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CONVERGENCE OF CLASSES OF AMARTS INDEXED
BY DIRECTED SETS

ANNIE MILLET AND LOUIS SUCHESTON

Let (2, %, P) be a probability space, J a directed set filtering to the right.
(X)) s is a family of random variables adapted to an increasing family of
c-algebras (# ) ;. Vitali conditions 1" and 17 on the ¢-algebras, abstracting
classical assumptions in Lebesgue’s derivation theory, were made to insure
essential convergence of martingales and submartingales (under proper
boundedness assumptions). In reality these conditions, guaranteeing the
existence of certain disjoint and properly measurable sets B, are better suited
for study of amarts, since the sets B, are a natural habitat and breeding ground
for stopping times, thriving, as well known, precisely on disjoint and properly
measurable sets. Thus K. Astbury [1] showed that the condition 17, proved by
K. Krickeberg to be sufficient for convergence of martingales (see [20] or
Neveu [26], p. 98) is both necessary and sufficient for convergence of amarts.
(We follow Neveu denoting by " the condition Krickeberg denotes by 17,..)
The Vitali condition 17, proved by Krickeberg [21] to be sufficient for con-
vergence of submartingales, is shown here to be both necessary and sufficient
for convergence of ordered amarts, defined similarly to amarts, except that the
stopping times are ordered. We also introduce the controlled Vitali condition
17¢, properly weaker than 17, and show that "¢ is sufficient for convergence of
controlled amarts, including submartingales. This answers in the negative a
question raised by Krickeberg ([22], p. 280), whether 17 is necessary for con-
vergence of submartingales.

In the direct part of theorems, the amart assumption can be considerably
weakened, at the price of some loss of simplicity. If ¢, 7 are simple stopping
times, write X (o, 7) for the expression X, — EZ°X,. It is known that (X,)
is an amart if and only if lim,>,,,X (s, 7) = 0in L' Call (X,) a pramart (for
amart in probability) if X (s,7) = 0 (r =2 ¢ — 0) in probability. One can go
one step further: call (X,) a subpramartif stochastic lim sup.z,_,.,X (o, 7) = 0.
Not only amarts and pramarts, but also subpramarts converge essentially
under the condition V. This result is new even if J = N, and constitutes also
in that case a generalization of the amart convergence theorem. Unlike amarts
(cf. [15]) or pramarts, subpramarts need not be mils (martingales in the
limit), and, unlike mils, subpramarts have good optional sampling properties.
Thus the generalization of Doob’s martingale convergence theorem to sub-
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pramarts given below seems of interest. To be sure, subpramarts (or pramarts)
cannot in general have the Riesz decomposition, because this decomposition
together with the optional sampling theorem is known to characterize the class
of amarts [15].

Martingale theory has a double origin; it generalizes Paul Levy’s approach
to sums of independent random variables, and R. de Possel’s theory of deriva-
tion of set-functions. There exist no applications of amarts to independent
random variables; in particular independent r.v.’s and averages of independent
positive r.v.’s are amarts only in the uninteresting case when the supremum is
integrable [19]. Unfortunately, as shown below, the same is true for pramarts.
But, for the first time also in case / = N, we are able to identify some amarts
in the context of the derivation theory. Only preliminary results have been
obtained; roughly speaking, derivatives of set-functions that are asymptoti-
cally additive are amarts. It seems that in some cases the essential convergence
results following from amart theorems cannot be obtained from martingale
theorems alone. Thus deriving super-additive set-functions in classical setting,
we obtain supermartingales that are also amarts. The supermartingales
theorem is not applicable because the ordered Vitali condition V" fails, but the
Vitali condition V holds, and therefore the new stopping time results (Astbury’s
theorem or Theorem 4.2 below) give essential convergence.

Section 1 gives definitions of basic notions. Section 2 establishes optional
sampling properties of amarts, pramarts, and subpramarts. Section 3 proves
convergence results without Vitali conditions; in particular stochastic con-
vergence of subpramarts in the general case; almost sure convergence of
superpramarts in the case of / = N. Section 4 proves essential convergence of
subpramarts under condition V. Section 5 proves that many different state-
ments are equivalent with 17; e.g. the assertion that stochastic convergence of
X . implies essential convergence of X ,; also the assertion that every amart is
a mil. Sections 6 and 7 give the analogous theory for ordered amarts, pramarts,
and subpramarts, under the ordered Vitali condition 1”. In Section 8 we
introduce the controlled Vitali condition 1”° and controlled amarts. Section 9
gives examples in the case J = N; in particular of subpramarts that are not
pramarts, and pramarts that are not amarts. The connection with the classical
derivation theory is established in Section 10. In Section 11 we construct
further examples and counterexamples. Section 12 sketches various extensions:
to the descending case (index set filtering to the left), to infinite measure
spaces, and others. The Banach space case is deferred to another paper, but a
generalization of Chatterji’s martingale theorem to directed sets under the
condition V is given, because it follows at once from arguments in earlier
sections.

The authors wish to thank G. A. Edgar for his helpful comments.

1. Definitions and basic notions; general case. Let J be a set of indices
(partially) ordered by <. s, t and « denote elements of J. The set J is assumed
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filtering to the right, i.e., such that for each pair fy, t; of elements in J, there
exists an element {3 in J such that {;, < #;and t, £ #;3. A subset K of J is called
terminal if there exists an index s such that s < ¢ implies ¢ € K. A subset K of
J is called cofinal if J — K is not terminal. Let N = {1,2,...}, — N =
L., =2, —1].

Let (Q,%, P) be a probability space. Throughout this paper, functions,
sets, and random variables are considered equal if they are equal almost surely.
Let {X,} be a set of random variables each taking values in R; the essential
supremum of {X,} is the unique almost surely smallest random variable
esup X, such that for every ¢, esup X, = X ,a.s. The essential infimum of
1X ), einf, X, is defined by e inf X, = —e sup (—X,). Let {4} be a family of
measurable sets; the essential supremum of {4 ,} is the only set e sup 4, such
that 1,ep4, = esup 14,, and the essential infimum of {4,} is the only set
einf 4, such that

lemm, = einf, 1,,.

Let (X ), be a family of random variables taking values in R; the stochastic
upper limit of (X,),cs, slimsup X,, is the essential infimum of the set of
random variables V such thatlim P({V < X,}) = 0. The stochastic lower limit
of (X,)wey, sliminf X,, is defined by sliminf X, = — slimsup (—X,). If
slimsup X, = sliminf X, = X_, then X is called the stochastic limit of
(X 1) s, which is then said to converge stochastically, or to converge in proba-
bility, to X . We write X = slim X ,. The essential upper limit e lim, sup X,
of (X,) e, is defined by:

elimsup X, = einf (e sup,=, X,).

The essential lower limit eliminf X, = —elimsup (—X,). The directed
family (X ,) . is said to converge essentially if the essential lower and upper
limits coincide. Their common value is then called the essential limait, elim , X
of the family (X,),,. In a similar way, if (4,),, is a directed family of
measurable sets, the essential upper limit, e lim sup 4 , is defined by:

elimsup 4, = einf (e sup,=, 4,).

A stochastic basis (¥ ) ,c,, also denoted by (¥ ,), is an increasing family of
sub g-algebras of # (i.e., for every s < t,.% , C.% ,). Given a stochastic basis
(%), we denote by # _ the c-algebra generated by the algebra U ,.% ,. A
stochastic process is a triple (X ,, % ,, J), also simply denoted by (X ,), where J
is a directed set, (& ,) is a stochastic basis, and for each ¢, X ;: @— R and is. % ,
measurable. The process is called integrable (positive) if every X, is integrable
(positive). The process satisfies Doob's condition or is L'-bounded if sup
E(|X,]) < . Given a stochastic basis (& ,), a family of sets (4,) is adapted
if for every t, 4, € F ,.

A stochastic basis (¥ ,) satisfies the Vitali condition V if for every adapted
family of sets (4,), for every set 4 in%# . such that 4 C elim sup 4,, and

https://doi.org/10.4153/CJM-1980-009-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-009-1

CLASSES OF AMARTS 89

for every € > 0, there exist finitely many indices ¢y, . . ., t,, and pairwise dis-
jointsets B; € # ,,, B; C Ay,1=1,...,n,such that P(A\U?B,) < e

A stochastic basis (& ,) satisfies the Vitali condition W if for every adapted
family of sets (4,),,, for every set 4 in % , such that 4 C elimsup 4,,
there exists a sequence (f,) of indices and a sequence (B,) of pairwise disjoint
sets such that B, ¢ # ,,, B, C 4,,, and P(4\U,B,) = 0. Given a stochastic
basis (& ,), the conditions 1" and W are known to be equivalent. (This equiva-
lence will be proved again in Theorem 5.1).

A stopping time (of the stochastic basis (¥ ,)) is a function 7: @ — J, such
that for every ¢t € J, {r = t} € # .. 7 is called simple if it takes finitely many
values. Let 7" = T'(J) denote the set of simple stopping times; under the
natural order 7 is a directed set filtering to the right. ¢, 7 and p denote elements
of T. Let (X, % ,, J) be a stochastic process and r be a simple stopping time;
define the random variable X, by X, = X, on {r = ¢}, and define the o-
algebra %, by

F.=lAcFIVtec T, AN {r =t} € F }.

X, is &, measurable. If X, = 1,4, let 4, = supp X,. For the order (¢, 7) <
(¢/, 7') if ¢ = o/, the set of ordered pairs of stopping times { (o, 7)|c < 7} is
filtering to the right. Write E° for E#+, and for ¢ < 7 set

X(a, T) =X, — E°X,.

The notions of stochastic or essential lower limits, upper limits, and limits of
X (o, 7) are defined for the order mentioned above, and denoted by
slim sup, ;erX (o, 7), € lim sup, e X (o, 7), . . ..

An integrable process (X, .% ., J) is a martingale (submartingale, super-
martingale) if s < ¢ implies £°X , = X, (E°X, =2 X,, E*°X, = X,).

Definition 1.1. An integrable stochastic process (X ,,-% ,, J) is an amart if the
net (E(X,)).cr converges to a finite limit.

Let us recall the L! difference property of amarts ([1], Lemma 2.1; in the
case J = N, the result follows trivially from the Riesz decomposition [12]):
A stochastic process (X ,,# ,, J) is an amart if and only if

lim E(|X (e, 7)|) = 0.
A potential is an amart (X ;) such thatlim E(1,X,) = Oforeach 4 € U, % ..
Definition 1.2. An integrable stochastic process (X, % ,, J) is a pramart if
slimg ;erX (o, 7) = 0,
i.e., for every e > 0 there exists oy € 7 such that ¢y = ¢ < 7 implies
P({|X, — E°X, >¢€) £ e

Definition 1.3. An integrable stochastic process (X, % ,, J) is a subpramart
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if slim supy ,crX (0, 7) =0, i.e., for every € > 0 there exists oy € I such that
oo = o = 7 implies

€.

P({X, — E°X, > ¢})

IA

(X ,) is a superpramart if (—X,) is a subpramart.

Definition 1.4. An integrable stochastic process (X ,, % ,, J) is a mil (martin-
gale in the limit) if e lim supy, /| X (s, )| = 0, i.e.,

e limg(e sup =,/ X, — E’X ) = 0.

(In the case J = N the notion of mil was introduced by A. Mucci; cf. [25].)

2. The optional sampling properties. In this section we consider optional
sampling theorems for (general) simple stopping times. We use the following
notation. If % is a class of stochastic processes (X, % ,, J), given 7 € T(J),
we denote by X, , the random variable taking value X, (w) at the point w.
As in Section 1, we write X, instead of X ; ; if no misunderstanding is possible.
Analogously we define # ,, =.%,. A class % of stochastic processes
(X, & ,,J)} has the cofinal optional sampling property if given an element
(X, %, J) of €, for every cofinal subset .7 in 7(J) the process
(X, F 1, T )eq belongs to €.

LemMa 2.1, Let (X, % ., J) be « stochastic process, and let J be a cofinal
subset of the set T = T'(J) of simple stopping times taking values in J. Denote by
T(T) the set of simple stopping times for (F ,).er taking values in.J . Given
s € J, for every element 0 = s in T (") there exists an element ¢ = s in T such
that Xg 9= Xy0, and F 5 ¢ = F ;.

Proof. Let 6 be in T(.9), 8 = s, and define ¢: @ — J by ¢(w) = [0(w)](w).
Clearly ¢ = s, and it is easy to check that ¢ € 7" and has the stated properties.

THEOREM 2.2. The class of amarts, the class of pramarts, and the class of
subpramarts have each the cofinal optional sampling property.

