied how oblique laminar–turbulent bands emerge from turbulent
spots. According to them, the large-scale flow is responsible for advecting the streaks
inside the turbulent spots in an oblique fashion, giving rise to oblique laminar–turbulent
bands.

It is difficult to find perfectly smooth surfaces in practical engineering applications.
Therefore, there is a need to conduct experiments and simulations of fluid flow under the
influence of roughness. One of the earlier works that addressed the effect of roughness
was by Nikuradse (1933). Nikuradse used a pipe with an inner wall covered with sand
grains of varying roughness and measured the pressure drop and bulk velocity to calculate
the friction factor. Roughness increases friction and leads to a higher pressure drop.
When it comes to turbulent pCf, only very few studies have considered the effect of
roughness. In their pCf experiments, Aydin & Leutheusser (1991) used a staggered array
of spherical plastic beads as roughness elements on both the walls. They used a towing
tank set-up for the purpose. Compared with their smooth case, the hydrodynamically
rough case (surprisingly) showed lower values of streamwise velocity fluctuations.
One of the first DNS studies in rough turbulent Couette flows was by Javanappa &
Narasimhamurthy (2020, 2021, 2022). They placed square-shaped two-dimensional (2-D)
roughness elements on the stationary wall, and the moving wall was smooth. Their study
reveals the presence of counter-rotating secondary vortices aligned in the streamwise
direction in both the smooth and the rough cases. In the rough case, the streaks are distorted
and reduced to fine-scale structures near the roughness elements. Even fewer studies have
considered the effect of roughness on the transition to turbulence in pCf. Ishida et al.
(2017) studied the influence of roughness on transitional pCf. They, however, did not use
actual roughness elements, but a roughness model proposed by Busse & Sandham (2012)
was used. In the case of one rough wall, a new regime involving transverse turbulent
bands was found for all roughness heights greater than 30 % of half-channel height.
Another observation is a downwards shift in the transitional range due to roughness.
Tsukahara et al. (2018) conducted a follow-up study to confirm the existence of transverse
turbulent bands. They quadrupled the domain size and studied its influence. Even though
the bandwidth changes, the transverse turbulent bands remain robust to domain change.
As opposed to oblique turbulent bands, transverse turbulent bands are wider and do not
exhibit significant band parallel flow. Another difference is the presence of very intense
streaks at the laminar–turbulent interfaces of transverse turbulent bands.

Most experimental and numerical studies dealt with the transition to turbulence in pCf
considered smooth walls. Only a few works in the literature study the effect of roughness
on transition in pCf, and none of them has used real roughness elements. The present
study is, thereby, novel as it intends to study transition in pCf in the presence of real
roughness elements. Particular attention is given to studying the various aspects such
as spatiotemporal intermittency, large-scale flow, mean secondary flow and Reynolds
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Figure 1. Schematic of rough Couette flow with roughness elements on the stationary wall. Within a pitch,
I and II indicate the midcavity and midrib locations, respectively.

stresses, in rough pCf. We also investigate the effect of pitch separation of 2-D roughness
elements on the transitional range.

2. Methodology

A schematic of rough pCf is shown in figure 1. Two parallel plates are separated by a
wall-normal (z) distance of 2h. Here Lx and Ly are the dimensions of the computational
domain in the streamwise (x) and spanwise ( y) directions, respectively. The top plate
moves at a constant velocity Uw in the x direction, and the bottom plate is stationary.
The stationary wall is mounted with 2-D roughness elements. The important parameters
in rough Couette flows are the roughness height (k), the width (w) and the streamwise pitch
separation (λ). We use roughness elements of height k = 0.2h with a square cross-section
(k = w) and vary the pitch separation to study its influence on transition to turbulence.
Perry, Schofield & Joubert (1969) classified surface roughness as d-type and k-type
roughness. In the d-type roughness, the elements are closely spaced, forming stable
recirculations in the narrow cavities. The outer flow is relatively undisturbed as vortex
shedding above the roughness crest is negligible. In the k-type roughness, the cavities
are wide; therefore, the ribs are subjected to the outer flow. Eddies of a length scale
proportional to k are shed above the roughness crest. According to Jiménez (2004), the
roughness behaviour transitions from d-type to k-type when the cavities become wider
than three to four times the roughness height k. The relative importance of frictional
drag compared with pressure drag varies with the type of roughness. In the d-type
roughness, frictional drag dominates, whereas in the k-type roughness, pressure drag is
more significant (Leonardi, Orlandi & Antonia 2007). In the present study, we have the
d-type (λ = 2k) and the k-type (λ = 10k) rough cases. Transition to turbulence in the
smooth pCf is also simulated for comparison with the rough pCf.

The fluid that occupies the gap between the parallel plates is Newtonian, and the
flow is considered incompressible. The three-dimensional incompressible Navier Stokes
equations that govern the fluid flow are solved using the in-house finite-volume code,
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MGLET (Manhart 2004):

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂x2
j

, (2.2)

where u is the velocity, the subscripts i and j are indices and p is the pressure. The
Reynolds number (Re = Uwh/2ν) is defined based on the half-channel height (h) and half
the velocity difference between the plates (Uw/2). The code uses a staggered Cartesian
grid arrangement, where the pressure is stored at the cell centres, and velocities are
stored at the cell faces. It employs a central difference scheme for spatial discretisation.
Adams–Bashforth scheme (second-order accurate) is used to perform time integration.
A multi-grid method is used to accelerate the Poisson equation solution to get the pressure.
Streamwise and spanwise directions of the domain have periodic boundary conditions, and
a no-slip boundary condition is imposed on the plates and the rib surfaces.

