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Abstract

During emerging disease outbreaks, public health, emergency management officials and deci-
sion-makers increasingly rely on epidemiological models to forecast outbreak progression and
determine the best response to health crisis needs. Outbreak response strategies derived from
such modelling may include pharmaceutical distribution, immunisation campaigns, social dis-
tancing, prophylactic pharmaceuticals, medical care, bed surge, security and other require-
ments. Infectious disease modelling estimates are unavoidably subject to multiple
interpretations, and full understanding of a model’s limitations may be lost when provided
from the disease modeller to public health practitioner to government policymaker. We review
epidemiological models created for diseases which are of greatest concern for public health
protection. Such diseases, whether transmitted from person-to-person (Ebola, influenza,
smallpox), via direct exposure (anthrax), or food and waterborne exposure (cholera, typhoid)
may cause severe illness and death in a large population. We examine disease-specific models
to determine best practices characterising infectious disease outbreaks and facilitating emer-
gency response and implementation of public health policy and disease control measures.

Introduction

Epidemiological modelling of disease outbreaks has become a crucial tool in public health
practice. Information to mitigate impending epidemics is often estimated by post-event mod-
elling from prior outbreaks. Comprehensive predictive models include components represent-
ing the ‘epidemiologic triad’ of disease agent, host and environment [1]. Critical model input
information may include the latent, incubation and infectious periods (the ‘natural history’ of
infection), disease surveillance data delineating infection distribution and spread, infection
transmission dynamics and medical countermeasures. Population demographics, geographic
networks and host movement information are also useful. Other factors not attributable to
either disease agent or host within an environment may be appropriate for model inclusion,
such as hygiene, cultural/religious practices, climate and reservoirs [2]. We review current epi-
demiological models for diseases which potentially affect large populations. These include
human-to-human disease transmission (Ebola, influenza, smallpox), via aerosol exposure
(anthrax), food and waterborne exposure (cholera, typhoid) and co-infections.

Ebola

The 2014–2016 West African Ebola virus disease (EVD) outbreak had greater geographic
spread, duration and magnitude than previous outbreaks [3], which permitted applications
from disease modelling for planning purposes [4]. It became evident that absent additional
control measures, the outbreak would dramatically increase [5]. As initial African EVD
cases emerged, endemic disease ‘background noise’ (e.g., cholera, Lassa fever, malaria)
impeded patient diagnosis, rendering early outbreak identification difficult [6]. Unlike previ-
ous outbreaks, the early patient diagnosis was strongly reliant upon patient isolation [7].
Community cultural practices increased disease spread, hindering mitigation measure effect-
iveness [8]. Information derived from direct medical care best practice [9], helped terminate
community transmission. Control measures for EVD eventually included effective measures
for contact tracing, case isolation and management, burial guidance, community involvement,
enforced sanitary measures [10], establishing field hospitals [11] and laboratories [12], increas-
ing medical supply dissemination [13], enforcement of border controls [14] and international
support [5].

Information was required early in the outbreak to determine optimal response. Disease
models were designed to predict spatiotemporal spread and magnitude and to estimate best
mitigation strategies to end the outbreak. A September 2014 Centers for Disease Control
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and Prevention (CDC) SEIR (susceptible, exposed, infectious,
recovered) model predicted the EVD outbreak would cease if
70% of patients received direct medical care [15]. An October
2014 World Health Organization (WHO) model [16] determined
that, in the absence of enhanced contact tracing, adequate case
isolation, increased clinical management, safe burials and greater
community and international engagement, Guinea, Liberia and
Sierra Leone would experience thousands more cases and deaths
weekly [5].