Proof. More generally, let % be a class of stochastic processes defined by the
following asymptotic property of X (o, 7): There exits a function f: L' - R
such that (X, % ,J) € € if and only if given ¢ > 0, there exists s € J such
that s £ ¢ < 7 implies f[X (s, 7)] S e. Let s € J, s 20 26 bein T(9),
where.7 is a cofinal subset of 7°(J). By Lemma 2.1, s < ¢ < ¢/, and

F z
Xgo—E"7 X549 =X;,— E"7°X,,.

Hence % has the cofinal sampling property. If & is the class of amarts, set
f(X) = E(X]); if € is the class of pramarts, set

f(X) = inf {a > 0|P(|X]| = a) < a};
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if % is the class of subpramarts, set
f(X) =inf{a > 0P(X =2 a) £ af.
LEMMA 2.3. Let X be an integrable random variable and let (F ) s be «
stochastic basts. Then for every o € T,
E'X(w) = E°@X (w).
Proof. For every t € J, 1{,_,,E'X is% , measurable and for every 4 ¢ % |,
AN {oc =t} € %, Hence for every 4 € F ,,
EQali—nE'X) = E(141 ;- E°X),
so that E'X = E°X on {¢ = t}.

The case J = N. A class % of stochastic processes (X,,-#,) is said to have
the monotone optional sampling property if for every sequence (X,, %,)in €

and for every increasing sequence (r,) of simple stopping times for (%)),
(X, %,)isin €.

THEOREM 2.4. The classes of amarts, pramarts and subpramarts indexed by N
each have the monotone optional sampling property.

Proof. This result has been proved for amarts in [12], Proposition 1.6. Since
(X,,#,) is a pramart if and only if (X,, % ,) and (—X,,.%,) are subpramarts,
we only need to show that the class of subpramarts has the monotone optional
sampling property. Let (X,, % ,) be a subpramart and let (7;) be an increasing
sequence of simple stopping times for (#,). Let ¥V, = X,,, 9, = % ,, and
7o = lim,7. If ¢ and o’ are two simple stopping times for (%), then r, and
7,» are two simple stopping times for (#,), and 4, =.%, , so that

E%Y, = E¥%X

Given € > 0, choose M € N such that M < 7 < 7/ implies P({X (7, 7') > €})
< e. Then choose K such that

P{re > Mi\{rx > M}) = e

Tg!*

Let o and ¢’ be two simple stopping times for (%;), such that K < ¢ < ¢’. Then

P Y(e,0")>¢) e+ PU{X(15,70) > el N\ {7, > M})

+ P({X(roy70) >N it S M}) = e+ PUX(M V 7,
MV 1) > €e)) 20 PUX (14, 70) > €N {1, = n}).

For every n < M there exists K, € N such that
P({Tco = njA ﬂk;m{m = ”})) < /M.

Let o,¢ be such that sup (K, Ky, ..., Ky) <o =¢. On the set
Nizxaitre = n} in % ,, we have r, = 7,, = n. Therefore, by Lemma 2.3, on
this set X (r,, 7,,) = 0. Hence P({ Y (o, 0’) > €¢}) = 3e.
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3. Convergence without Vitali conditions. We at first prove a.s. con-
vergence of positive superpramarts in the case J = N, by a direct argument in
part similar to that given for positive amarts in [2]; the “‘upcrossing” method
of the proof goes back to J. L. Doob’s early papers. We then reestablish the
Riesz decomposition of amarts ([1], [12]). Then stochastic convergence of
subpramarts of class (d), i.e., such that lim inf EX ;* + lim inf EX ~
is derived.

LemMA 3.1. Positive superpramarts (X,, % ,, N) converge a.s.

Proof. Let F = {liminf X,, = co}; suppose P(F) > 0. Given ¢, 0 < ¢ <
P(F)/2, choose n and M such that for every £ > 0, P(G;) < ¢, where

Gk = {Ean+k - Xn > E} U {Xn > ]"I}.
Given K, choose % such that P({ X1+ > K}) > P(F) — e Since
Kl(;kcEnl{X" ) 2K __S_ 1chEan+k _S_ M + €,

K[P(F) — 2¢] = M + e Hence P(F) = 0, and if X, does not converge a.s.,
there exist real numbers a < @8 such that P(4) > 0, where

= {liminf X, < @ < B < lim sup X,}.

Given ¢ > 0 and an integer M, there exists a set B and an integer M; = M
such that B € % ,;,, and P(4AB) < 6, where § = €2/88. There exist integers
My, M; such that M, < M, < Mj;, and

P(A\{ll’lf MlénéMzXn <a< 6 < SupMzénéM:{Xn}) é 0.
Define
Cr = {infy, zp200, Xy, <y M B, Cy = {supan ez Xa > B} M Cr

Define two stopping times 7, and 72 by:

T (w) = jﬂ{z’ w & G
! linf {n|M, £ n £ M, X,(0) < a}, o€ Ci.
Mo, w ¢ C
ra(w) = <M, @ € GG
inf {’ﬂ'ﬂ[g =n § 11[3, Xn(w) > ﬁ}, w € Cz
We have

Xy — X 2 (B—a)le, + leneXs — alenics:
Hence, neglecting the positive term 1¢,\¢,X,, and applying EZ 71, we obtain
EnX., —Xn2 B—a)E (le,) —aE(lone) 2 (B — a)E(14)
— (B —a)E"(1aac,) — aE™(1cyvcs).
Since for every measurable set D, every n > 0, P[E™ (1) > 4] £ P(D)/y,
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choosing D = AAC,, or D = C;\(, and appropriate 7's we have
E”Xm - X‘rl = (B - a)E”(lA) — €

outside of a set of measure <e. Hence using the definition of a superpramart,
we can choose M so big that if 7o = 71 =2 M, then EnX,, — X, =< e outside

of a set of measure =e Hence we can define an increasing sequence (o,) of
stopping times such that for each =,

B —a)E"(ly) = 1/n

outside of a set of measure 1/%. The sequence E#(1,) converges to 0 stochas-
tically. On integrating we get P(4) = 0; this contradicts the assumption
P(4) > 0.

LEMMA 3.2, Let (X)) be an integrable positive stechastic process. For every
t € Jset R, = einf,», E'X,. Then for every simple stopping time o

R, = einf,3, E°X ..

Proof. Fix ¢ and denote by R (o) the right hand side of the last equality. For
every 7 € T,if 7 = o we have 7 = ¢ on the set {¢ = {}. Since 7 takes finitely
many values, there exists ¢’ in J such that 7 < t’. Define 7’ = 7on {¢ = ¢}, and
7 =t onfe #t}. Then = tand E¥*X, = E¥ X, on {¢ = t}, which implies
that R, £ R(o¢) a.s. on {¢ = {}. Conversely if ¢ belongs to the range of ¢, let
7 in T be such that » = ¢, and choose s € J such that ¢ < 5. Define 7/ = 7
on {¢ =t}, and 7/ =5 on {¢ # t}. Then ¢ £+, and E°X, = E'X, on
{¢ = t}. Hence R(¢) £ R,a.s. on {o = {}.

Prorosition 3.3. Let (X,) be a positive integrable process. Then (X,) 1s a
subpramart if and only if there exists a positive submartingale (R,, % ,, T) such
that for every t, R, < X, a.s., and s lim(X, — R,) = 0.

Remark. We at first observe that to say that (R,,# ., T') is a submartingale
is the same as saying that (R, .%# , J) is a submartingale with the optional
sampling properties. In the case J = N, since (R,) is a submartingale if and
only if (R,) is, a positive integrable process is a subpramart if and only if there
exists a positive submartingale (R,) such that R, £ X,, and slim(X, — R,)
= 0.

Proof of proposition. For every t € J,set R, = einf,», E‘X,. By Lemma 3.2,
for every ¢ € T we have R, = einf,>, E°X,. We show that (R,, % ,, T) is a
submartingale (a similar argument appears in [16]). Since for every o € T,
0 = R, = X, as., R, is integrable. It follows from known properties of e inf
that there exists a sequence (7,), 7, = ¢ and 7, € 7" for every n, such that
R, = inf,FE°X ., (see e.g. {26], p. 121). We show that one can assume that the
sequence E°X ., decreases to R,. Suppose that 74, ..., 7, have been properly
chosen, and replace 7,41 by 7,41 defined by 7,4,/ =7, on 4 = {E°X,, <
EX, ..}, and 7,41 = 7,41 on A4° Since 4 is &, measurable and 7, = o,
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T.41 2 o, it follows that 7,4, € 7. Let ¢ = ¢’ be simple stopping times.
Applying E° to the relation: £’ X,, \y R, yields

E°R, = lim, E°X,, = einf,>, E°X .

Hence (R,, % ,, T) is a submartingale. It is easy to see that if (R, , #,, T)
is another submartingale such that X, = R, for each o, then R, = R,'.
Assume that slim sup(X, — R,) # 0. There exists e > 0 and a sequence
(0,) in T such that P[{X,, — R,, > €] > e. Fix n; since R,, is the limit in
probability of a sequence (E’X,,),, we can choose 7, = o, such that

P X (0,, 1) > €/2}) > /2.

This contradicts the assumption that (X,) is a subpramart. Conversely,
assume that there exists a submartingale (R,’, % ,, T) such that

R/ £X, and slimsup (X, — R,/) = 0.

Since R,/ £ R, £ X, we have s lim sup(X, — R,) = 0. If (X,) is not a sub-
pramart, there exists ¢ > 0 and two sequences (g,) and (r,) such that ¢, in-
creases, o, = 7,, and P[{X (¢,, 7,) > €}] > e. Since X (o,, 7,) = X,, — Ro,,
we get a contradiction.

We now give a characterization of amarts in terms of martingales and super-
martingales having the optional sampling property. This result is a generaliza-
tion of Theorem 1 [16] to directed sets, and a refinement of the Riesz decom-
position of amarts [12], [1]. A positive supermartingale (X, % ,, J) is called a
Doob potential if (X,,# ,, T) is a supermartingale and X, — 0 in L.

ProrositioN 3.4. 4 stochastic process (X ,) is an amart if and only if X, can
be written as a sum X, = Y, + Z, where (Y,) is a« martingale, and there exist
s € Jand a Doob potential (S,) =y, suchthat for v = s,|Z,| £ S.. Furthermore,Y,
s the essential limit and L' limat of the net (E'X,).=,.

Proof. By the difference property of amarts (see Section 1), given ¢ € T,
the net (E°X,).¢r is Cauchy in L!. Denote by Y, its L!-limit; (V) is a martin-
gale. Furthermore, given a fixed ¢ in 7" the stochastic process E°X , defined for
t = ¢ is an amart for the constant stochastic basis % ,. Given ¢ > 0, let

A, ={|E°X,— V,] > ¢
and assume that
Plelimsup 4,] = a« > 0.

We show that the net (E°X ). does not converge to Y, in probability. For each
s € J there exists a sequence (t,), t, = s, such that

esup,;z; 4, =\U 4,,.

https://doi.org/10.4153/CJM-1980-009-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-009-1

CLASSES OF AMARTS 95

Choose M such that P( U,<pd ) = a/2. Let

B, = Auy B: = Azz\A tnBi = Ali\ U]<iA tje

Define a stopping time 7 by r =¢; on B;, ¢t =1,..., M, and 7 = ¢ on
(UicuB:)¢, wheret € J,t 2 t,1=1,2,..., M. Thenr._ s, and

P{|EX, — Y, > ¢) = a/2

This is a contradiction. Now the difference property gives lim E(|Z,]) = 0,
where Z, = X, — Y,. Choose s such that sup,>;E(|Z,]) < 0, and given
g 2 sset

Sy = esup.z. E°(|Z]).

Since S, = lim T, .,2s E°(|Z..]), a proof similar to that of Proposition 3.3
shows that (S,, %#,, T) is a supermartingale, and hence that (S,) is a Doob
potential.

ProrposiTION 3.5. Let (X ,) be a stochastic process for a constant stochastic
basis F , = % . The following assertions are equivalent:

1) (X, &) is an amart.

(2) X, converges essentially, and there exists s € J such that

E(esup,z; |X(|) < 0.

Proof. In the case J = N, a direct proof of the implication (1) = (2) has
been given in [12] Proposition 2.4.

(1) = (2). Define s, (V,), (Z,), and (S,) as in the previous proposition. For
t = s, the net (V) is constant, and the net (]Z,|) is dominated by the net
(S;) which decreases to 0.