A computational domain of size Lx × Ly × Lz = 136h × 68h × 2h is used in the present
study. It is large enough to accommodate a single wavelength of the laminar–turbulent
bands and is of the same size as Ishida et al. (2017) (see table 1). The number of cells in the
x, y and z directions (Nx, Ny and Nz) is 4080, 288 and 108, respectively, and is finer than that
used in Ishida et al. (2017) and Tsukahara et al. (2018). The grid in the x and y directions is
uniform, whereas the grid in the z direction is non-uniform, with a minimum at the plates
and the rib surfaces and a maximum at the channel centre. The meshing is done in such
a way that all the vertical faces of the ribs coincide with the cell faces. To get an accurate
assessment of the flow near a rib, we have 6 cells along a rib in the x direction and 20 cells
within a rib in the z direction. The grid resolutions for the rough cases are given in table 2.
We have used the same domain for the smooth case, but the mesh size is different. The grid
resolutions in the x and z directions are reduced as the ribs are not present in the smooth
pCf (see table 2). The Grötzbach criterion states that the grid size � = (�x�y�z)1/3

should be less than πη, where η is the Kolmogorov length scale (Grötzbach 1983). The
Kolmogorov length scale is defined in theory as η = (ν3/ε)1/4, where ν is the kinematic
viscosity of the fluid, and ε is the dissipation rate of turbulent kinetic energy, which is
calculated using the expression ε = ν(∂u′

i/∂xj)(∂u′
i/∂xj). The grids used in all the cases

in the present study satisfy the Grötzbach criterion (see figure 2).
An adiabatic protocol (Ishida et al. 2017; Gokul & Narasimhamurthy 2022) is a

computational procedure, where the Reynolds number is gradually reduced in steps. The
term adiabatic protocol comes from the adiabatic process in quantum mechanics, where
it is used as synonym for a gradual process. It should not be mistaken for the adiabatic
process in thermodynamics, as it has a different meaning. This computational technique is
used in the present study to achieve the reverse transition. Starting from a turbulent state at
Re = 500, the Reynolds number is reduced in steps of 25 until the flow becomes laminar.
Statistical stationarity has been achieved at every intermediate Reynolds number. The time
step taken in the simulations (�t = 0.01) is much smaller than the Kolmogorov time scale
(Kolmogorov 1941) and satisfies the Courant–Friedrichs–Lewy (CFL) stability criterion.
After achieving stationarity at a particular Reynolds number, the simulation is run further
to collect samples for getting the averaged quantities. The mean values are obtained by
averaging over 2500 samples separated by 0.2h/Uw. The wall-normal variation of mean
quantities for the rough pCf cases will be presented at the midcavity (I) and midrib (II)
locations, obtained by averaging across time (T), y direction and the pitches (N) in the x

1000 A40-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.844


S. Gokul and V.D. Narasimhamurthy

R
ef

er
en

ce
C

as
e

k
λ

L x
×

L y
×

L z
N

x
×

N
y
×

N
z

B
ar

kl
ey

&
Tu

ck
er

m
an

(2
00

5)
Sm

oo
th

—
—

10
h

×
12

0h
×

2h
(t

ilt
ed

do
m

ai
n)

61
×

10
24

×
31

B
ar

kl
ey

&
Tu

ck
er

m
an

(2
00

7)
Sm

oo
th

—
—

10
h

×
40

h
×

2h
(t

ilt
ed

do
m

ai
n)

81
×

51
2

×
41

D
ug

ue
te

ta
l.

(2
01

0)
Sm

oo
th

—
—

80
0h

×
38

6h
×

2h
20

48
×

10
24

×
33

Ph
ili

p
&

M
an

ne
vi

lle
(2

01
1)

Sm
oo

th
—

—
5π

h
×

2π
h

×
2h

64
×

32
×

33
24

h
×

9h
×

2h
94

×
32

×
33

32
h

×
15

h
×

2h
12

8
×

64
×

33
60

h
×

26
h

×
2h

19
2

×
96

×
33

70
h

×
30

h
×

2h
28

2
×

12
8

×
33

80
h

×
35

h
×

2h
38

4
×

19
2

×
33

90
h

×
40

h
×

2h
38

4
×

19
2

×
33

10
0h

×
45

h
×

2h
38

4
×

19
2

×
33

12
8h

×
64

h
×

2h
51

2
×

25
6

×
33

M
an

ne
vi

lle
(2

01
1)

Sm
oo

th
—

—
43

2h
×

25
6h

×
2h

43
2

×
76

8
×

15
D

ug
ue

t&
Sc

hl
at

te
r(

20
13

)
Sm

oo
th

—
—

50
0h

×
50

0h
×

2h
15

36
×

20
48

×
33

Is
hi

da
et

al
.(

20
17

)
R

ou
gh

0.
05

h–
0.

5h
—

13
6h

×
68

h
×

2h
51

2
×

25
6

×
96

Ts
uk

ah
ar

a
et

al
.(

20
18

)
R

ou
gh

0.
15

h–
0.

5h
—

27
2h

×
13

6h
×

2h
10

24
×

51
2

×
96

10
88

h
×

68
h

×
2h

40
96

×
25

6
×

96
Pr

es
en

ts
tu

dy
Sm

oo
th

—
—

13
6h

×
68

h
×

2h
57

6
×

28
8

×
96

Pr
es

en
ts

tu
dy

R
ou

gh
(d

-t
yp

e)
0.

2h
2k

13
6h

×
68

h
×

2h
40

80
×

28
8

×
10

8
Pr

es
en

ts
tu

dy
R

ou
gh

(k
-t

yp
e)

0.
2h

10
k

13
6h

×
68

h
×

2h
40

80
×

28
8

×
10

8

Ta
bl

e
1.

D
et

ai
ls

of
th

e
m

aj
or

D
N

S
st

ud
ie

s
in

tr
an

si
tio

na
lp

C
f.

H
er

e
k

an
d
λ

ar
e

th
e

ro
ug

hn
es

s
he

ig
ht

an
d

pi
tc

h,
re

sp
ec

tiv
el

y,
L x

,L
y

an
d

L z
re

fe
rt

o
th

e
do

m
ai

n
di

m
en

si
on

s
in

x,
y

an
d

z,
re

sp
ec

tiv
el

y
an

d
N

x,
N

y
an

d
N

z
is

th
e

co
rr

es
po

nd
in

g
nu

m
be

ro
fc

el
ls

or
gr

id
po

in
ts

or
sp

ec
tr

al
m

od
es

.