Ebola outbreak interventions were unequally effective, due to
implementation capacity, timing, compliance or extent of comple-
tion. Multiple interventions may have unforeseen synergistic effects.
Partial implementation of an intervention alsomay evince different –
or no – outbreak amelioration. Non-conventional humanitarian
interventions were implemented and included expanded access
(compassionate use protocols), novel drugs to treat infected patients
(http://www.fda.gov/NewsEvents/PublicHealthFocus/ExpandedAccess
CompassionateUse/default.htm) humanitarian military intervention
and the use of non-conventional sheltering and food aid resources
[17]. Healthcare workers were essential in controlling the EVD epi-
demic and suffered proportionately (898 cases, 518 deaths) [18–22].

Travel restrictions implemented during the outbreak became
controversial, with claims that West African travel bans were
unsupported by public health science [23] and non-compliant
with WHO International Health Regulations (IHR) [24]. Some
models indicated travel restrictions were insufficient to prevent
the global spread of Ebola, delaying it a few weeks at best
[25,26]. One model estimated that, during November 2014, with
existing flight restrictions and airport screening guidelines, an
average of 2.8 Ebola-infected air travellers per month departed
from Guinea, Liberia and Sierra Leone [27]. Later analyses deter-
mined that between 4% and 10% of newly-infected Ebola cases
migrated to another district within their country, and ⩽23% of
this group left their country. Due to underreporting, country
differences in cross-border transmission in West Africa was
undetermined [28].

Ebola model findings

Inherent to outbreak model development is that the most accurate
model to describe real-world events can be best developed after
the outbreak [29–31]. For example, in Sierra Leone, positive asso-
ciations were found between Ebola transmission and population
density, proximity to Ebola treatment centres, cropland coverage
and atmospheric temperature. Interventions which interrupted
household transmission were discovered to be particularly crucial
for EVD transmission cessation [32].

Modelling aided the public health response by analysing poten-
tial disease spread and directing interventions. Introduction of bur-
ial practices and climatology into agent-based SEIR modelling
assisted placement of Ebola treatment centres [33]. Optimal mod-
elling occurred with behavioural factor inclusion [31]. While social
and cultural disease determinants were integral to controlling this
Ebola outbreak, these factors may not always be considered for out-
break model inclusion but should be where feasible. A CDC SEIR
model encouraged increased contact tracing, and improved infec-
tion control, reducing new EVD cases [34]. Rapidly reporting
newly diagnosed cases and publicising best practices to healthcare
providers, health officials and disease modellers enabled contact
tracing, calculating transmission dynamics and enhanced disease
spread forecasting. Other than known disproportionate healthcare
worker disease burden, the level of medical care provided

throughout this outbreak cannot be determined to fully support
the 2014 CDC model’s findings.

When estimating outbreak occurrence in the early stages of dis-
ease emergence in a large population, a simpler SEIRmodel may be
best applied [35]. Initial stochastic disease models described trans-
mission dynamics, determined origin and spread, and projected
the reproduction number (R0) to inform disease control [5,15].
Early EVD models identified disease dynamics comparable with
previous outbreaks [5], and postulated rapid spread due to the
populations affected and inadequate control measures. As control
measures increased, earlier predictions became irrelevant [36].
Because some models overestimated outbreak growth or underes-
timated Ebola treatment unit admissions, predicting an earlier
peak than had occurred [37], the practicality of disease models
was questioned [38]. Later in this outbreak, more detailed mechan-
istic models included depletion of susceptibles, and specific trans-
mission routes and settings, to help fine-tune public health
interventions [39]. These models should be run weekly based on
real-time data for best-result forecasting. Travel and border health
measures might have prevented EBV spread in West Africa
through travel deterrence of symptomatic or exposed individuals
and educating travellers about self-protection [40].

Malaria co-infections: influences on outbreak intervention
and an Ebola modelling confounder

In tropical countries, malaria and typhoid are endemic leading
public health concerns. False diagnoses due to similar signs and
symptoms and false positive test results are major disease man-
agement challenges. Modified SEIR models [including carriers
(C)] describe co-infection dynamics of malaria and typhoid
[41]. A decision tree model analysed a year’s preventive malaria
treatment costs for patient contacts with EVD in West Africa.
Cost per treatment unit admission averted and contact age was
calculated. Sensitivity analyses assessed how results varied with
malaria parasite prevalence, the daily cost of treatment stay and
preventive malaria treatment compliance and effectiveness [42].