(2) = (1). Since X, converges essentially, X, converges essentially, hence
stochastically. By the dominated convergence theorem EX,, converges if
SETnEn =

LEMMA 3.6. Let (X,) be a subpramart. Then (X ) 1s « subpramart. More
generally, for every constant N, (X, V N),1s a subpramart.

Proof. Given € > 0, choose ¢ € J such that
t £ 0 < rimplies P{X(o,7) > €}) < ¢
Set A = {X, < 0}, and define 7/ = ¢ on 4, and 7 = 7 on 4°. We have
Xt =X+ =X, — Xy,

Applying E°, weget X,* — E°(X,*) < X (s,7’). Hence P[{X,* — E°X,*> ¢}]=Z ¢,
and it follows that (X ;%) is a subpramart. Given \, if (X,) is a subpramart,
so is (\+ X,);; since YV X=X+ (Y =Nt also (X, V \), is a sub-
pramart.

For the amart case of this lemma see [2] and [11].
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A particular case of the following theorem was proved in [12], p. 206.

THEOREM 3.7. Let (X,) be a subpramart which satisfies Doob’s condition, or
only the properly weaker assumption (d):

(d) liminf E(X /") + liminf E(X,7) < .
Then the net (X ,).cr converges stochastically to an integrable random variable.

Remark. In the case J = N, one obtains under the same assumptions the
almost sure convergence; see Section 4, Theorem 4.3.

Proof. We at first deduce from our results the (well-known) a.s. convergence
of positive L!'-bounded submartingales indexed by integers. Let (S,) be a
positive L!'-bounded submartingale. Clearly (S,) is an amart; its Riesz de-
composition is S, = ¥, + Z,, where (V,) is the martingale part given by

Y, = lim 1, E"S,,

and (Z,) is the potential part. Clearly (V,), and (—Z,) both are positive
L'-bounded superpramarts. Hence the a.s. convergence of S, follows from
Lemma 3.1. Let now (X,) be a positive subpramart such that lim inf E(X )
< 0. By Fatou’s lemma, the approximating submartingale (S,, # ., T') con-
sidered in Proposition 3.3 is L!'-bounded. Given any increasing sequence (o,)
of elements of T, the submartingale (S,,,.-#,,, N) converges in probability.
Since the convergence in probability can be defined by the distance of a
complete metric space (cf. [26], p. 97), the net (S;),cr converges stochastically
(see e.g. [26], p. 96). The relation s lim(X, — S,) = 0 yields the theorem in
the case X, = 0. The stochastic convergence of (X,),cr follows under the
assumption: there exists a constant \ such that for every ¢, A = X ,. Let now
(X ) be a subpramart for which the boundedness assumption (d) holds, and
assume that X, oscillates: there exist « < b such that on a set of positive
measure,

sliminf X, < a < b < slimsup X,.

By Lemma 3.6, (X, V «) is a subpramart; furthermore, lim inf £(X, V a)
< o0, and (X, V a) does not converge stochastically. It follows that X,
cannot oscillate. By Fatou’s lemma, sliminf X, > — oo, hence the net
(X.),er converges stochastically.

We finally show that the assumption (d) is properly weaker that Doob’s
condition in the case of pramarts (it follows from the Riesz decomposition that
the two boundedness assumptions are equivalent for amarts). Let (2, %, P)
be the unit interval with Lebesgue measure and let %, = % V n € N. Let

X = (=1)"n%110,1m.

(X,) is a pramart of class (d), i.e., satisfying the condition (d), but (X,)
does not satisfy Doob’s assumption.
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Remark. Let (X,) be a process of class (d) and such that
s lim sup,<. (X, — E*X,) £ 0.

The proof of Theorem 3.7 shows that X, converges stochastically. However,
(X ;) need not be a subpramart, because Example 9.6 below shows that (X,)
need not converge stochastically, even if (X,) is L!'-bounded.

4. Essential convergence under the Vitali condition V. In the present
section we prove various convergence theorems under the Vitali condition V7.
The first result asserts that stochastic convergence implies essential conver-
gence for fairly general functions f of ¢ and 7. Other convergence results follow
as immediate corollaries. It is also shown that if 17 holds then pramarts are
mils. In the next section the converse implication is proved.

THEOREM 4.1. Let (%) be a stochastic basis which satisfies the Vitali
condition V, and let f(a, 1) be a family of ¥, measurable random variables
defined for o, 7 € T, 0 < 1. Assume that for every t € J,

1{a=l}f(0'v T) = 1{a=t§f(tv T)y
and f(a, T) converges stochastically to f.; then f(a, 7) converges essentially to f,.

Proof. We first prove that f(f, r) converges essentially to f,. Assume the
contrary; then there exists e > 0 such that

Plelimsup <. {|f(, 7) — fo| > ¢) =

There exists an index ¢, in J and an # ,, measurable random variable f such
that

Pt fo —f1> €/4}) = ¢/8.

For every s = ly, set g, = esup,z f(s,7) — f|. Fix sy =2 t, and define
A, = {g, = 3¢/4} if s = 50, A, = 0 otherwise, so that

P(elim,sup A,) = 7¢/8.

By the Vitali condition I/, there exist indices sy, . . ., s, greater than s,, and
pairwise disjoint sets B; € % ,,, B, C A,;,, i = 1,...,n, such thatif B =
n B,
i=1 i

Plelimsup A \B) < ¢/8.

Choose r bigger than s;,, ¢ = 1,...,n, and define ¢ € T by ¢ = 5s; on By,
t=1,...,n,and ¢ = r on B Fix 7, 1 < ¢ < n; there exists a sequence (7;)
in T such that

esupf;s.'lf(siy 7) -fl = SUpklf(Sy %) _f|-
Choose K such that
P[B;N\ (Uit {| f(se, ) — f | 2 3¢/4})] = 4P[B].
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On the set B, define r = 7, where k is the first integer < K such that | f(s,, %)
— f| = 3¢/4 if such an integer exists, and 7 = 7 elsewhere. On B¢, set r = r.
7 is a.% , measurable simple stopping time. Since

f(61 T) _f = ZS€J1(0=S?(f(S7 T) —f)y

we have | f(g, 7) — f| = 3¢/4 on a set of probability = 3P (B). Hence given s,
there exist ¢, 7 such that s £ ¢ < 7, and

P f(o,7) = ful 2 €/2}) 2 €/4,

which contradicts the assumption slim, ,crf(o, 7) = f. Since for every
¢ = 7 and for every s,

1{17=.\']f(0'y T) = 1(U=S=f(sv T)y

it follows easily from the definition of essential convergence that f(s, 7)
converges essentially to f,.

THEOREM 4.2. Let (F ,) be a stochastic basis which satisfies the Vitali condi-
tion V, and let (X ,,F ,, J) be a stochastic process. Then s lim X, = X implies
elim X, = X (and therefore e lim X, = X ).

Proof. Apply Theorem 4.1 with f(s, 7) = X..

THEOREM 4.3. Let (Z ) be a stochastic basis which satisfies the Vitali condi-
tion V. Every subpramart satisfying Doob’s condition converges essentially. More
generally, the essential convergence holds if (X ,) 1s of class (d), 1.e., such that

liminf E(X ) 4+ liminf E(X ) < .

In particular, if J = N, then every subpramart (X,) such that
liminf E(X,t) + liminf E(X,”) < o

converges almost surely.

Proof. Apply Theorems 3.7 and 4.2.

THEOREM 4.4. Let (F ) be a stochastic basis satisfying the Vitali condition V.

For every pramart (X ,), e lim, ,¢r X (0, 7) = 0, and hence every pramart is a mil
(martingale in the limit).

Proof. Apply Theorem 4.1 to f(s,7) = X(o,7) = X, — E°X,, ¢ £ 7.

5. Necessity of the Vitali condition 1. The condition 1/, shown sufficient
for various convergence statements in the previous section, is also necessary.
For emphasis, we also repeat the direct assertions. Some new conditions are
added. If ; = s, forall 2 € N, we write (fz) = (sx), or (sx) < (f).

THEOREM 5.1. The following statements are equivalent:
(1) The stochastic basis (& ) satisfies the Vitali condition V.
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(2) The stochastic basis (F ) satisfies the Vitali condition W.

(3) Every stochastic process (X ,) for which X, ,cr converges stochastically, con-
verges essentially.

(4) Every subpramart of class (d), 1.e., such that lim inf EX # + lim inf EX ,—
< o0, converges essentially.

(5) Every submartingale (X, % ,, J) of class (d) such that (X 7, F ;, T) is a
submartingale, converges essentially.

(6) Every amart (14,) such that lim P(A4,) = 0, converges essentially (to 0).

(7) Every pramart is a mil (i.e., martingale in the limit).

(8) Every amart is a mal.

(9) Let (X ,) be an arbitrary stochastic process, and let 'V be any ¥ ., measurable
random variable, such that for almost every w, the number YV (w) s a cluster point
of the net (X ,(w)) ;. Given an arbitrary sequence (s;) of elements of J, there
exists an increasing sequence (i) of elements of T, such that (1) = (si), and
X, converges a.s. to V.

(10) Identical to (9) except that ¥ = elim sup X ,.

Proof. Obviously (2) = (1), (4) = (6), (7) = (8) and (9) = (10). Since
every L!'-bounded submartingale with the optional sampling property is an
amart, (4) = (5). The implications (1) = (3), (3) = (4) and (1) = (7) are
the statements of Theorem 4.2, Theorem 4.3 and Theorem 4.4. We prove
below (1) = (9), (6) = (2), (10) = (6), (5) = (2) and (8) = (2).

Proof of (1) = (9). (In the case J = N, the assertion (9) is due to [2], and
(10) to [6]). Fix k; choose s = s, and YV'.% ; measurable such that

PU|Y — V| = 1/4k2}) < 1/4k2
For t = s set 4, = {|X, — V'| £ 1/2k?*}; otherwise set 4, = §§. Using the
Vitali condition 17, one chooses pairwise disjoint sets B;, 7z =1,...,n,

B, €% ,,B; CA4,,such that
P(Uiza B)) =21 — 1/2k2%

One then defines 7, = ¢; on B, and 7, =t on (U<, B;)¢, where t = ¢;,
2=1,...,n Then r, = s, and

P({|X. — Y]z 1/k%) < 1/k2
Now X, converges a.s. to ¥ by the Borel-Cantelli lemma.

Proof of (10) = (6). Assume that (6) fails, and let (14,) be an amart such
that lim P(4,) = 0, but 1,, fails to converge essentially to 0. Set X, = 14,,
and ¥ = e¢lim sup 1,,, and assume that (10) holds. Then given an arbitrary
sequence (s;) in J we can find a sequence of stopping times (r;) such that
(rx) = (sx) and that X,, converges a.s. to Y. Since (X,,) is bounded by 1,
EX,, — EY > 0, which contradicts the amart assumption.

https://doi.org/10.4153/CJM-1980-009-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-009-1

100 ANNIE MILLET AND LOUIS SUCHESTON

The implication (6) = (2) is due to Astbury ([1], Theorem 3.1). For the
sake of completeness we also give this proof.

Proof of (6) = (2). Let 4 € % , and let (4,) be an adapted family of sets
such that 4 C elimsup 4,. Given a sequence (o) of numbers such that
0 <a <1and Hk(l — a;) = 0, define an amart (1¢,) as follows. Set

D = {(ti, Bi)i=1,....aln € N, B; pairwise disjoint,
1= 1,...,n,Bi€g‘-mBi CA“}'

Given G € &, write UG for U, pyce B. Define by induction two sequences (Gy)
in Z and (r;) in R as follows:

Go =@ and
Yo = SUDgeg,62 60 PIU (G\Go)]
Gy is any element of & such that G, D G,-; and

P[U (Gk\Gk—l)] 2 o1 Tk and
Yy = SUDgeg, ¢k PV (G\Gk)]~

Then G D Gy, G € & and
r-1 2 PLU(G\GH)] + P(\J (G\G-1)) 2 PIU(G\G)] + a1 7imr
Hence
e £ (1= ae)na £ Jozimea (1 — ay).
Set G = Uizo Gy, and denote U, mea B by \UG. Define
Ci=AN\Uumeauz: B, X, = lc,.

We show that for the stochastic process (X ,.%# , J), lim £(X,) = 0. Let
k € N, and choose f € J such that for all (t, B) € Gy, t = 1. Let 7 € T,
7 2 §; 1 takes values {4, . . ., {,. Define

G =G\ (tiv {T = ti} M Cli)i=l,-",n-

Since G, C G € &, and since X, = 1 (g\¢n, We have E(X,) £ r,.. Further-
more, setting 4’ = A\\U G,
A" Celimsup (A \\U G) C elimsup C,.