1000 A40-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.844


Transition to turbulence in rough plane Couette flow

Case Lx × Ly × Lz Nx × Ny × Nz �x+ �y+ �z+
min �z+

max

Smooth 136h × 68h × 2h 576 × 288 × 96 5.33–8.72 5.33–8.72 0.23–0.37 0.83–1.36
d-type 136h × 68h × 2h 4080 × 288 × 108 0.81–1.25 5.75–8.88 0.24–0.38 0.87–1.34
k-type 136h × 68h × 2h 4080 × 288 × 108 0.75–1.42 5.30–10.07 0.23–0.43 0.80–1.52

Table 2. Details of the simulations carried out in the present study. The grid resolutions (�x+, �y+ and
�z+) are based on the global friction Reynolds number Reτ of each case.
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Figure 2. Contours of Δ/πη at Re = 500 shown in an x–z plane at y = 34h for (a) smooth pCf, (b) d-type
roughness and (c) k-type roughness.

direction:

f̄ = 1
N

1
Ly

1
T

N∑
1

∫ Ly

0

∫ T

0
f dt dy. (2.3)

The averaging across the pitches in the x direction is due to the periodic nature of the mean
flow (Ashrafian, Andersson & Manhart 2004; Nagano, Hattori & Houra 2004; Javanappa
& Narasimhamurthy 2021). However, the mean quantities in the smooth pCf are averaged
across time (T), y and x directions:

f̄ = 1
Lx

1
Ly

1
T

∫ Lx

0

∫ Ly

0

∫ T

0
f dt dy dx. (2.4)

Before embarking on the current problem, a smooth pCf case at Re = 1300 is simulated
to validate the code. The computational domain used for the validation case is of size
Lx × Ly × Lz = 50.24h × 16.8h × 2h. The corresponding grid used is Nx × Ny × Nz =
640 × 320 × 192. The grid resolutions are uniform in x and y directions (�x+ = 6.64
and �y+ = 4.44), whereas the grid resolution in z direction is non-uniform and varies
from �z+ = 0.2 at the walls to �z+ = 2.3 at the channel centre. The results are plotted
along with those from Bech et al. (1995), Holstad, Andersson & Pettersen (2010) and Hu,
Morfey & Sandham (2003) (see figure 3). The validation results are in good agreement.
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Figure 3. Variation of (a) mean streamwise velocity normalised by Uw and (b) root-mean-square velocities
normalised by friction velocity uτ at Re = 1300.

3. Results and discussion

We first simulate the base flow at Re = 500 before starting the adiabatic procedure.
The flow is allowed to come to a stationary state before the samples are collected
to calculate the averaged quantities. The turbulent flow statistics at Re = 500 for the
rough pCf cases are presented in Appendix A for the reader’s reference. The Reynolds
number is gradually reduced in steps of 25 from Re = 500 until the flow reaches a
laminar state. The results presented at every intermediate Reynolds number are obtained
after achieving a statistical stationary state at the intermediate stage. The contours of
streamwise velocity u in the midgap (z = h) for the d-type roughness at various Reynolds
numbers are shown in figure 4. The flow is turbulent for Re ≥ 475. The turbulent flow
is characterised by spanwise alternating high- and low-velocity streaks stretching out in
the streamwise direction. When the Reynolds number is reduced to 450, a few laminar
spots appear in the turbulent surroundings. At this point, the laminar–turbulent coexistence
has not developed into the laminar–turbulent bands. Kashyap, Duguet & Dauchot (2022)
have provided evidence that the pattern stage emerges from the spatial modulation of
featureless turbulence caused by linear instabilities. Without disregarding the effect of
such linear interactions, Gomé, Tuckerman & Barkley (2023b) established a more complex
mechanism involving the laminar spots. They found that a reduction in Re yields laminar
spots that are more probable and long-lasting, which eventually self-organise and form
regular laminar–turbulent bands. On reducing the Reynolds number to Re = 425, oblique
laminar–turbulent bands become visible. There is an initial transient during which pattern
fronts of different angles compete, and stable bands eventually emerge in the flow field
(Prigent et al. 2003). These stable patterns are observed for all Reynolds numbers in the
range Re ∈ [350, 425]. In the present study, all observations in the transitional range are
made after the emergence of stable laminar–turbulent bands. In the presence of transient
turbulence, a shorter observation time can adversely affect the results (Bottin & Chaté
1998; Hof et al. 2006; Avila et al. 2011; Avila, Barkley & Hof 2023). Therefore, statistical
stationarity has been achieved at all Re considered in this study. The width of the turbulent
bands shrink with a reduction in Reynolds number, which indicates flow shifting gradually
towards the laminar regime. On reducing the Reynolds number to Re = 325, the turbulent
bands shrink further and finally disappear from the flow field, resulting in a laminar flow.
In the k-type roughness, the flow remains turbulent for Reynolds numbers up to Re = 375
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Figure 4. Streamwise velocity (u) at the midgap location (z = h) for d-type roughness at (a) Re = 500,
(b) Re = 450, (c) Re = 425, (d) Re = 400, (e) Re = 375 and ( f ) Re = 350.

(see figure 5). A further reduction to Re = 350 yields a few laminar spots in the turbulent
environment. The laminar–turbulent coexistence takes the form of laminar–turbulent
bands at Re = 325, and they are sustained in the flow up to Re = 300. Therefore, the
bands are stable for all Reynolds numbers in the range Re ∈ [300, 325]. Similar to the
d-type roughness, there is a reduction in the width of turbulent bands when the Reynolds
number is decreased. The flow finally laminarises at Re = 275.