Malaria co-infection model findings

An efficient simultaneous prevention programme will reduce
co-infections such that R0 <1, thereby eradicating the disease.
Both malaria and typhoid must be simultaneously managed for
successful control of co-epidemics [41]. Preventive malaria treat-
ment for contacts of EVD patients was cost-saving. The model
indicated that providing preventive malaria treatment to contacts
of EVD patients should be considered during EVD outbreaks
where high levels of malaria transmission occur, to reduce non-
critical healthcare admissions [42].

Influenza

Influenza is a major public health threat. Beyond seasonal impact,
the probability of an influenza pandemic remains among the
greatest biological threats to humans. Influenza pandemics
could occur by novel virus introduction from reservoir species,
coupled with the sustained human-to-human transmission in a
susceptible population [43]. During influenza outbreaks, second-
ary bacterial infections are a leading cause of illness and death
[44]. There appears to be lethal synergism between influenza
and certain bacteria [45], including Streptococcus pneumoniae
[46] and Group A Streptococcus infection [47].
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An age- and risk-stratified stochastic SEIR model with Markov
Chain Monte Carlo (MCMC) analysis including vaccination data
reproduced influenza effects over 14 seasons in the UK. When
comparing existing reduction in infections and deaths to no vac-
cination, vaccination prevented 0.39 infections per vaccine dose
and 1.74 deaths per 1000 doses. Targeting 5–16-year-old children
increases immunisation effectiveness among influenza transmit-
ters, and increases immunisation efficiency, resulting in overall
reduction of 0.70 infections per dose and 1.95 deaths per 1000
doses [48].

Extensive travel restrictions may delay, not prevent, novel influ-
enza virus spread. One review found internal travel and international
border restrictions delayed influenza epidemic transmission by 1
week and 2 months, respectively [49]. International travel restric-
tions delayed the epidemic spread and peak between a few days
and 4 months. Travel restrictions can reduce the incidence of new
cases by <3%. Travel restriction effectiveness was reduced when
implemented >6 weeks after epidemic notification, or with high
transmissibility levels. Travel restrictions minimally affect cities
with dense populations and travel networks and did not contain
influenza within a defined geographical area [49].

As individuals increasingly describe their illness on social media
before seeking medical care, Web-based data sources are used for
public health surveillance. A 2016 study collected publicly avail-
able, de-identified data from the CDC, Google Flu Trends,
HealthTweets and Wikipedia for the previous three influenza sea-
sons. Bayesian change point analysis with MCMC detected sea-
sonal changes in each data source. Among Web-based sources,
Google had the best sensitivity and PPV (positive predictive
value) in detecting a change in influenza-related data. While
change points [50] in Google, Twitter and Wikipedia data occa-
sionally aligned well with those captured in CDC influenza-like ill-
ness (ILI) data, they did not detect all changes in CDC data [51].

Influenza model findings

Modelling affirmed that targeting children and older adults are
the most efficient vaccine use to reduce overall influenza morbid-
ity and mortality [48]. Travel restrictions have limited specificity
for influenza containment during novel virus emergence [49].
While social media data mining demonstrates alignment with
CDC ILI data, the CDC data are more comprehensive. Accurate
influenza modelling to predict synergistic effects between viral
secondary bacterial infections in a susceptible population has
yet to be accomplished [52].