If the Vitali condition W fails for (& ,), there exists 4 € % _ such that
P(A’) > 0; hence the amart (lcl,f,, J) does not converge essentially.

Proof of (8) = (2). We keep the notation of the proof that (6) = (2),
assume that W fails, and fix s in J. Given n, we choose M, such that
[Tozizora1 (1 — a)) < P(A’)/2"*, and then choose t, in J such that
(s, B) € Gy, implies s = t,”. Let t be larger than s and t,/. Since

PUEX, >1/2}) = P(4")/2,
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P(lim inf,{ X ,, £ 1/2}) = 1, so that
esup .z, |[E°X, — X,| 2 ilo,.
Since P (e lim sup,C,) > 0, (X, & ,, J) is not a mil.

Proof of (5) = (2). Assume that W fails, and let (X,) be a potential,
0 = X, = 1, which does not converge essentially to 0. The supermartingale
S: = esup.>, £'X,, introduced in Proposition 3.7, satisfies Doob’s condition
and has the optional sampling property. Furthermore, S, converges to 0 in
L', but since X, = S, .S, does not converge essentially to 0.

6. Definitions and stochastic convergence for ordered stopping times.
Given a stochastic basis (% ), an ordered stopping time is a simple stopping
time 7 such that the elements fy, ¢s, ..., 1, in the range of 7 are (linearly)
ordered, say 1 < t» < ... < t,. We denote by 7" the set of ordered stopping
times. We set ¢ < | < 7if ¢ and 7 are in 17, and either ¢ = 7, or there exists
an s in J such that ¢ < s < 7. For the order <| <, 7" is a directed set filtering
to the right. An integrable real-valued stochastic process (X, .%# ,, J) is an
ordered amart if the net E(X )., converges for the order <|<. (Equivalently,
for the order =.)

ProrosiTION 6.1. (X ) @5 an ordered amart if and only if it has the following
LY difference property:
]in],y,ET/ E (lX (O', T)l) = O.

Proof. The proof is obtained by a slight modification of the proof of Lemma
2.1 in [1]; for the discussion of the difference property see also Section 6 of
(19]. If (X,) has the above difference property, then for each ¢ > 0 there is
s € Jsuch thats < ¢ € 17 implies

SUPacg, [E(14X, — LLEX,)| < e

Setting A = @, we see that the net (E(X,)),er- is Cauchy and hence converges.
Conversely, let € > 0; choose s € Jsuch thate = 5,7 2 5, 0, 7 € 1" implies

IE(X,) — E(X,)| £ e

Let s <o < | <r;forany 4 € %, define p =¢ on 4, and p = 7 on 4°.
Aso < | <7, p€ T'; furthermore

E(14(X (0, 7)) = E(X,) — EX).

Hence the left hand side converges to zero uniformly in 4 € %, if (X,) is an
ordered amart.

THEOREM 6.2. (Riesz decomposition). Let (X,) be an ordered amart. Then
X, can be uniquely written as X, = YV, + Z, where (Y,) 1s a« martingale, and
(Z:)rer+ converges to 0 in L' norm.
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Proof. The proof is similar to the proof of Proposition 3.4.

A submartingale (supermartingale) (X,) such that sup,|E(X,)| < o is an
ordered amart. Indeed, if o,7 € 77, ¢ < 7 (a fortiori if ¢ < | < 1), then
E(X,) £ E(X,) so that E(X,),¢r is an increasing net.

In analogy to the pramart we now introduce an ordered pramart, general-
izing the ordered amart. An integrable stochastic process is an ordered pramart
if slim, e X(o,7) =0, ie., Ve 35, such that sSo<| <7, 0, 76T’
implies

P{|X, — E°X,| > ¢) S e
An integrable stochastic process is an ordered subpramart if

S lilng‘feT/ X(Uv T) é 0

P{X, — E°Xt > ¢) £ e).

(i.e., V € > 0,3 ssuch that s £ ¢ < | < 7, 0,7 € T’ implies

ProprosiTiON 6.4. Let (X ) be an ordered subpramart and let X € R be fixed;
then Y, = X,V \1is an ordered subpramart. Let (X ,) be an ordered subpramart
of class (d); then the net (X.),err converges stochastically to an integrable random
variable.

Proof. Let (X,) be an ordered subpramart, and lete, 7 € 77,0 < | < 7. Let
7 =gon {X, <0}, 7 =7ron{X, = 0}; then 7" is in T”. Therefore the proof
of Lemma 3.6 extends showing that (X ,/*), hence (V,) are ordered subpramarts.
Let (X,) be an ordered subpramart of class (d). Choose an increasing sequence
(s.) of indices such thats, < o < | < 7 implies

P({X(e,7) > 1/n}) £ 1/n.

Assume that (X,).¢r» does not converge stochastically. Let § be a metric
defining the convergence in probability; there exists € > 0, such that for every
s € J, there exists 0,7 € 17, s £ ¢ < | < 7, such that §(X,, X,) > e Define
(Y, 9,) as follows: Set V; = X,, 9, =%, and choose ¢, and 7, such that
6()(”,X”) > e Set Y2 = X“, gg zcgz'ﬂ, Y3 = X”, gg = g;—”‘ Then
choose an index fy > s, {» > 71, such that

E(X,*) < 2liminf E(X ).

Choose o3 and 7, such that {; < ¢ < | < 72, and such that §(X,,, X,,) > e

Set Y4 = X121 g4 = y”, Y5 =_X02. g;’, =<g‘~azy Y6 = XT21 gs = }‘72. Th(‘,‘ﬂ
choose an index ¢3 such that

ty > s3, 13 > 719, and E(X ;7)) < 2lim inf E(X,7),

and so on. The proofs of Lemma 2.1 and Theorem 2.2 show that (V) is an
ordered subpramart of class (d) for (¢,). The remark at the end of Section 3
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allows us to deduce that Y, converges stochastically, which brings a contra-
diction.

7. Essential convergence under the ordered Vitali condition 1. In
this section we prove that essential convergence of ordered amarts and
ordered subpramarts is equivalent with Krickeberg’'s ordered Vitali condition
V’'. We also relate the essential convergence of X, to the stochastic convergence
of (X:)rerr.

A stochastic basis (% ,) is said to satisfy the Vitali condition V' if given
A ¢ %, and an adapted family (4,) such that 4 C elim sup 4,, for every
e > 0 thereexistindicest; <ty £ ... £ t,, and pairwise disjoint sets B; € Z ,,
B, CA,,1=1,...,n,such that

P(A\ Uiz.By) = e

A stochastic basis (& ) satisfies the Vitali condition W' if given 4 € # _ and
an adapted family (4,) such that 4 C elim sup 4, there exists a linearly
ordered sequence of indices t; £ t, £ ..., and a sequence of pairwise disjoint
sets B, ¢ # ., B, C A,, such that 4 C U,B,. We write (s;) < () if
sp =t for all & € N. We say that (&) s frequently above (s;) if (f;) admits
a sequence (f,,) such that (s;) = (4,,).

PROPOSITION 7.1. Let & be a class of stochastic processes (X ,,F ., J) where J
is an arbitrary directed set filtering to the right. Denote by € y the class of elements
of € for which J = N, 1.e., of the form (X,, % ,, N). Assume that every element
of € n satisfying Doob’s condition converges a.s. Fix (X , % ,,J) in € satis-
fying Doob’s condition and Vitali condition V'. Assume that there is a sequence
(sn) tn J such that for every increasing sequence (t,) which is frequently above
(52), X 1ny F 1y N) isin € y. Then X , converges essentially.

Proof. Assume the contrary. Since (X ,) satisfies Doob’s condition, it follows
from Fatou's lemma that eliminf X, < oo, elimsup X, > — o. Hence
there exist two real numbers ¢ < b such that

A={eliminf X, <a<b<elimsup X,}, P(4) = ¢ > 0.

Since (% ,) satisfies the Vitali condition V', there exists a finite sequence
HY = 0.0 = 1,9, such that s, = £ and

PA\Uigm (X 0 S a}) < ¢/4.
We can choose a finite sequence ;¥ = ... = ¢,,?, such that
t1(2) g S2, tl(2> g t’“(l)’ and

P(A\Uiénz {Xt.'(ﬁ) 2 b}) =< ¢/8.

We define by induction an increasing sequence (¢,) in J which is frequently
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above (s,), and such that
Pliminf X,, £a <b <limsup X,,) = ¢/2.

Since (X,,,# ,,, N) belongs to % y and satisfies Doob’s condition, this yields
a contradiction.

THEOREM 7.2. Let (F ) be a stochastic basis satisfying the Vitali condition
V', LY bounded mils converge essentially.

Proof. 1t suffices to check that the class of mils satisfies the assumptions
stated in the previous proposition.

Denote by % the class of mils. By Mucci’s theorem [25], every (X,, % ,, N)
in % y satisfying Doob’s condition converges almost surely. Fix (X ,, % ,, J) in
% , and for every s in J set

X, — E'X .

g = eSUPy=s <y
Since there exists a sequence (s;) in J such that

einfy g, = lim |, g, = O,
(X, F .., N) is a mil for every (t,) which is frequently above (s,).

THEOREM 7.3. Let (%)) be « stochastic basis satisfying the Vitali condition
17, and let (X,) be a stochastic process such that the net (X.),cpr converges
stochastically to X ... Then (X,).cr converges essentially to X .

Proof. We first prove that elim, X, = X_. Let ¢« > 0, and set
4 = elimsup {|X, — X | > a}.

Given e, 0 < € < /3, there exists an.# , measurable random variable X such
that

PUIX — X, > ) = e
Choose s € J, s’ 2 s, such that 7 =2 s/, 7 € 77 implies P({| X, — X | = ¢})
<e Forevery te€ J, set A, ={|X,—X|>a—¢ ift =5, and 4, =0
elsewhere; P(elimsup 4,) = P(4) — e. By the Vitali condition V’, there

exist finitely many indices t;, £ ... = {,, and finitely many pairwise disjoint
sets B, ¢ # ,,,B;,C A,,i=1,...,n, such that

Plelimsup 4\ U=, By) < e

Define 7 in 7" by r =t;on By, 1 =1,...,n, and 7 = ;3 on (U;<, By)S,
where t,,, is an index greater than 4, . . . , t,. Since 7 = s’, we have

P(4) — 2¢ £ Plelimsup4,) — e £ P({|X, — X| > a — ¢})

SPUIX, — X >a—2) +e = PUH{IX, — X > ¢) + € = 2e

Since this inequality holds for every ¢, 0 < ¢ < ¢/3, P(4) = 0, and hence
elim X, = X_. Therefore (X,),cp’ converges essentially to X .
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As in Section 5, we now prove that the condition V’, shown sufficient for
several convergence theorems, also is necessary. The following theorem is
similar to Theorem 5.1.

THEOREM 7.4. Let (F ) be a stochastic basis. The following assertions are
equivalent:

(1) (ZF ) satisfies the Vitali condition V'.

(2) (&) satisfies the Vitali condition W',

(3) Every stochastic process for which (X .).cr+ converges stochastically to X .,
s such that X , converges essentially to X .

(4) Every ordered subpramart of class (d) converges essentially.

(5) Every ordered amart (14,) such that im P(4,) = 0 converges essentially
to 0.

(6) Let (X,) be an arbitrary stochastic process, and let ¥ be any F , measur-
able random variable, such that for almost every w, the number V(w) is a cluster
point of the net (X ;(w)) cs. Gven an arbitrary sequence (si) in J, there exists an
increasing sequence (i) in 17, such that (ry) = (sx), and X, converges almost
surely to Y.

(7) Identical to (6) except that ¥ = e lim sup X ,.

Proof. The proof is similar to the proof of Theorem 5.1. In order to prove
(5) = (2), given an adapted family (4,), and 4 € ¥, A Celimsup 4,,
one defines

9 = {{(tiv Bi)2i=1...4,n {n 21,4

IIA

ts £ ... = t,, B, pairwise disjoint,

B, €% ,,B,CAui=1,...,n}.

Now proceed as in the proof of (6) = (2), Theorem 5.1.

8. Essential convergence under the controlled Vitali condition V*. In
the present section we introduce a new controlled Vitali condition V*, properly
weaker than 1", and a new class of controlled amarts, including amarts.