The smooth pCf is known to have stable bands for Reynolds numbers in the range
Re ∈ [325, 400] (Ishida et al. 2017; Gokul & Narasimhamurthy 2022). Compared with
the smooth pCf, the transitional range for the k-type roughness has shifted downwards
(Re ∈ [300, 325]), and the corresponding range for the d-type roughness has moved
upwards (Re ∈ [350, 425]). We need to understand why the roughness causes a shift in
the transitional range. The streamwise vorticity plays a crucial role in the formation and
sustenance of the elongated streaks that constitute the turbulent bands. The regeneration
cycle proposed by Hamilton et al. (1995) thoroughly explains this relationship in the
smooth pCf. The streamwise vorticity decays as it produces the elongated streaks
through a redistribution of momentum (lift-up effect). The streaks thus formed develop a
waviness and eventually break down, releasing vorticity in all three directions, which also
regenerates the streamwise vorticity. The reenergised streamwise vorticity will again form
elongated streaks, thus completing a cycle. However, the roughness elements interfere with
the near-wall flow dynamics and modify the regeneration cycle, most likely weakening
it (Jiménez 2004). Therefore, the roughness should offer an additional mechanism for
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Figure 5. Streamwise velocity (u) at the midgap location (z = h) for k-type roughness at (a) Re = 500,

(b) Re = 350, (c) Re = 325 and (d) Re = 300.

regenerating the streamwise vorticity. Figure 6 shows the streamwise vorticity in an x–z
plane at the midspan location for the current rough pCf cases within the transitional
regime. In the k-type roughness, vortices are generated within the cavities and are
eventually shed from the roughness elements into the outer flow. On the other hand,
the d-type roughness does not exhibit the same type of vortex shedding as the k-type
roughness. The stable vortices in the cavities of the d-type roughness (to be discussed in
conjunction with figure 13(a), presented later) act as a deterrent to vortex shedding (Perry
et al. 1969; Coleman et al. 2007). However, not all turbulent events near the cavities can
be ruled out, as there can be occasional ejections (Townsend 1976). Jiménez (2004) and
Leonardi et al. (2004) also confirmed the occurrence of ejections from the cavities of
the d-type roughness. However, the intensity of these events is lower than that observed
in the k-type roughness (Leonardi et al. 2007). Even if we account for these events in
the d-type roughness, given their sporadic and weak nature, their contribution to vorticity
regeneration is likely insignificant. In contrast, the ribs in the k-type roughness act as
vortex generators and function as an alternate source for streamwise vorticity regeneration.
Therefore, the k-type roughness can sustain stable laminar–turbulent bands at lower
Reynolds numbers than the d-type roughness and the smooth pCf. However, the d-type
roughness causing an upwards shift in the transitional range compared with the smooth
pCf can come across as a surprise. Choi & Fujisawa (1993) studied the development of
a zero-pressure-gradient turbulent boundary layer over a flat plate with a square cavity
similar to that in a d-type roughness. They found that the stable recirculation zone in
the cavity alters the near-wall flow dynamics, which reduces the incidence of turbulent
events compared with a smooth boundary layer. Therefore, exploring the vortical structures
within the near-wall region can provide further insights. Figures 7(a) and 7(b) shows
the isosurfaces of −λ2 for the rough pCf cases within the transitional regime, providing
a visualisation of vortical structures, as defined by Jeong & Hussain (1995) [vortical
structures corresponding to a smooth pCf are also shown in figure 7(c) for comparison].
Here λ2 is defined as the second largest eigenvalue of the tensor S2 + 𝞨2, where S and
𝞨 are the symmetric and antisymmetric parts of the velocity gradient tensor, respectively.
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Figure 6. Instantaneous streamwise vorticity (ωx) in an x–z plane at y = 34h for (a) d-type roughness
(Re = 350) and (b) k-type roughness (Re = 300). Vorticity values are normalised by Uw

2/ν.

A closer examination of the near-wall structures shows a clear distinction between the
rough pCf cases. Also note the striking similarity between the k-type roughness and
the smooth pCf. In the d-type roughness, the near-wall region is dominated by vortical
structures oriented in the spanwise direction. Compared with the k-type roughness and the
smooth pCf, the streamwise-oriented vortical structures in the d-type roughness are away
from the stationary wall, resulting in a relatively stable region close to the wall. Luchini,
Manzo & Pozzi (1991) have attributed the drag-reducing nature of riblets to a similar shift
of the turbulent structures away from the wall. This could lead to reduced disturbances and
increased stability near the stationary wall, which can negatively affect the formation and
sustenance of streaks. Consequently, the d-type roughness cannot sustain the elongated
streaks that constitute the turbulent bands as effectively as the smooth pCf. As a result,
the flow in the d-type roughness laminarises at a higher Reynolds number than the smooth
pCf.

The pattern of laminar–turbulent bands is periodic in the streamwise and spanwise
directions. It has large wavelengths in both these directions. The experiments by Prigent
et al. (2003) suggest that these wavelengths are sensitive to changes in Reynolds number.
However, the pattern wavelengths obtained for the rough pCf cases in the present study
remain unchanged with the Reynolds number. We have also observed this phenomenon in
our previous study on the smooth pCf (Gokul & Narasimhamurthy 2022). The wavelengths
λx and λy are always equal to the domain dimensions Lx and Ly, respectively, due to the
influence of the periodic boundary condition. This phenomenon is inevitable in numerical
simulations not performed in large-aspect-ratio systems. The transition study by Ishida
et al. (2017), who used a similar domain as ours, also observed the same. Tsukahara,
Kawaguchi & Kawamura (2009) used a much larger domain and found their wavelengths
remain unchanged with Reynolds number due to the influence of periodic boundary
conditions. As the pattern wavelengths for rough pCf cases in the present study are equal
to the corresponding domain dimensions, the pattern will consistently align with one of
the domain diagonals. Therefore, the angle made by the pattern (with x direction) in the
d-type and the k-type roughness is approximately equal to 27◦. The pattern angle in the
smooth pCf is the same as that of the rough pCf cases.