Smallpox

As smallpox was declared eradicated in 1980 [53], smallpox trans-
mission through deliberate virus release should be considered,
along with the potential for accidental exposure to unrecognised
live virus, as the discovery of unknown viable smallpox virus
stored at the US National Institutes of Health (NIH) demon-
strated [54]. Contact tracing and case isolation are among initial
interventions for a smallpox event. As their effectiveness in a vac-
cinated population is unknown, evaluation with a multi-type sto-
chastic model (an SIR model with some vaccinated designated
fully immune) may assess partially vaccinated populations [55].

The 1967 Abakaliki, Nigeria, smallpox outbreak afforded well-
documented data for epidemic modelling. When this outbreak
occurred, ∼89% of the population was vaccinated. A religious
group had refused vaccination, and one smallpox case initiated

an outbreak that infected 30 people [56]. An SEIR model variant
(susceptible, exposed, with fever, with rash, quarantined or
removed) was used to model this outbreak, with Bayesian analysis
with MCMC [57]. It suggested the outbreak resulted from popula-
tion interactions, and that control measures themselves did not end
the epidemic. Control measures (case isolation upon detection)
introduced during the outbreak reduced the rash period from 16
to 2 days, abating new infections. As with other natural smallpox
outbreaks [58], this outbreak ended when susceptible individuals
in prolonged and intimate contact with cases became exhausted.

An SEIR-like CDC model estimated smallpox spread following
deliberate virus release [59]. Using MCMC, the analysis assumed
100 persons initially infected, each infecting three others. This
model estimated combined vaccination and quarantine combined
could stop an outbreak with a daily 25% quarantine rate, and suf-
ficient vaccination to reduce smallpox transmission by >33%.
Though quarantine itself could halt smallpox transmission, its
success requires 50% of symptomatic cases be removed daily.
Vaccination alone could reduce population susceptibility, and
halt the outbreak within 365 days, after 4200 cases. Historical
data provides a median of 2155 smallpox vaccine doses per case
will terminate outbreaks.

Smallpox model findings

Unsurprisingly, modelling demonstrates past vaccination signifi-
cantly influences outcomes, as does case movement identification.
Intervention delays greatly increase total cases. Further recom-
mendations from modelling include assessing delays in case
detection and frequency of case contacts among unvaccinated
and previously vaccinated populations [54]. Post-release interven-
tion should combine quarantine and vaccination. A ∼40 million
dose vaccine stockpile should halt a smallpox outbreak in the
USA [59].

Anthrax

The spores of Bacillus anthracis, the causative organism of
anthrax disease, can be used as a weapon through aerosol dissem-
ination. Such an aerosol release is often modelled using the
Hazard Prediction and Assessment Capability (HPAC) or similar
programme [60]. An MCMC algorithm to simulate anthrax
release demonstrated that early targeted prophylactic treatment
minimised overall mortality, based on estimates from the initial
five cases [61]. A CDC model combines inhalational anthrax case-
load, effects of variable post-exposure prophylaxis (PEP), and
healthcare facility surge capacity to project hospitalisations and
casualties. This model confirmed the value of PEP initiation, pre-
dicting that deaths peak 5 days post-exposure, hospital treatment
volume will peak 15 days post-exposure and recovery peaks 23
days post-exposure [62].

Anthrax model findings

Modelling illustrated the possibility of early estimates derived
from initial anthrax cases to characterise location and geographic
spread of an outbreak [60]. Delays in detection and response to a
large-scale anthrax aerosol release in a large city nullify a mass
prophylaxis campaign to prevent a surge in hospitalisations
[63]. The CDC model’s publicly-available software (Anthrax
Assist) enables health officials to examine predictive scale and
consequences of alternative responses to an anthrax event, and
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uses disease surveillance data, allowing available data input. It
demonstrates realistic benefits of public health countermeasures
and inherent value of PEP [61].