A simple stopping time 7 is called a controlled stopping time if there exists
7/ € T" such that 7' £ 7 and 7 is% ,, measurable; we then say that ' controls
7, and write 7/ ct 7. Denote by 7', the set of controlled stopping times. If &
and 7 are in 7', write ¢ <, 7 if there exists 7’ controlling 7, such that for each
o’ controlling ¢, o’ < 7. It is easy to see that (7', <.) is a directed set filtering
to the right. A stochastic process (X ,, F ., J) is called a controlled amart if the
net (E(X,)).er, converges. This of course means that there exists a number
z such that given any e > 0, there exists a ¢ in 7', such that if ¢ <, 7, then
|[E(X,) — 2| < ¢ in fact it is easy to see that one may require ¢ = s to be
in J. A stochastic basis (% ,) satisfies the controlled Vitali condition V© if
given an adapted family of sets (4,) andaset 4 € # _with 4 C elimsup 4,
for every ¢ > 0 there exists r € 7, and B C 4,, B € # ., where 7’ ct r, such
that P(A\B) < e. (Asusual 4, =\U [4,N {r = 1}].)
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It is easy to see that 17 is weaker than V° which is weaker than 1 (cf.
Section 12 below). In Section 11 we give examples showing that these three
notions are different. Clearly every amart is a controlled amart, and every
controlled amart is an ordered amart.

ProrosiTiON 8.1. Every supermartingale  (submartingale)  such  that
sup |E(X )| < <o is a controlled amart.

Proof. Let X, = Y, + Z, be the Riesz decomposition of the supermartin-
gale (X,) as an ordered amart (cf. Theorem 6.2). Since

Yl = llm lTET' Eer é Xtr

the supermartingale and ordered potential (Z,) is positive. Let 7 € T';, and
' ct r; 7 takes on values {4, . . . , t,. Since

E(Yr) = E(Xr) = E(Y,) + ZfénE(l{T=ti) Zti) = E(yr) + E(ZT’)v
and E(Z./) | 0, the net (E(X,)).¢cr, converges.

THEOREM 8.2. Let (# ) be a stochastic basis satisfying the controlled Vitali
condition V°. Then given a stochastic process (X ,), the stochastic convergence of
the net (X ,),er, tmplies the essential convergence of X .

Proof. Set X, = slim,¢r, X,. Letd > 0, and set D = elim sup {|X, — X
> d}. Given e > 0, there exists an.%# ;, measurable random variable X such
that

PHIX — X, > ¢}) = e
Choose s; € J, s; = s, such thatif + € T, and s; <. 7, then
PH|X, =X, | 2¢€) Ze

For every t € J, set A, = {|X, — X|>d — ¢ if t =51, and 4, = 0 else-
where; then

Pelimsup 4,) =2 P(D) — e

By the Vitali condition ¢, thereist € T, sy < 7' ctr,and B € # .., B C 4.,
such that

Pelimsup A,\B) = e
Therefore, we have
P(D) — 2¢ < Pelimsup, 4,) — e = P({|X, — X| > d — ¢})
= PU{IX: — Xo| >d —2¢}) + e
Since e is arbitrarily small, it follows that P(D) = 0,and henceelim X, = X .

THEOREM 8.3. Let (¥ ,) satisfy the condition V°. Every controlled amart of
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class (d), t.e., such that liminf E(X %) + lim inf E(X,”) < o, converges
essentially.

Proof. Given a controlled amart (X,), let X, = ¥V, + Z, be its Riesz de-
composition as an ordered amart. Assume (X,) of class (d); then (V) is of
class (d). Since V*¢implies V, Y, converges essentially by Krickeberg’s theorem
(cf. Section 4 above). Let ¢ > 0 and let s € J; define 4, = {Z, > a} if
t=s, A, = 0 elsewhere, and set 4 = elimsup {Z, > a}. Given ¢ > 0, V°
yields the existence of 7 € T, s £ ' ctr,andof aset B € % ,,, B C A., such
that P(A\B) = e Since 13 E”'Z, 2 a 13, we have

[E"Z.]y = a(P(4A)\e).

We now prove that given ¢ > 0, there exists s € J such that if s <.7, 7’ ct 7,
then

|Z,, — E"Z]: = e
Let F be an arbitrary set belonging to.# ,.;set ¢ = 7/ on F, and ¢ = r on F°.
Then for any ¢ € J,

fo=tf=U"=t0N U {r=tNF)ecF,,
so that ¢ € T, 7’ cto. Furthermore E(1,(Z,. — Z,)) = E(Z, — Z,). Since
(Z,) is a controlled amart, we can choose s so big that

1Z. — EXZls = supres, [E(p(Zo — Z))| S ¢

if s £+ and 7' ctr.
(Z,) is an ordered potential; therefore we also can have ||Z./]: < e if
s £ 7' € T'. Hence for every ¢ > 0,

alP(4) — ¢l = |[E7Zy = 2.

We deduce that 2(4) = 0, and a similar argument shows that
Pelimsup {Z, < —a}) = 0.

Hence Z, converges essentially to 0.

We observe that Theorem 8.2 cannot be used to derive Theorem 8.3 in
analogy to the derivation of Theorem 4.3 from Theorem 4.2, because there are
L' bounded controlled amarts such that (X,),c;, does not converge stochasti-
cally (see Example 11.5 below).

Finally, we show below in Example 11.4 that the condition 17¢ is not neces-
sary for convergence of L!-bounded submartingales.

9. Examples and properties in the case / = N. In this case, every
increasing stochastic basis (% ,) satisfies the Vitali conditions V7 and V’.
By Theorem 4.4, every pramart is a mil. In this section, we discuss for J/ = N
the validity of the converse inclusion, further simple properties of pramarts,
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and elementary convergence theorems obtained for weaker notions. A stochas-
tic process (X,,-#,) is a semiamart if (E(X,)).cr is bounded.

LemMA 9.1. Let (X,) be a sequence of integrable random variables X, with
disjoint supports A,; set A =\J A,, and define ¥, = (X4, ..., X, A). Then
(X,) is a pramart. The following assertions are equivalent:

(1) (X,) s an amart.

(2) (X,) s a semiamart.

(3) ZE(X.]) < .

Proof. Given e choose M such that P( U,>»4,) < e;let M < ¢ < 7. Since
Upcnd, € F, E°X, — X, =0 on the set (Un<y 4,)\U 4, and (X,) is a
pramart. (1) implies (2): see [12]. Assume that (2) holds, and for each n = 1
set

Il

inf{k]l =k = n, X, >0 A (n+1), and
T, =inf {k]l k= n, X, <0} A (n+1).

071

Since 4, are pairwise disjoint,
E(Xnn) - E(X‘fn) = Zﬁzl E(Iin),

and hence > E(]X,]) < . Assume that (3) holds; given ¢ > 0 choose M
such that Y ,>n E(|X,]) < e andletr € T, 7 = M. Since E(|X,|) < (X,)
is an amart.

Example 9.2. The maximal inequality fails for pramarts. Let (4,) be a
measurable partition of & with P(4,) = 1/n — 1/(n +1). X, = nlogn 1,4,
and %, =oc(Xy,...,X,). (X,) is a uniformly integrable pramart, but
supy NP[{sup |X,| > \}] = + .

Example 9.3. There exists a pramart of class (B) (i.e., satisfying
sup, E£(|X,|) < o) which is not an amart.

Let us follow the notations of Proposition 1.13 in [19]. Let (a,) be such
that 0 < e, = 1, H‘fan =0, (p,) such that 0 < p, = 1, [[Tp. > 0, and
(pa), Pn € N, p, = 0, be three sequences of numbers. Given n = 1 set

he = [Ticipa™ =1, and Ly =1, + 14+ [[izip.

Define by induction HZ:] p. disjoint intervals 4,(i1, ..., 17,) (1 £ 14 £ py,
k=1,...,n) of equal length H’§:1 a; pi~ 1, which are subsets of

An—l(ily Ce ey in—l)- Set

Xln = Ov and Xl,.+v = hn 1;1"(“ YYYYY in)? 1 é 14 é H!;l=1 Piv
where (71, ..., 1,) is the »-th element in the lexicographic order of the set of
n-tuples {1,...,p1} X ... X {1,...,p,),and set#, = ¢(X4, ..., X,). By

Proposition 1.13 in {19], (X,,%#,) is of class (B), and is not an amart. Given
two stopping times 1 = ¢ = /,, since the support of X, is included in the union
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By_iof Ayi(dy, ..., 1,—1), for 1 €4, = py,..., 1 £ 4,1 £ p,—1, and since
By €EF , C %, X(o,7) = 00n B,_:". Since

P(B,.1) = H7§;}(X1-,
(Xm grn) is a pramart.

Example 9.4. Let (X,) be a sequence of independent random variables such
that lim inf £(X,”) < o (or lim inf E(X,t) < 0), and set

gd/-n = U()&’l,...,X,,).

Then (X,, %#,) is an amart if and only if (X,, %#,) is a pramart.

Assume lim inf E(X,~) < o, and suppose that (X,,.#,) is not a semi-
amart. If lim inf E(X,*) = 4 o, we have E[sup X,*] = + . It is easy to
see that if (X,) is not a semiamart, then at least one of the two random
variables sup X,, and inf X, is not integrable. Hence clearly we may assume
E(sup X,,*) = 4+ o0, and lim inf E(X,~) < o, so that for every K,

Elsup,2x X,t] = 4+ o, and lim inf,>x E(X,”) < 00.

Fix K, and denote by T« the set of (not necessary bounded) stopping times 7
which depend only on (Xg, Xgi1,...), le., {r =k} =0 if k<K, and
fr =k} € c(Xgk,...,Xs) if =2 K. Theorem 3.1 in [19] implies that
sup-er, ££(X,) = + 0. Since lim inf,>x £(X,~) < o0, there exists a simple
stopping time rx in Tk such that E(X..) > K + 1, and hence for which
EK'IX,K > K + 1. Given € > 0, there exists K, such that K, £ K implies
Pl{Xx = K}] < ¢, and therefore X, converges stochastically to + oo. We
now show that under the assumption lim inf E(X,”) < o, a pramart does
not converge in probability to + 0. Assume the contrary; given 0 < e < 1/2
choose 7 such that lim inf E(X,™) < en/8, and K such that K < »n < p implies

(X (n, p)] > ) < e

Fix n > K and choose M such that P({|X,| £ M}) =21 — ¢/4, and
4(e + 7+ M) < eM?. Finally choose p = n such that P({X, = M?*}) =
1 — ¢/4,and E£(X,7) £ en/4. Then

PUIX( p) = ef) < /4 + PUIX(n, p)| < ¢ N 1[X,] = M)
/2 + P({|1EZ"X,| < ¢ + MIN{X, = M2})
36/4+P({E“7"X+<e+n—|— MiN (X, = M?})
3e/4 + M2E(X, 1 (s %, setniar))

€.

IIA H/\ A TIATIA

Since ¢ < 1/2, this contradicts the assumption P ({|X (1, p)| > ¢}) < e. Hence
under the assumption liminf E(X,*) < o, or liminf E(X,”) < ©, a
pramart (X,, #,) is a semiamart, and therefore by Theorem 3.3 in [19],
sup X, and inf X, are integrable, so that sup |X,| is integrable. By Theorem
4.3, X, converges a.s., and by Theorem 3.3 in [19], (X, % ,) is an amart.
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Example 9.5. Let (V,,) be a sequence of positive integrable random variables
adapted to a stochastic basis (% ,), and let ¢, T, ¢; > 0. Assume that for every
n, Y,41 is independent of % ,, and define

X = ¢! 275=1 Y.
Then (X,) is an amart if and only if (X,) is a pramart.

Proof. Suppose that (X,) is a pramart and is not a semiamart. Since
sup X, = supr X,, sup X, is not integrable. Fix M, and for every k € N, set

Zy = Carpr ! Z’;:I Vg and gk = U(YM+lv ceey YM+k)-

Since E[sup Z,] = + o, applying Theorem 4.1 [19] we define for each M a
stopping time o) for the stochastic basis (%,), such that E[Z,,] = M. Set

i = M + ay;since X, = Z,,,, we have

EFn(X, )z E*x(Z,,) = E(Z,,).

M

Now using the pramart property of (X,) we deduce that X, converges in
probability to + oo. This brings a contradiction (cf. the Example 9.4 above).
(X,) is hence a semiamart, and Theorem 4.1 [19] implies that sup X, is
integrable, so that (X,) is an amart.