Large-scale flow is key in understanding the obliqueness of the laminar–turbulent
bands. It is responsible for advecting the streaks in the turbulent spots in an oblique
fashion, which later develop to form oblique bands (Duguet & Schlatter 2013). There is a
pronounced scale separation between the turbulent fluctuations that constitute the streaks
and the large-scale flow associated with the laminar–turbulent bands (Gomé, Tuckerman &
Barkley 2023a). A low-pass filter can extract the large scales linked to the pattern (Ishida,
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Figure 7. Isosurface of λ2 = −1 × 10−8 coloured with the variation in z/h for (a) d-type roughness (Re =
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4/ν2. Top panels show enlarged views of a small region (shown by arrows).

Duguet & Tsukahara 2017; Tsukahara et al. 2018). Figure 8 shows wall-normal averaged
large-scale flow vectors (obtained through low-pass filtering) along with the contours of
streamwise velocity fluctuations (u′ = u − ū, where ū is the mean streamwise velocity
obtained by time averaging) in the background for the d-type and the k-type roughness.
The flow is parallel to the oblique bands near the laminar–turbulent boundaries, implying
a significant spanwise velocity component in the large-scale flow. The probability density
function of the angle β made by the large-scale flow vectors (with x direction) is shown
in figure 9. The peak probability for the d-type and the k-type roughness is at 24◦, which
matches well with the pattern angle.

The transition to turbulence in pCf is spatiotemporal (Philip & Manneville 2011).
Spatiotemporal diagrams (figures 10 and 11) help understand the dynamics of
laminar–turbulent bands. This diagram represents data recorded across both space and
time. The time series data of streamwise velocity u are collected at 288 equidistant
points along a spanwise line located at the centre of the domain (x = 68h, z = h) for a
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total time of 1000h/Uw. The spatiotemporal data are recorded after a stable pattern has
emerged to avoid the initial transients in the flow. The laminar–turbulent coexistence in
the spatiotemporal plane also yields oblique bands like a streamwise–spanwise (x–y) plane.
The effect of the Reynolds number on the spatiotemporal dynamics is such that there is a
reduction in the area occupied by the turbulent regions as the Reynolds number is reduced.
This reduction in the turbulent area indicates flow being turbulent at fewer points and for
lesser duration of time. The frequency of the pattern in the spatiotemporal plane is found
using a fast Fourier transform (FFT). Figure 12 shows the spectral analysis for the rough
pCf cases. The most energetic frequencies associated with the pattern for the d-type and the
k-type roughness are 3.81 × 10−3 and 3.05 × 10−3, respectively. The corresponding time
period can be found by taking the reciprocal of peak frequency. Therefore, the time period
of the pattern in the d-type and the k-type roughness are 262.14h/Uw and 327.67h/Uw,
respectively. The peak frequency and time period do not change with the Reynolds number
within the transitional regime. Having the wavelength (λx ≈ 136h) and frequency already
established, one can ascertain the speed of the wave in the x direction. The calculated wave
speeds for the d-type and the k-type roughness are approximately 0.52Uw and 0.41Uw,
respectively. It is interesting to note that these speeds compares well with the respective
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mean streamwise velocities at the apparent midgap locations of the rough pCf cases (the
locations of apparent midgaps and their corresponding mean streamwise velocities are
shown in Appendix A.2). Similarly, the mean band speed in the smooth pCf closely
matches the mean streamwise velocity in the midgap (Gokul & Narasimhamurthy 2022).

In the subsequent analysis, our focus is on exploring the mean flow characteristics of
the rough pCf cases. In the transitional regime, the mean quantities have contributions
from the turbulent and quasi-laminar regions of the flow field. This aspect is crucial when
interpreting the mean quantities in the transitional regime. In the rough pCf cases, data are
averaged across pitches, in addition to averaging over time and the y-direction. Figure 13
illustrates the mean streamlines for the near-wall region superimposed on the contours
of mean streamwise velocity for the transitional regime. The narrow cavity in the d-type
roughness forms a single recirculation zone. This vortex is stable (Perry et al. 1969) and
thus shields the outer flow from interacting with the wall or cavity floor in the d-type case.
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Figure 13. Mean streamlines with contours of mean streamwise velocity in the background for (a) d-type
roughness (Re = 350) and (b) k-type roughness (Re = 300). Here, x is normalised by the pitch λ instead of h.

The vortex is relatively weak (Leonardi et al. 2007), resembling a low-velocity, 2-D,
lid-driven cavity flow (Cui, Patel & Lin 2003). Therefore, the mean streamwise velocity
within the cavity is significantly lower compared with that of the outer flow. The
corresponding friction coefficient (Cf = ν(∂ ū/∂z)/U2

w) on the cavity floor is negligible,
indicating that the wall shear stress is practically zero (see figure 14a). This resembles a
free-slip boundary, which can likely contribute to the stability of the recirculation zone
within the cavity in the d-type roughness. In contrast, Cf is non-zero on the rib crest.
Therefore, the near-wall flow in the d-type case experiences alternate free-slip-like (on the
cavity floor) and no-slip (on the rib crest) conditions along the x direction. MacDonald
et al. (2018) drew an analogy between the mean flow over the d-type roughness and
superhydrophobic surfaces, where liquid flows over gas-filled cavities between roughness
elements, presenting alternating zero-shear/zero-velocity conditions. This analogy implies
that, similar to superhydrophobic surfaces where the liquid skims past the cavities, there is
limited interaction between the outer flow and the cavities in the d-type roughness. In the
k-type roughness, the flow separates near the trailing edge of the rib and later reattaches to
the cavity floor, forming a large vortex near the trailing face and a smaller vortex close to
the leading face of the next rib. These vortices are unstable and lead to significant vortex
shedding above the rib crests (Perry et al. 1969). The mean streamwise velocity within
the cavity is higher than that of the d-type roughness as the ribs are subjected to the outer
flow. The Cf along the cavity floor is initially negative due to the large recirculation bubble
(see figure 14b). It then shifts to positive upon reattachment and returns to negative due to
the small recirculation bubble near the next rib. Further, on the rib crest, the Cf is at its
maximum near the leading edge and gradually reduces along its length. The mean velocity
profiles for the rough pCf cases in the transitional regime are shown in figure 15. The mean
velocity values are plotted at the midcavity (I) and midrib (II) locations and compared with
those from the smooth pCf. It is well known that the variation of mean streamwise velocity
ū has the typical S-shape in the smooth pCf. Compared with the smooth pCf, ū in rough
pCf cases is reduced due to the blockage offered by the roughness. This reduction in the
magnitude of ū is more pronounced near the rib-roughened stationary wall and reduces as
we approach the smooth moving wall. The ū variations at I and II locations follow distinct
paths close to the stationary wall but collapse beyond z = 0.5h in the d-type roughness.
However, in the k-type roughness, the ū variations at I and II follow different paths until
the channel centre (z = h) before collapsing.