Cholera

Cholera, a bacterial disease caused by Vibrio cholerae, causes
severe diarrhoea and subsequent dehydration. It is preventable
with clean drinking water access and vaccination. Interventions
and treatments include water sanitation, antibiotics, oral rehydra-
tion therapy and supportive care. Cholera is endemic in some
countries and imported in others. In October 2010, imported
cholera caused the first modern outbreak in Haiti. Cholera out-
breaks have recently occurred in Afghanistan, Bangladesh,
Dominican Republic, Democratic Republic of Congo, Iraq,
Kenya, Malawi, Mozambique, Nigeria, Somalia, South Sudan,
Tanzania, Yemen and Zimbabwe [64–66].

A cholera SEIR model can include data for potential interven-
tions, population demographics, surveillance data, timescale eva-
luations [67], and Vibrio characteristics, including dose and
viability [68]. Cholera modelling parameters may differentiate sea-
sonal endemic cholera outbreaks from epidemics exacerbated by
natural or man-made disasters. An outbreak model for a
non-endemic region’s population could include minimal popula-
tion immunity, a high attack rate, similar attack rates among age
groups and high symptomatic groups. Some models approximate
drinking water bacterial concentration [69]. A comprehensive
extended compartmental model for Haitian cholera transmission
specified rapid human-to-human transmission and slower
human-to-environment and environment-to-human transmission
[68] while incorporating cholera incidence and remote sensing
data. Notably, the environmental compartment source of V. cho-
lerae exposure was modelled separately, and incorporated environ-
mental considerations of bacterial pathogenesis. Unsurprisingly,
this model indicated that cholera outbreaks will likely continue.
The uncertainties inherent in cholera modelling are such that errors
in a single parameter can eliminate model predictive value [66].

Limited vaccine models were used to assess strategies for chol-
era outbreak control in Haiti [70]. Targeting 1 000 000 doses of
vaccine (enough for two doses for 5% of the population) could
reduce total cases by 11%. Vaccine available for 30% of the popu-
lation, coupled with hygienic improvements, could reduce cases
by 55% [66]. A static cholera model was used to estimate the
potential number of cholera cases averted through improvements
in water, sanitation and hygiene (WASH), oral cholera vaccine
(OCV), or both. Cholera incidence over 20 years was estimated
using Malawian data [71]. Over the next two decades, scalable
WASH interventions could avert 57 949–78 567 cholera cases,
OCV could avert 38 569–77 636 cases and combined WASH
and OCV interventions could avert 71 586–88 974 cases [72].

Recently, immunisation against cholera has improved. While
studies have evaluated two-dose regimens (i.e., Dukoral and
Shanchol) for cholera vaccination [73], a single-dose [74] licensed
cholera vaccine (Vaxchora) [75] now exists [76,77]. A consider-
ation for Vaxchora, which warrants model forecasts, may be its
prohibitive cost [78] for resource-poor nations, compared with
two-dose vaccines [72]. Further, studies estimating cholera vac-
cination cost-effectiveness may neglect disease transmission pre-
dictions [79,80]. During large, prolonged outbreaks,
transmission dynamics among most susceptible populations are
crucial for modelling and enable a better estimate of interven-
tions, including vaccination [81].

Cholera model findings

Modelling cholera transmission provides cost–benefit evaluation
for potential interventions [82,83]. Cholera models should
include contaminated water ingestion. Modelling cholera infec-
tions is difficult due to relationships between human hosts and
environmental components, requiring a combined human–envir-
onment epidemiological model [84]. In a country with an
increased susceptible population, the presence of V. cholerae in
the environment, and absence of drinking water, sanitation and
infrastructure improvement, cholera will likely continue.
Vaccine distribution in high-risk areas is maximally efficient.
Multiple modelling efforts have predicted that increased hygienic
improvements, coupled with a limited vaccination campaign, may
have synergistic cholera reduction effect. Sensitivity analyses of
cholera models may help refine model prediction.