Example 9.6. We have shown that for every subpramart (X,, % ,) satis-
fying Doob’s condition, the net (X,),cr converges almost surely. The proof of
Theorem 3.7 shows that given a stochastic process (X,, F,) satisfying Doob’s
condition, such that given any e > 0, there exists M such that M = n = 7
implies P({X (n,7) > €}) < ¢ one has that X, converges stochastically.
However, the following example shows that X, need not converge a.s. Let (4,)
be an independent sequence of sets, such that P(4,) = 1/x, and set X, = 1,4,

F,=0cXy, ..., X,).Givene>0andn <7 and P({X(n,7) > €}) < P(4,);
hence (X,,%#,) has the property mentioned above. By the Borel-Cantelli
lemma, lim inf X, = 0 a.s., and lim sup X,, = 1 a.s.

Example 9.7. There exists a martingale in the limit which is not a sub-
pramart.

Theorem 2 in [15] shows that the class of mils indexed by N does not have
the optional sampling property, and hence that the class of mils is different
from the class of pramarts. It is easy to check directly that the example (iii)
Theorem 2 in [15] is a mil which is not a subpramart: (4,) are independent
events, P(4,) = 1/n%, X, = —nls,, F, = o(dy, ..., 4,).

Example 9.8. There is an L!'-bounded subpramart that is not a mil. Let 4,
be independent events with P(A4,) = 1/n% Let % , be the o-algebra generated
by Ay, ..., 4dy;n € N.LetX, = xn?1,.1f n £ ¢ = 7 then

P(X, — E°X,>¢) S P(X,>0) £ D 5,P(A) =0 (n— 0).
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Thus (X,) is a subpramart. Now
X, — E¥»X, 1| — las,
so that (X,) is not a mil.

We note that Proposition 1.5 in [12] asserts that given an amart (X,, & ,),
and an increasing stochastic basis (¢,), 9, C %#.,, (EX,, 9,) is an amart.
This property fails for pramarts and subpramarts. The sequence (X,) given in
Example 9.7 is such that (X,, %) is a pramart because X, — a.s., and
(X,,%,) is not a subpramart (and hence not a pramart).

Example 9.9. To give a common generalization of subpramart and mil, one
can attempt to define a submil by the following property:

lim sup,[supiz, X (n, k)] < 0 a.s.

However the following example shows that submils are without interest since
they do not have convergence theorems. Let 4, be independent events with
P(4,) = 1/n?; define Xo,11 = 1, Xo, = n? 1, for each n, and set F, =
(X1, ...,X,). Then

lim sup,[supsz, (X, — E*X;)] = lim sup(X, — 1) = 0.
However P(X,, = 0) — 1,limsup X, = 1la.s.,and lim inf X, = 0 a.s.

10. Derivation in Euclidean space and Vitali condition 1. In the
present section, # denotes a positive integer and P denotes Lebesgue measure
on (0, 1]". The following proposition shows that the Vitali condition V is
satisfied in the classical setting of differentiation in r-dimensional Euclidean
space. A standard argument shows that the Vitali condition V could also be
stated as follows (similar lemmas can be proved for V" and 1°).

LeEmMA 10.1. Let (F ) be a stochastic basis. Assume that there exists a constant
a, 0 < a < 1, such that for each adapted famaily of sets (A ,) withA = elimsup 4,,
there exist indices ty, . . . , t,, and pairwise disjoint sets By, B; € F ,,, B, C Ay,
1 =1,...,n, such that

PlAN (UigaBi)] 2 aP(4).

Then (¥ ) satisfies the Vitali condition V.

Proof. Let (4,) be an adapted family of sets, let 4 = elim sup 4,. Let
D; = Uiz, B, with pairwise disjoint B;, B; € % ,,,B; C A, fori =1,...,m,

and P(AN D) 2 aP(A4). Let s; be greater than ¢,,...,4,, and set 4,/ =
AND, if t = 55, A, = 0 otherwise. Since A\D; = e lim sup, 4/, there exist
finitely many disjoint sets B;, ¢ = n; + 1, ..., n, such that

B, € #,,B,C A4, and P((A\D1) N D,) = aP(4A\D;), where
DZ = Un1+l§i_§_nzBi~
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One defines by induction a sequence of pairwise disjoint sets B;, B; € % ,,,
B; C A, such that at the end of the kth step,

P(A\U iz, Bi) £ (1 — a)*P(4).

Given a countable partition ¢ of [0, 1]7, by the diameter d(¢) of ¢, we mean
the supremum of the diameters of the elements (atoms) of t.

ProPOSITION 10.2. Let € be a collection of open subsets C of [0, 1]7. Assume
that € is a family of substantial sets, i.e., there exists a constant M, such that
every C in € is conlained in an open ball B with P(B) < MP(C). Let J be a
family of countable partitions (modulo sets of measure 0) of [0, 1]7 into elements
of €, such that for every € > O there exists t in J with d(t) £ e. J is ordered by
refinement, t.e., if s, tarein J, s < t, then every atom of s is a union of atoms of t.
J s assumed filtering to the right. Then the stochastic basis (¥ ;) of a-algebras
generated by the partitions t satisfies the Vitals condition V.

Remark. A simple example of such families J is a family, ordered by refine-
ment, of countable partitions of [0, 1]” into parallelepipeds such that the ratio
between the longest and shortest edges is bounded, and also limd(t) = 0
(cf. [23], p. 538). In the case » = 1, J is a family of countable partitions of
[0, 1] into intervals such that the length of the greatest interval in ¢ converges
to 0. Then Proposition 10.2 follows from a classical lemma due to Vitali
(see e.g. [27], p. 95).

Proof of the proposition. Let (4,) be an adapted family of sets, and set
A = elim sup, 4, Assume that P(4) # 0. Given ¢ > 0 choose s in J such that

Plesup iz, A \A] = eP(4),

and an increasing sequence (s;) in J such that s < sy, and d(sx) = 1/k for each

k. For every k, there exists a sequence ({;,), in J such that #;, = s, hence
d(trn) = 1/k, and A C U,A ... Decompose each A4, into its atoms of the
partition {; ,, and denote by % the family of all such atoms, each of which is
included in esup,z; 4, Let ¥’ be a finite subfamily of ¥ whose union 4’
satisfies P(4’) =2 (1 — €)P(A4). We can choose a finite disjoint subfamily of
%' whose union D C esup,>, 4, has the property P(4’) < M3"P(D) (see
e.g. [28], p. 154). Hence

P(DN A) = P(D) — P(DN 4°) = M7'37"P(4") — P(esup iz, 4 \4)
= P(A)[M~1377(1 — €) — .

The proposition now follows from Lemma 10.1, because e can be chosen so
small thata = M~1377(1 — ¢) — e > 0.

We now produce a general method of constructing amarts, related to the
classical setting of derivation theory. The following may be considered as a
derivation theorem for not necessarily additive set-functions.
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ProrosiTioN 10.3. Let (%) be the stochastic basis generated by a family J of
partitions t of [0, 1], satisfying the assumptions of Proposition 10.2. Let Q be a
finite signed measure absolutely continuous with respect to P on F ., denote by X
the Radon-Nikodym derivative of Q with respect to P. Let f and g be two real
functions such that f(0) = g(0) = 0, f'(0) and g'(0) exist, g'(0) = 0. The
stochastic process (X ,) defined for every partition t by

flo)]

L T il § 1/1

CT & glP(4)]

’
15 an amart which converges essentially to£—7(%))—X . The martingale (V) in the Riesz
decomposition of (X ,) 1s given by
J'0) o

—m—t =L

B i g (0) P(4)

Proof. Let f(x) = xf’(0) + x ¢(x), and g(x) = x¢’(0) + x ¢ (x). Given
€> 0,0 < e < [g'(0)], choose a > 0 such that |x| < a implies |¢(x)] < ¢ and
|¢(x)| < e. Then choose s in J such that for every atom 4 in s, P(4) < « and
|0(4)] < e;letTbein T, r = s. There exists a partition £ (7) of [0, 1]” whose
atoms satisfy P(4) < a and |Q(4)| < a, such that

x.- 3 dew)

B acon glP(4)] 4

Set Z, = X, — Y,. Since by an easy computation

o | 20)el0)] — F0)yIPA)]
B =] 2 "0y ©0) + pPA)]]

1) 4 1¢'(0)]
éAewT) ‘ lg" (0)](Jg (0)] — € [Q[(4),

(X,) is an amart with the Riesz decomposition Y, + Z,. Proposition 10.2
implies that (% ,) satisfies the Vitali condition V, and hence by Astbury’s
Theorem, i.e., the amart case of Theorem 4.3 below, X, converges essentially.
The relation Y, = (f'(0)/¢’ (0))E'X yields the identification of the limit
of X,.

Q4)

It is also possible to let the functions f and g depend on ¢, provided that there
is a uniformity of behavior in a neighborhood of zero. More precisely, we have

PRrOPOSITION 10.4. Let (% ,) be the stochastic basis generated by a family J of
partitions t of [0, 117, satisfying the assumptions of Proposition 10.2. Let Q be a
signed finite measure absolutely continuous with respect to P on ¥ ; denote by X
the Radon-Nikodym dertvative of Q with respect to P. Let U be a neighborhood of
zero, and let (f,) and (g,) be two families of real-valued functions continuously
differentiable in U, such that f,(0) = g,(0) = O for every t. Assume that there
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exist f and g differentiable in U, such that lim f, = f,lim g, = g, ¢ (0) £ 0, and
such that f| and g, converge to f' and ¢ uniformly in U. The stochastic process
defined for every partition t by

o« fl0W)]
Xo= 2 @)

15 an amart which converges essentially to §7£%))— X. The martingale (Y,) in the Riesz
decomposition of (X ,) is given by

yo s L 0w

- g (0) P

The proof, similar to the argument above, is omitted.

It should be pointed out that the two previous propositions can be derived
without too much effort from the essential convergence of martingales. We now
give an application of the amart theory to differentiation of superadditive set
functions. A non-negative, finitely additive (respectively superadditive) set
function defined on an algebra @ is called a charge (respectively a supercharge).
A pure charge (respectively pure supercharge) on € is a charge (respectively a
supercharge) which does not dominate any non-trivial measure (respectively
non-trivial charge) on @. Let \ be a supercharge defined on a field &. X\ admits
a unique decomposition X = \,, + N\, + \;, where A, is a measure, A\, is a
pure charge, and )\ is a pure supercharge. \,, is given by

Mn(A4) = inf, 2 N(4),

where inf, is the infimum taken over all countable partitions (4 ;) of 4. \. is
given by

)\C(A) = inff Zl(A - )‘m) <A i)v

where inf, is the infimum taken over all finite partitions (4 ;) of 4. In the case
where X is a charge, this statement is due to Yosida-Hewitt (cf. [30]), and the
general decomposition is proved in [29].

THEOREM 10.5. Let J be « set of finite (respectively countable) measurable
partitions of Q, ordered by inclusion, and let (F ,) be the stochastic basis of
a-algebras generated by the partitions t. Let (Q,) be a decreasing family of super-
charges on \J & ,, (i.e., Q, is a supercharge on \J F ,,and s < t, A € \U F,
implies Q;(A) = Q,(A)), and set for each partition t

%Y
o= abay e

with the convention Q,(A)/P(4A) = 0 if P(A) = 0. Then (X,) is an amart.
Assume that for every atom A in the partitions t, P(A) # 0. Denote by \ the
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supercharge on \J F , defined as the limit of Q.. If J is a set of finite partitions,
the Riesz decomposition of (X ,)1s X, = YV, + Z, with

Vo= 2 50y W Ze= X P(4)

l.A-

If J 1s a set of countable partitions such that every countable partition into elements
of \U F , belongs to J, then the Riesz decomposition of (X ,) is

_ An(4) _ Q.(4) — M(4)
V=2 Py e L= L ey

Remark. Let (%) be the stochastic basis generated by all the countable
partitions of [0, 1]” into substantial subsets. Applying Theorem 4.3, Proposi-
tion 10.2 and Theorem 10.5, we see that if (Q,) is a decreasing family of
supercharges on (& ), then X, = Y 4¢,0,(4)/P(A4) 1, converges essentially.
For this result, the amart property of (X,) is more important than the super-
martingale property which (X,) also possesses, since arbitrary L' bounded

supermartingales converge essentially only under Vitali conditions stronger
than 7 (e.g., V" and V).