Table 3 presents the values of friction velocity uτ and the corresponding friction
Reynolds number Reτ for the d-type and the k-type roughness (the corresponding values
for the smooth pCf are also given for comparison). Note that the friction velocity for the
rib-roughened wall is due to both the viscous drag and the pressure drag. The method used
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Figure 15. Variation of (a) mean streamwise velocity ū, (b) mean spanwise velocity v̄ and (c) mean
wall-normal velocity w̄ along the wall-normal direction for d-type roughness and k-type roughness at the
midcavity (I) and midrib (II) locations at a Reynolds number close to their lower threshold (Reg). Here Reg
is the Reynolds number in the transitional regime below which the flow turns laminar. Corresponding velocity
profiles in smooth pCf are also plotted for comparison.
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Transition to turbulence in rough plane Couette flow

Case Smooth pCf d-type roughness k-type roughness

Re 500–325 500–350 500–300
VdS 0.00136–0.00121 9.49 × 10−4–8.18 × 10−4 6.55 × 10−5–2.79 × 10−4

VdM 0.00136–0.00121 0.00143–0.00123 0.00185–0.00143
PdS — 4.49 × 10−4–3.68 × 10−4 0.00172–0.00109
uτS 0.0369–0.0348 0.0374–0.0344 0.0422–0.0370
uτM 0.0369–0.0348 0.0378–0.0351 0.0430–0.0378
uτ 0.0369–0.0348 0.0376–0.0348 0.0427–0.0374
Reτ 36.94–22.59 37.61–24.35 42.66–22.45

Table 3. Friction velocity (uτ ) and friction Reynolds number (Reτ ) for the three cases considered in the present
study. Vd and Pd are viscous and pressure drags whereas the subscripts S and M refer to the stationary and
moving walls, respectively. The symbols uτ and Reτ are also used to refer to the global friction velocity (uτ =√

(u2
τS + u2

τM)/2) and the corresponding global friction Reynolds number (Reτ = uτ h/ν), respectively.

to calculate the friction velocity for the rough wall is the same as that of Mahmoodi-Jezeh
& Wang (2020). When compared, the friction velocity uτ at a particular Reynolds number
is the highest in the k-type roughness. The enhanced friction in the k-type roughness
promotes more turbulence generation compared with the d-type roughness and the smooth
pCf, allowing it to sustain stable laminar–turbulent bands at lower Reynolds numbers than
the other two cases. The values of uτ for the d-type roughness closely resemble that of the
smooth pCf, exhibiting only a marginal difference. Thereby, the d-type roughness seems
to fail to induce greater turbulence generation compared with the smooth pCf.

Unlike the turbulent regime, v̄ is not negligible in the transitional regime (see
figure 15b). In the smooth pCf, the magnitude of v̄ is zero at the stationary wall, increases
to a negative peak and then drops to zero near the channel centre (z = h). At z = h, v̄

changes sign, increases to a positive peak before falling to zero at the moving wall. The
v̄ variation in the rough pCf cases also exhibits a similar trend, except that, unlike the
smooth pCf, the shift in sign occurs slightly away from the centre of the channel.

The mean wall-normal velocity w̄ is not zero in the rough pCf cases as in the smooth
pCf (see figure 15c). The w̄ is non-zero near the ribs for the d-type roughness and becomes
negligible beyond z = 0.5h. However, in the k-type roughness, w̄ is predominantly
non-zero and diminishes only close to the smooth-moving wall. In the d-type and the
k-type roughness, w̄ varies in the −z direction at location I due to the fluid entering the
cavities. At location II, w̄ varies along the +z direction for both the rough cases due to the
upwards deflection of the flow near the rib crests. The w̄ values in the d-type roughness
are much smaller than its k-type counterpart as the effect of roughness on the outer flow is
very limited in the former.

It is generally acknowledged that the secondary flow in the smooth pCf consists of
counter-rotating secondary vortices (also known as roll cells) when the flow is turbulent.
These vortices are critical in sustaining the elongated streaks in the turbulent flow
(Hamilton et al. 1995). Javanappa & Narasimhamurthy (2021) were one of the first to
report counter-rotating secondary vortices in rough turbulent Couette flows. Similarly, the
secondary streamlines for the rough pCf cases in the present study reveal the presence of
roll cells in the turbulent regime (see figure 16). Figure 17 shows the mean secondary flow
streamlines for the rough pCf cases in the transitional regime. The counter-rotating vortices
are not visible in the mean secondary flow. On the contrary, co-rotating vortices confined
to the channel centre are observed. Examining the instantaneous fields is necessary before
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Figure 16. Mean secondary flow streamlines with mean wall-normal velocity in the background at Re = 500
for (a) d-type roughness and (b) k-type roughness at midcavity (I) location. The velocities used for generating
streamlines and contours are averaged across time and pitches in the x direction.
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Figure 17. Mean secondary flow streamlines with mean wall-normal velocity in the background for (a) d-type
roughness (Re = 350) and (b) k-type roughness (Re = 300) at midcavity (I) location. The velocities used for
generating streamlines and contours are averaged across time and pitches in the x direction.

confirming the absence of the counter-rotating vortices in the transitional regime. Figure 18
shows the contours of instantaneous wall-normal velocity w for the d-type and the k-type
roughness in a yz plane at x/h = 0.1 and x/h = 0.9, respectively. The changes in the
direction of wall-normal velocity denote the existence of counter-rotating vortices in the
turbulent region, while the laminar region exhibits an absence of such vortices. These
vortices are directly connected to the elongated streaks in the turbulent bands. It is
essential to note that the co-rotating vortices are not present in the instantaneous flow
field. Therefore, the inference drawn is that the co-rotating vortices in figure 17 result
from the averaging process, which includes the characteristics from both turbulent and
quasi-laminar regions.