Typhoid

Multi-year epidemics of Salmonella enterica serovar Typhi have
recently been reported from eastern and southern African
nations, and a large outbreak occurred in Malawi in 2014 [85].
This increase in typhoid cases may be linked to the emergence
of the H58 haplotype, which often exhibits multiple drug resist-
ance (MDR). An SIR model fitted to culture-confirmed
Salmonella typhi infections at a Malawian hospital showed an
increase in typhoid transmissibility due to the emergence of
drug resistance associated with the H58 haplotype may help to
explain the typhoid outbreaks [86]. The model included compart-
ments for carriers and environmental reservoir, to account for
regional transmission dynamics.

Typhoid model findings

Modelling supported the hypothesis that Malawian outbreaks
were caused by the emergence of multiple drug resistance and
recent African introduction of the H58 haplotype [85], rather
than urbanisation [87], overcrowding [88] or changing immuno-
logical susceptibility [89].

Discussion

Current disease models optimally build upon previous work,
allowing a greater understanding and inclusion of significant fac-
tors affecting disease transmission. Existing efforts differ for each
disease. Bernoulli’s model of smallpox transmission was pub-
lished in 1766 [90], while comprehensive cholera outbreak models
are recent developments [91]. Initial models constructed during
the EVD outbreak included values derived from earlier outbreaks
[15]. Co-infection models build upon knowledge from separate
modelling for each disease [41].

During the evolving EVD epidemic, it was difficult for model-
lers to rapidly determine effective outbreak cessation measures.
While epidemiologic models have demonstrated utility in post-
intervention evaluation [92], the inability to control the EVD epi-
demic brought an immediacy for disease modelling to provide
solutions. Partially because of the extended nature of the out-
break, and subsequent direct discovery of sustainable successful
interventions, modelling could provide vetting of proposed inter-
ventions prior to implementation. Timely modelling informed
specific EVD outbreak intervention through confirming effective
intervention with increased patient management capacity,

1210 Z. F. Dembek et al.

https://doi.org/10.1017/S095026881800119X Published online by Cambridge University Press

https://doi.org/10.1017/S095026881800119X


surveillance and contact tracing [93]. During this epidemic,
behavioural patterns in affected areas were difficult to assess.
One solution was the inclusion of stochastic agent-based model-
ling, incorporating behavioural, demographic and movement
interactions in a synthetic population with notional households,
distributed according to census data. This was used by US govern-
ment modellers to provide assessments to policy makers and
others [33]. Once initiated and sustained, behavioural change sig-
nificantly impacted disease spread [94].

In future large-scale epidemics, public health authorities may
not have the liberty of extensive time from outbreak initiation
and spread to implement model-based interventions. Predictive
models are reliable as the parameters used for their construction,
and essential information may be lacking early in an outbreak.
Model development for subsequent intervention proposals during

a novel rapidly occurring future pandemic [95] is especially chal-
lenging, in the absence of historic outbreak data. Further, decision
makers may value uncomplicated models which can be more
readily modified upon request and easier to understand. This is
particularly relevant as the primary purpose of disease modelling
has been to inform the decision-making process.

The contemporary outbreak models are assessed in Table 1
regarding disease transmission, data sources used for the model,
and benefit and lessons learned from modelling, with future
model optimisation goals described. Further suggested model
improvements based upon this review include:

• In a post-EVD outbreak and influenza pandemic world, models
should include potential local, regional and global health
resource infrastructure effects [96,97].

Table 1. Contemporary outbreak modelling characteristics

Disease
modelled Disease transmission

Data sources used
for model Benefit of modelling Lessons learned

Optimisation goals for future
models

Ebola • Person-to-person • Real-time during
outbreak (March
2014–March 2016)

• Retrospective

A persistent outbreak
allowed for model
fine-tuning in real time

• Early models created
with incomplete
assumptions.