Proof. Let ¢ = 7 be in 7, o taking values (s;), and = taking values (¢;).
Since a supercharge is automatically monotone and countably superadditive,

EX,. =Y > (P(A))“(f X,dP)lA
i A€s{ , AClo=s7]) A
=2 X <P<A>>‘1(Z 2 Q,j(B))lA
T AcsiACto=si) 7 Bet;,BSlr=1;1 N4
sy x  ew(Z etr=na)
i A€si,AClo=si ti=si
< X,.
Let J be a set of finite partitions. Since \, is a pure supercharge, given any
e > 0 there exists a finite partition 4,, ..., 4, into sets of \U # , such that
> iza N(4:) £ e Choose ¢ such that 4, € %, i =1,...,n, and such that
for everyz=1,...,n, Q,(4;) —N(4;) < ¢/n:let I’ be greater than ¢. From

the inequalities
O é ZAEZ’ (QI’(A) - (}\m + )\c) (A))
= Zién(Ql(Ai) - )\<A z)) + Zién)\s(Ai) = 2&

we deduce the Riesz decomposition of (X ;). A similar argument applies in the
case of countable partitions.

Remark. Theorem 10.5 can also be derived from the implications (1) = (5)
or (1) = (3) in Theorem 5.1.
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11. Examples for general index set J. In the present section we show that
the conditions 17, 17 and 17 are all different. Krickeberg’s remarkable work
earlier showed that 17 is different from 17/, and that 1" is not necessary for
convergence of L®-bounded martingales. The examples also give some informa-
tion about the connections between the maximal theorem and essential con-
vergence. The condition 1'%, sufficient for the essential convergence of super-
martingales (cf. Section 8), is shown to be not necessary.

Example 11.1. (A modification of an example in [22]). The stochastic basis
satisfies 1”7 but does not satisfy 1. (X ) is a supermartingale satisfying Doob’s
condition, and hence a controlled amart. (X,).¢r is not a supermartingale, X,
does not converge essentially (and hence neither (X,) nor (—X,) are sub-
pramarts); in fact, elimsup X, = + .

Let (¢;) be a sequence of integers, 0 < ¢; T %0, such that for every ¢, ¢ 41 is
a multiple of ¢,. Let J be the set of ordered pairs (¢, j) for 1 < j < ¢;, and
denote by % (i, j) the s-algebra generated by the partition

[(k— 1ei Y ke M, 1 £k Z e

On the set J we define the order (z,7) < (k,/1) if 2 < kor (1,7) = (k,1). Then
(F ) satisfies the Vitali condition 17 (see the remark following Proposition
10.2). Let0 £ ;1,0 = B8;],@: = B4, 2 € N, and set

o Ja on [(G—= Ve et
X@.j) = B; elsewhere.
(X (7,7)) is a supermartingale if and only if Vi, Vj = ¢y, VE = ¢i1, V4 €
F(1,7), E(Ay X34, 7)) =2 E(1,X (G + 1,k)). If suffices to consider sets 4
atoms of % (4, j). Hence if for every 1,

Cip17 a1 £ €7 (B — Biv1),

(X (4,7)) is a supermartingale. This condition is e.g. satisfied for ¢; = 2%,
B: = 17!, and «a; = 7. Obviously lim inf X (¢,7) = 0, lim sup X (z,j) = + o,
and X (z,7) converges to 0 in L!. By Proposition 8.1 and Theorem 8.3, 17
fails. (Furthermore, the condition 1'? fails; cf. Example 11.4 below.)

Example 11.2. In the following example the stochastic basis (% ) satisfies
the Vitali condition 17, (X,) is a pramart and an ordered amart, but not an
amart, submartingale or supermartingale, and the maximal theorem fails. Let
Q=10,1[, and let r, € N, 1 =ry, 7. T and s, = r,/28 € N, b =2,3,....
J is the set of pairs (7, j) with 1 < j < 54,1 € N, ordered by (7,7) = (k,I) if
either (4,7) = (k, ) ori < k. .# (1, 1) is the s-algebra generated by the parti-
tion Py = {[0, 271, [21, 1[}. For 1 £ j < s, the s-algebras % (2, j) are the
same, and generated by the partition P, composed of [0, 272, [27, 1[, and
se intervals of equal length dividing [272, 2~'[. At the next step, the interval
[0, 2—2[ is divided into [0, 273, [27%, 272[, and the second interval is again
subdivided. (A similar constructicn proving a different point appears in [1]).
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More generally, for ¢ fixed and 1 £ j < s, the g-algebras % (1, j) are identical
and generated by the partition P; of @ which agrees with P;_; on the set
(2% 1[, contains [0, 277, and s, subintervals of equal length of [2—7 2—#1[,
Since the s-algebras % (k, 1) agree on D; = [2="+! 1] if (k1) = (4, j), and
D; TQ, itis easy to see that the condition 1" holds. Let «; and §8; be positive
numbers such that Y a,;/r; < o, 8;] 0 and let

a; on [24 + (] = 1)/ry 27" + /il
B: elsewhere.

X(’lv]) = {
Thenif 7 € 77, 7 = (,7), E(X,) £ D s=: (/7)) + B:— 0 (i — ); hence

X (1, 7) is an ordered potential. Now suppose in addition that a; are chosen so
that a;2=! — 0. (e.g. r; = 1222, a; = 221 B8, = 172). Letting 7 = (4,j) on
27"+ G—=1)/r, 27 +j/rf, 1 £ j < s, and 7 = (1, 1) outside of [2—, 2— 1],
we have a simple stopping time 7 € T, such that X, = a;1j2—:,2—i+1[; hence
lim sup,crE(X,) = + 0. (X (4,7)) is not an amart; however, it is easy to see
that X (¢, j) is a pramart. Since for (¢, 7) < (k, 1), X (1,j) = B;and X (k,[) = B
on [2—%1 1], X (1, 7) is not a submartingale. X (7, j) is a supermartingale if and
only if

aip1/Tiv1 + B (278 — 1/ri1) < 827 for every 1.

With the particular values assigned above to a;, 8; and r;, X (z,7) is not a
supermartingale, and for every 7, a; Plsup X (k, 1) > ;] = 2%

Example 11.3. In the following example, the stochastic basis satisfies the
controlled Vitali condition 1", but does not satisfy the ordered Vitali condition
V'.Let @ = [0, 1], let P be Lebesgue measure on [0, 1[, and let J = {(4, j)|j =
1,2,...,2%2=0,1,...}. On J define an order = by (z,7) = (k1) if
(i,7) = (k1) or i < k, and for every (i, ) let % (i,j) be the s-algebra of
Borel sets of [0, 1[. The controlled Vitali condition Vs satisfied because (0, 1)
controls each 7 € 7, hence 1" is equivalent with 1”7 which holds (cf. Section
10). However,let A (¢, j) = [(j — 1)2~% j2— . Clearly lim sup 4 (7, j) = [0, 1].
For every finite increasing sequence (i1, 71) =< ... = (1,, Jp) with 7, > k we
have

P(U,a A (i0,7) £ 2 poi27? = 27F,
and hence 1 fails.

Vitali condition V. The following example shows that V¢ is not necessary
for the essential convergence of L' bounded supermartingales. We at first
notice that the essential convergence of L' bounded supermartingales holds
under a condition 1%, which is then shown by example to be strictly weaker
than V. V%is the logical union of V*(a), @ > 0, defined as follows. Let a > 0;
(F ) satisfies the condition V%(a) if given an adapted family of sets (4,) and
aset A€ % _ with 4 Celimsup 4, for every ¢ > 0 there exist 7 € T,
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7’ ct 7 such that
PAN{E"1,. Z a}) £ e

(The condition V¢ is obtained for a = 1). Let (& ,) satisfy 1%, and let (Z,)
be a positive controlled amart such that lim.¢z, £(Z,) = 0. A slight modifica-
tion of the proof of Theorem 8.3 shows that Z, converges essentially to 0.
Hence the implication (6) = (1) in Theorem 5.1 proves that V¢ implies 1.
Now let (X ;) be an L! bounded supermartingale. The proof of Proposition 8.1
shows that we can write X, = Y, + Z,, where (Y,) is an L' bounded martin-
gale which converges essentially because V¢ implies 1, and Z, is a positive
controlled amart such that lim,¢r, £(Z,) = 0; hence Z, converges essentially.

We now show that the condition 1'% is strictly weaker than 17

Example 11.4. Let @ = [0, 1], let P be Lebesgue measure on @, and given a
positive integer M, let J = {(4,7)|[t € N,1 £ j £ M%. On J define the order
(t,7) £ (b, 1) ifi < kor (i,7) = (k, ). Let # (i, j) be the o-algebra generated
by the partition [(k — 1)M~%, kM~, 1 £ k = M'. For every atom B of
F (i 4+ 1,7), the atom B’ of % (i, 1) containing B satisfies the relation
ECVIy = M~1p. Set A(1,7) = [(j — 1)M~%,jM~*. Fix ¢ and consider
rC T €T, ¢, 1) <t'ctr.SetD = A.N {r = 7'} € F#,.;then

P(D) £ M~(M — 1)~ and E"1,, < 1p + M~'1,..
Hence if M > 1, for every a > M~!, V%) fails and V¢ = 1"%(1) fails. We
now show that 14(M~1') holds. For every B ¢ # (i + 1,7), the smallest
element B’ € & (i,1) such that B’ D B satisfies E(?'V1y = M—'1,. Let
B(z, 7) be an adapted family of sets. Given ¢ > 0 choose

@ = {(ivlvjl(l))v e ey (ilvjnl(l))y coeey (ikvjl(k))v e e ey (ikyjnk(k))}
such that 7; < 17, < ... < 1, and

P(lim sup B(1, )\ Uci,pep B(1, 7)) = e

Let By’ be the smallest element of % (i1 — 1, 1) which contains B (i1, j; (V).
Set 7/ = (13 — 1,1) and 7 = (11, /1Y) on By. We now consider the first pair
(1, 7) listed in & after (i1, 7;V) such that B(7,j) M By = @ (if such a pair
exists), say (k,1). Let By the smallest element of % (k¢ — 1,1) such that
B(k, 1) CByY, and set 7/ = (k — 1,1) and 7 = (k, /) on By. If for every
element (7, ) in & listed after (i1, /;V) we have B(i,7) C By, set 7 = 7/ =
(i1 + 1, 1) on B,° In a finite number of steps we define stopping times 7 € 7',
7’ ct 7 such that

{E"1p, 2 M~} D U pes B3, j).
Hence % (1, j) satisfies V4(M~1).

Example 11.5. In the following example, (X,) is a controlled amart satis-
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fying Doob’s condition, such that the net (X,),cr, does not converge stochas-
tically, X, does not converge essentially and (|X,|) is not a controlled amart.
Let @ = [0, 1], and let P be Lebesgue measure on [0, 1{. Set J = {(1, j)|
1 <7 =21, ordered by (4,7) = (k1) if (4,7) = (k,1), or 1 < k. Let
& (i,7) be the o-algebra generated by the partition [(k — 1)2—¢ k2=,
1<k =28 Set

X(1,7) = liejmpe—ii-ne—it — Li@j—na—izje—i
for (4,7) € J. Letr € T, (3,1) <.7; then

E(X.)| S Xpzi27 = 2750,

(X (4,7)) is a controlled amart, and an ordered potential. Set 7 = (2 4+ 1, k)
on [(k — 1)2=% k27, for 1 = k = 2%; 7 € T, (it is controlled by (¢, 1)), and
X, = 1.

We finally observe that in the present example the condition 17%(%) holds
(cf. Example 11.4 above). Thus V% is not sufficient for essential convergence
of Ll-bounded controlled amarts.

12. Complements and remarks. In this section we discuss, rather briefly,
some extensions of our results, in particular to directed sets filtering to the
left, to ¢-finite measure spaces, and to Banach-valued stochastic processes.

We at first observe that while we state in the paper the well-known Vitali
conditions as they appear in the literature, a stopping times formulation would
have been more compact. Thus e.g. the condition V' is equivalent with the
following: For each ¢ > 0 and for each adapted family of sets (4,), there
exists 7 € 1" such that P(elimsup 4,\4,) < e. Similarly W becomes: For
each adapted family of sets (4 ,) there exists a stopping time y taking countably
many values, such that P(elim sup A \4,) = 0. There are analogous short-
hand versions of 1" and W".

Going in the opposite direction, it is possible to define amarts without
stopping times. This was in fact done by Lamb [24], who also proved a result
essentially equivalent with the amart convergence theorem. The stopping
times approach initiated by J. Baxter [3], Austin-Edgar-Ionescu Tulcea [2],
and Chacon [6], is more intuitive and transparent, and an amart theory [12]
paralleling martingale theory could not have been developed without it.