The Reynolds stresses for the rough pCf cases in the transitional regime are shown
in figure 19. They are plotted at locations I and II, and the corresponding values in the
smooth pCf are also presented. A comparison with the Reynolds stresses in the turbulent
regime is also made to highlight the significant differences (see Appendix A for Reynolds
stresses in the turbulent regime). In the d-type roughness, beyond z = 0.5h, the variations
of Reynolds stresses are similar in shape to those in the smooth pCf. However, the curves
for the d-type roughness and the smooth pCf never collapse on each other. The mismatch
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Figure 18. Instantaneous wall-normal velocity w for (a) d-type roughness (Re = 350) at x/h = 0.1 and
(b) k-type roughness (Re = 300) at x/h = 0.9.

arises because the slope of the curves in the d-type roughness reaches zero at z = 1.1h
rather than at the midgap plane (z = h).

Unlike the d-type roughness, the Reynolds stress profiles in the k-type roughness are
significantly different from those in the smooth pCf, especially in the bottom half of the
channel. In addition, it is worth emphasising that the Reynolds stresses for the k-type
roughness in the transitional and turbulent regimes have specific differences. The u′u′
variation in the k-type roughness has a lower magnitude near the rib-roughened bottom
wall compared with the smooth top wall when the flow is turbulent. Interestingly, in the
transitional regime, this difference in the magnitude of the peaks in the bottom and top
half of the channel diminishes. Similarly, the peak near the rib-roughened bottom wall for
the v′v′ variation at location II in the k-type roughness vanishes when the flow is in the
transitional regime. However, there is still a sudden rise in the slope of the curve near the
roughness crest, indicating a local intensification of spanwise fluctuations. The negative
peak near the roughness crest for the −u′w′ variation at location II in the k-type roughness
is retained in the transitional regime.

We know that −v′u′ and −w′v′ are negligible when the flow is turbulent. In the
transitional regime, these stress components are non-zero. It is worth noting that these
off-diagonal stresses involving the spanwise velocity fluctuations (v′) are non-zero in
conjunction with a non-zero mean spanwise velocity (v̄). The variations of −v′u′
and −w′v′ in the d-type and the k-type roughness are similar to that of the smooth
pCf. Typically, in the rough pCf cases, −v′u′ exhibits positive values, whereas −w′v′
shows negative values. However, for the k-type roughness, there exists a small region
corresponding to the cavity where −v′u′ is marginally negative, and −w′v′ is marginally
positive. The Reynolds stress profiles at locations I and II collapse beyond z = 0.5h for
the d-type roughness. In the k-type roughness, the profiles at I and II merge beyond z = h
except for the variation of −w′v′, where the curves collapse close to the smooth moving
wall.

The Reynolds stresses presented in the present study have contributions from the
turbulent and the quasi-laminar regions. However, estimating Reynolds stresses for the
turbulent and the laminar bands separately can be challenging. Instead, we perform a
spatial average of the product of velocity fluctuations (u′

iu
′
j) along the bands (xd direction)

at an instant and estimate the relative contributions. Here, we show u′u′ data from the
rough pCf cases to demonstrate this averaging process, which can be appropriately called
diagonal averaging. Figure 20 shows the contours of u′u′ in an x–y plane at the midgap
location (note that the flow domain is replicated in the y direction to obtain an extended
view). The diagonal averaging is performed in the xd direction ((1/L)

∫
u′u′ dxd, where L
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Figure 19. Variation of components of Reynolds stress tensor (a–f ) along the wall-normal direction for d-type
roughness and k-type roughness at the midcavity (I) and midrib (II) locations at a Reynolds number close to
their Reg. Corresponding Reynolds stresses in smooth pCf are also plotted for comparison. The stresses are
normalised using the square of global friction velocity u2

τ of each case.

is the diagonal length) for a laminar–turbulent band (shown within the tilted rectangular
box) at all x–y planes in the domain. The diagonally averaged 〈u′u′〉d in the y–z plane
for the turbulent and the quasi-laminar regions is shown in figure 21. Further, the data
are averaged along the y direction for the turbulent and the quasi-laminar regions. This
allows us to obtain the wall-normal variation of 〈u′u′〉d for each distinct region (see
figure 22). In the quasi-laminar region, the contribution to 〈u′u′〉d is significant due to the
non-zero streamwise velocity fluctuations, unlike in the laminar Couette flow. However,
the magnitudes are smaller compared with those from the turbulent region. Despite the
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Figure 20. Contours of u′u′ at the midgap location (z = h) for (a) d-type roughness (Re = 350) and (b) k-type
roughness (Re = 300). The product of streamwise velocity fluctuations is normalised by u2

τ of each case.
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Figure 21. Diagonally averaged 〈u′u′〉d in the y–z plane for (a) d-type roughness (Re = 350) and (b) k-type
roughness (Re = 300). The data are normalised by u2

τ of each case. Note that 〈 〉d represents spatial averaging
along the bands (diagonal).

significant difference in the magnitudes, the curves of 〈u′u′〉d for both regions exhibit
a similar trend. The combined average of 〈u′u′〉d, with the contributions from both the
turbulent and the quasi-laminar regions, is reasonably closer to the variation of Reynolds
stress u′u′ at the midcavity (I) location. Diagonal averaging can also be performed on
the remaining u′

iu
′
j components to get the corresponding turbulent and quasi-laminar

contributions (see figure 26 in Appendix A for the wall-normal variations of all 〈u′u′〉d
components in the turbulent and the quasi-laminar regions for the rough pCf cases).