A. The descending case. Let J be a directed set filtering to the right, and
write —J for J with the reversed ordering. Given a stochastic basis (% ;) jc_ s,
the sets (— 7, £), (—1', < | <) and (—T., <.) are filtering to the left. A
stochastic process (X, % ,, —J) is an amart (resp. an ordered amart) if the
net (E(X;)).c—r(resp. (E(X,));e—r) converges. A stochastic process is a
subpramart (resp. ordered subpramart) if slim sup, .c.r X (o, 7) = 0 (resp.
slim sup, ¢ 7 X (o, 7) < 0). Unlike in the case of J filtering to the right (cf.
Section 3) there seems to be no easy approximation of amarts by submartin-
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gales or supermartingales. Let (X ;) ,—, be an amart (resp. an ordered amart);
the net (X,),c—r (resp. (X:).c—r/) converges in L! norm. (For the case / = N
see [12], Theorem 2.3 and 2.9; for the case of amarts indexed by —J, see [1]
Proposition 4.1). We now show that asymptotic behavior of subpramarts is
similar to that in the ascending case.

TuEOREM 12.1. Let (X )y be a subpramart (resp. ordered subpramart).
Then the net (X.),e—r (resp. (X;)re—r) converges stochastically to a limit X ,
— 0 =X, < 4+ . Ifliminf E(X,7) < o orif (X,)is a pramart, then X ,
is finite a.s. If J = N, in the conclusion stochastic convergence can be replaced by
a.s. convergence.

Proof. Let (X,),c—; be a subpramart. We at first prove that (X,),e—r
converges stochastically in R. (The approach consisting in first proving con-
vergence in R was initiated-for ascending amarts-by Dvoretzky [11].) Since
stochastic convergence in R is defined by the distance of a complete metric
space, it is enough to show that given a fixed sequence (s,) in —/J, for every
decreasing sequence (r,) in — 7 such that (r,) £ (s,), X, converges stochas-
tically in R. Choose a decreasing sequence (s,) of indices in —J such that if
o,17€ —T,0 £ 7 £ s, then

PI{X, — EZ°X, > 1/n}] = 1/n.

Let (r,) be a decreasing sequence of elements of — 7" such that (r,) < (s,).
Let V_, = X,, and 9_, = % ,,. For every stopping time ¢ taking values in
—N, 7€ =T, and 9, = % ,_. Hence (V,, 9, —N) is a subpramart.
Assume that there exists « < @ such that P(4) = a > 0, where

A =liminf, y ¥V, <a < B <limsup,c_n V,}.

Observe that 4 is in the tail os-algebra MN_y%,. We choose M, < M, £ M in
— N such that P(A\B) < & where

B=A4N {infMZEW§M Yn <a<p< SUPwm, snsp, Y"}
Set C = AN {suleg,éM2 Y, > B}, and define stopping times ¢ = 7 = M by
o Jinf {n|My S n £ M, ¥V, > B8} on C

\ on C°,
_Jinf{n|My£n £ M, Y, <al onB
TS\ on B

Since ¥, — Y, =z (8 — 04)113 + 10\13(3 - YM)v

(

V, — E%Y, = (B —a)E% (1) + BE*(1c\s) — E?(1c\sY )
z (B—a)ly — (lof + |B|)Eg"(1A\B)
— [BlE?“(1cv5) — E% (leys| Yal).

Since for every positive random variable X and for every n > 0 we have
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P{E®%X = 3}) £ E(X)/n, the following inequalities hold:

P({(‘O‘| + |B|)Eg’(1A\B) =€) = 5('“] -+ |,3|)/e,
P({|BIE®*(1c\5) > €}) = 68|/

Furthermore, since |Y,| is integrable, we can choose § > 0 such that if
P(F) £38, then E(15|Yy|) £ & We can therefore choose § > 0 such that
the inequality

Ycr - Eg’YT g (6 - a)lA — 3e
holds outside of a set of probability less than 3e. Hence

shimsup, ;e_ravy Yo, 7) 2 (8 — a)ly,

which is a contradiction. We therefore deduce that (X,),c_r converges stochas-
tically in R.SetD = {slimX, = +w};D € N_, %, and we want to show
that P(D) = 0. Assume the contrary and let 0 < ¢ < P(D)/2. Choose ¢ such
that ¢ < ¢ implies P({X, — EZ°X, > ¢}) < e By the definition of D, we can
choose a decreasing sequence (t,) in —J such that ¢, ¢, and P({1,X,, <
(n + 1)15}) < e. Hence the inequality

P{EF»(1p,X,) £ n}) £ 2¢ + P(D°)
holds for each #n. Since

P(D) — 2¢ = P({EZ (10X ) > n}) = E(

Xll)/n»

we get a contradiction, and it follows that — o0 < X_ < . Furthermore,
if lim inf £(X,”) < o, Fatou's lemma together with the inequality — o <
slimsup X, < slimsup X, yields that X_ is finite. The same argument is
valid for ordered subpramarts. To obtain the conclusion that X, is a.s. finite
for (ordered) pramarts, observe that if (X,) is a pramart, then (X,) and
(—X,) are subpramarts. Finally, the proof also establishes a.s. convergence
in the case —J = —N.

We now state a result analogous to Theorems 5.1 and 7.4 with some condi-
tions omitted for simplicity. Also the proof is omitted.

THEOREM 12.2. Let (F ) c_, be a stochastic basis. The following wssertions
are equivalent:

(1) (&) satisfies the Vitali condition 1" (resp. 17').

(2) Gien any stochastic process (X ,)e—, such that the net (X,),c_p (resp.
(X ) re—p) converges stochastically, X , converges essentially.

(3) Ewvery subpramart (resp. ordered subpramart) such thatliminf E(X ;=) <0
converges essentially.

(4) Every amart (resp. ordered amart) (li,).c—s such that limP(4,) =0
converges essentially (to zero).

(5) Let Ybeany F _, = M e s F  measurable random variable. Assume that
for each w, Y(w) s a cluster point of the net (X ;(w)) c— . Then given any sequence
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(s¢) in —J, there exists a sequence (vi) mn — 7T (resp. —T"), such that v, = s,
and X ,, converges a.s. to Y.
(6) Identical to (5) except that ¥ = elim sup X ,.

B. o-finite measure spaces. Let (Q, % ,u) be a o-finite measure space. A
stochastic process (X ,) is an amart (respectively an ordered amart) if the net
(fXTdu),eT (respectively (fX,du)TETr) converges. One shows, as in the case
when w(Q) = 1 (see Sections 1, 6) that (X,) is an amart (respectively an
ordered amart) if and only if the net (flE,f’ (X,) — X,|dp)s<- (respectively the
net ([|E.s(X.) — X,|du)eci<r) converges to zero. (For the definition of the
conditional expectation with respect to a o-finite measure, see e.g. [26] page
16.) The following generalization of Theorem 2.1 in [1] and Theorem 6.2 in
[19] yields the Riesz decomposition of amarts (and ordered amarts).

Let £ be the class of all stochastic processes (X ;) taking values modulo u
and satisfying the condition (D):

(D) limg zer || Xo — EF2X-|| = 0

where || || is a complete norm defined on equivalence classes of random
variables, such that the operator E, preserves the convergence in this norm.
Then each stochastic process (X ;) in & can be writtenasasum X, = Y, + Z,,
where (V) is a martingale and lim, ||Z,]| = 0. A similar statement can be
obtained for the class &’ of stochastic processes satisfying the condition (D’):

limy..ep || X, — E,X,]| = 0.

C. Banach valued case. Let J be a directed set filtering to the right, and let
(%)) be a stochastic basis of the probability space (2, %, P). We denote by
& a fixed Banach space with norm | |. A random variable will be a strongly
measurable function X: @ — &, and a stochastic process will be a family
(X,) of # , measurable random variables. Unless specified otherwise, the
integral of a random variable X is defined in the Pettis sense, and we set
I X1 = supaes|E(14X)|. X is said Bochner integrable if E(|X|) < o, and a
stochastic process is L! bounded if sup, E(|X ) < o. The Banach space &
has the Radon-Nikodym property if for every probability space (2, %, P) and
every measure u: ¥ — & such that u is absolutely continuous with respect
to P and p has finite variation on {, there exists a Bochner integrable random
variable X: Q@ — & such that p(4) = E(1,X) for all 4 € . A stochastic
process (X ;) is an amart (respectively an ordered amart) if the net (E(X,)),er)
(respectively (E(X,)).er') converges in the strong topology of & .

The Pettis norm characterization of amarts by the difference property, and
the Riesz decomposition of amarts (proved in [13] in the case J = N, and in
[1] in the general case) extend to ordered amarts. The definitions of pramart,
ordered pramart and mil also extend, the norm in & replacing the absolute
value. We notice that the proof of Proposition 4.1 extends without any modifi-
cation to the case of the norm convergence in a Banach space &’. In the
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following theorem the adjective ‘‘strong’’ applies to the topology of the Banach
space.

THEOREM 12.3. The following statements are equivalent:

(1) The stochastic basis satisfies the Vitali condition V.

(2) For every Banach space &, and for every stochastic process (X ), the strong
stochastic convergence of (X.).cr implies the strong essential convergence of X .

(3) For every Banach space &, every pramart is a mil.

Also the conditions (1") and (2’) similar to the conditions (1) and (2) above
with 7" and 7" instead of 1" and T, are equivalent. This extends the equivalence
(1) < (3) in Theorem 7.4. It has been proved in [15] that every & -valued
amart (X,, % ,, N) is a mil if and only if & is finite-dimensional. Hence an
& -valued amart is a pramart if and only if & is finite dimensional.

The methods of the present paper allow the following generalization of
Chatterji's important theorem [8].

THEOREM 12.4. Let & be a Banach space with the Radon-Nikodym property,
and let (& ;) be a stochastic basis satisfying the Vitali condition V. Every L1
bounded martingale (X ,) converges essentially in the strong topology of & .

Proof. By the implication (1) = (2) in Theorem 12.3, we only need to
prove that there exists a random variable X, (necessarily Bochner integrable)
such that for every e > 0, the net (P({|X. — X,| > €})),er converges to 0.
Since the strong convergence in probability is defined by the distance of a
complete metric space, it suffices to prove that for every increasing sequence
(r,) in T, (X.,) strongly converges in probability. Since (X,,) is an L!-
bounded martingale for (% ,,), this follows from Chatterji’s Theorem [8].

D. Dichotomy of behavior of pramarts. We notice that Theorems 2.6 and 2.7
[12] extend with the same proof to classes % of stochastic processes (X,, % ,, N)
having the following properties:

(i) If lim E(X,*) < «©, (resp. lim E(X,”) < ©0), then X, converges
almost surely to X, — 0 = X, < 4+ «© (resp. — 0 < X_ =< + «0).

(ii) Given an element (X,, % ,) in €, and given an increasing sequence

(7¢) of simple stopping times for (%), the sequence (X,,, % .,,) belongs to % .

The class of pramarts satisfies (i), and the classes of pramarts, subpramarts
and superpramarts each satisfy (ii) (cf. Section 2).

THEOREM 12.5. Let € be a class of stochastic processes salisfying the properties
(i) and (ii) above, and let (X,) be a predictable element (i.e., X, is F ,_1 measur-
able for all n) in €. Then there exists a set G C Q such that X, converges a.s. on
G and limsup X, = + o, liminf X, = — o on G*.

THEOREM 12.6. Let % be a class of siochastic processes satisfying
(i) and (ii) above, and let (X,) be an element of €. Let (1) be an increasing
sequence of bounded stopping times with T, Z k, k € N. Suppose that

https://doi.org/10.4153/CJM-1980-009-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-009-1

124 ANNIE MILLET AND LOUIS SUCHESTON

Elsupi|X., — Xy_1]] < 0. Then there exists a set G C Q such that X, converges
a.ss. on G, and limsup X, = + o, liminf X, = — «© on G°.

E. Strong law of large numbers. Theorem 1.11 [19] extends to pramarts and
mils. More generally, let (X,) be an adapted sequence such that for some
constanta = 1, Z"{;IE X, — X .[?/t"t* < 0, and such that E"X,,; — X, —0
a.s.; then X,/n — 0 a.s. The proof is the same as in [19].

F. Semiamarts. Semiamarts are defined for J = N by the property
sup |EX.| < . The proper generalization to directed sets is: There exists
s € J such that sup,>;/EX,| < c0. An amart is a semiamart, and a consider-
able part of the semiamart theory on integers (cf. [12] Section 4, and [19])
extends to directed sets.

Added 1 proof. The condition 17 is now known not to be necessary for con-
vergence of L;-bounded martingales (cf. C. R. Acad. Sc. Paris, Série A, 288
(1979), 595-598). For the Banach-valued case, see also Can. J. Math. 31
(1979), 1033-1046.
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