4. Conclusions

DNS have been performed to study the effect of roughness on the transition to turbulence
in pCf. Two rough pCf cases are considered, with pitch separations λ = 2k and λ = 10k,
which fall in the d-type and the k-type roughness category, respectively. Reynolds number
is reduced gradually in steps to achieve a reverse transition. Smooth pCf is known to have
stable laminar–turbulent bands for Re ∈ [325, 400]. Similar to the smooth pCf, a stage
of oblique laminar–turbulent bands is found in both the d-type and the k-type roughness
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Figure 22. Wall-normal variation of 〈u′u′〉d for (a) d-type roughness (Re = 350) and (b) k-type roughness
(Re = 300). The variation of Reynolds stress u′u′ (obtained using time averaging) at the midcavity (I) location
is also presented for comparison. Profiles are normalised by u2

τ of each case.
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Figure 23. Variation of (a) mean streamwise velocity ū and (b) mean wall-normal velocity w̄ along the
wall-normal direction for d-type roughness and k-type roughness at the midcavity (I) and midrib (II) locations at
Re = 500. Velocity profiles in smooth pCf (Re = 500) is also plotted for comparison. Mean spanwise velocity
v̄ is negligible for all the cases.

in the transitional regime. In the k-type roughness, stable laminar–turbulent bands are
observed for the Reynolds numbers in the range Re ∈ [300, 325]. The transitional range
has narrowed and has shifted to lower Reynolds numbers compared with the smooth pCf.
The ribs of the k-type roughness can act as vortex generators and aid the regeneration of
vorticity so that the oblique bands are sustained at lower Reynolds numbers as opposed to
the smooth pCf. However, the transitional range in the d-type roughness (Re ∈ [350, 425])
has shifted upwards compared with the smooth pCf. This peculiar behaviour is most likely
due to the inherent lack of ability of the d-type roughness to effectively shed vortices into
the outer flow and, thus, its negligible contribution to vorticity regeneration. Moreover, the
streamwise-elongated structures in the d-type roughness are located further away from the
wall, indicating a relatively stable zone in the near-wall region that could potentially inhibit
streak formation. Previous studies on d-type roughness with a pitch separation of λ = 2k
(e.g. Leonardi et al. 2004, 2007; MacDonald et al. 2018) have not reported a significant
difference in the near-wall streaks between the d-type roughness and the smooth case,
except for a reduction in their length. However, these studies were conducted in channel
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Figure 24. Variation of components of Reynolds stress tensor along the wall-normal direction for d-type
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Figure 26. Wall-normal variation of 〈u′
iu

′
j〉d for the rough pCf cases at a Reynolds number close to their Reg.

The values are normalised using u2
τ of each case. The legend labels (T) and (L) indicate the turbulent and

quasi-laminar regions, respectively.

flows at Reynolds numbers that are higher than those in the present study, which focuses
on the characteristics of rough Couette flows within the transitional flow regime.

The large-scale flow in the rough pCf cases is parallel to the oblique bands near the
laminar–turbulent boundaries, indicative of a significant spanwise velocity component.
The peak of the probability density function of the angle made by the large-scale flow
vectors gives the most likely orientation of the large-scale flow. As a major portion
of the flow is parallel to the oblique bands, the most likely angle matches well with
the corresponding pattern angle. Similar to the spatial planes, spatiotemporal diagrams
reveal laminar–turbulent coexistence as oblique bands. The frequency/time period of the
patterns in the rough pCf cases is found using an FFT technique. The pattern in the d-type
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roughness has about four cycles in 1000h/Uw, and its k-type counterpart has approximately
three cycles every 1000h/Uw. The frequency/time period remains the same regardless of
the Reynolds number.

The secondary flow in the transitional regime shows the presence of counter-rotating
vortices in the turbulent regions. These vortices are integral in maintaining the elongated
streaks which constitute the turbulent bands. The main effect of having a non-zero
spanwise velocity is reflected in the off-diagonal components of the Reynolds stress tensor.
The gradient ∂v̄/∂z in the production term of the Reynolds stresses −v′u′ and −w′v′ does
not approach zero, leading to non-zero production. −v′u′ and −w′v′, which were zero in
the turbulent regime, are now non-zero and, thus, relevant.

The results from the present study can be compared with those of Ishida et al. (2017).
Both studies concur that the transition to turbulence occurs through a stage of alternate
laminar–turbulent bands when the roughness height is k = 0.2h. Their model predicts a
rise in the friction Reynolds number due to roughness, and this observation aligns with
the behaviour of the k-type roughness employed in the present study. Apart from these
points, a direct quantitative comparison is challenging as the present roughness pitch
analogous to the roughness density used in their parametric model is difficult to determine.
We anticipate that forthcoming research will further substantiate our findings. We also
believe that this study provides a foundational understanding of the effects of roughness
on the transition to turbulence in pCf. It can be extended to investigate the effect of
roughness by altering the shape, height, dimensionality and arrangement of the roughness.
Configurations such as longitudinal roughness, oblique roughness and incoherent random
roughness can also be considered.
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Appendix A

A.1. Mean quantities at Re = 500
Figures 23 and 24 show the mean quantities at Re = 500.

A.2. Apparent midgap
The apparent midgap is located at the minimum of dū/dz above the roughness layer (Ishida
et al. 2017). The apparent midgaps and the corresponding mean streamwise velocities for
the rough pCf cases are marked in figure 25.

A.3. Turbulent and quasi-laminar components of 〈u′
iu

′
j〉d

The turbulent and quasi-laminar components of 〈u′
iu

′
j〉d are plotted in figure 26.
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