• Model incorporation of
social and cultural
disease determinants
informed outbreak
response

Incorporate known disease
and healthcare data into a
comprehensive predictive
model

Malaria
co-Infections
(EVD
confounder)

• Vector-borne
• Person-to-person

Data obtained during
West Africa Ebola
outbreak (2014–
2016)

Modelling
demonstrates
treatment of
co-infection permits
improved EVD response

Co-infections may be
reduced by efforts guided
by targeted predictive
modelling

Apply probable co-infection
modelling for other
outbreaks

Influenza • Person-to-person • Annual influenza
outbreak.

• Pandemic years
(1918, 2009)

Continuous monitoring
of influenza
transmission allows for
real-time modelling

Influenza models useful
for pandemic predictions

Incorporate influenza and
bacterial co-infections into
model

Smallpox • Aerosol
• Person-to-person
• Laboratory accidenta

• Historical data
• 1967 Nigeria
outbreak

Disease eradication
ensures modelling will
remain top priority for
outbreak control

Vaccination and
quarantine limits, and
synergistic effects
estimates derived by
modelling

Model disease agent release
scenarios with infected
individuals at multiple
locations

Anthrax • Aerosol
• Ingestion
• Direct contact through
handling infected animals,
meat

• 1979 Sverdlovsk
data, primary
source for
extrapolated
exposureb

Mass exposure
prophylaxis plans have
been developed from
modelling

Information obtained
from initial anthrax cases
can be used in modelling
to help shape response

Refine models to optimally
respond to natural
outbreaks

Cholera • Environment-to-person
• Person-to-person

Outbreaks modelled
from Haitian and
Malawian data

Cholera modelling can
be used to provide
cost–benefit of large
outbreak interventions

Modelling innovative
approaches such as
one-dose of a less costly
two-dose vaccine can
provide effective
guidance

Cholera remains a global
scourge of low resource
nations. Sensitivity analysis
should be used to modify
model prediction

Typhoid • Person-to-person
• Food and water
transmission

2014 Malawian
outbreak data

Modelling helped
demonstrate effects of
MDR and genomic
changes in Malawian
typhoid

Inclusion of typhoid
carriers and
environmental reservoir
refined the model

Continuing model
refinement to model
additional geographic
typhoid locales

aAlthough all of the diseases listed may be contracted in a laboratory accident, the 2014 discovery of viable smallpox stored unrecorded for over 60 years in an unauthorised repository
laboratory demonstrates this possibility.
bMeselson et al.[115]
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• Include social, geographic, behavioural and cultural disease
determinants as appropriate.

• Evaluate the effect of co-infections on endemic diseaseswhenmod-
elling a susceptible population. Widespread co-infections poten-
tially impact interventions in resource-poor nations [98–100].

• Re-examine existing disease models when new therapies and
interventions have been developed.

• Consider model design for scenarios other than anticipated and
previously modelled. One example is to model natural anthrax
transmission in an endemic area [101], as most anthrax models
consider deliberate epidemics [63,102].

• As available and practicable, include relevant disease agent gen-
omic input, which may inform models with more precise
pathogenicity estimation [103,104].

• Modelling should allow for scenarios where at least initial inter-
ventions become partially or wholly ineffective, i.e. ‘good’, ‘bad,
and ‘ugly’ estimates. Potential causes may include decreased
global antibiotic effectiveness [105], diminished public health
[106] or financial resources [107] and others.

As demonstrated during the EBV epidemic, it is exceedingly dif-
ficult for modelling to rapidly determine effective outbreak cessa-
tion measures. There are multiple inherent inaccuracies in data
assessments used in disease modelling. Particularly in the early
stages of an epidemic, imperfect knowledge as to which parameters
are most useful for inclusion may facilitate imperfect model results
[108]. In this regard, optimal disease models are best constructed
upon conclusion of an epidemic. Useful prerequisites for model-
ling accuracy include:

• Access to best available disease surveillance data, necessarily
dependent upon sensitivity and specificity of the diagnostic
test used, data collection methods, and assessment of underre-
porting [2].

• Interactions between risk factors (synergy) may increase disease
probability and should be incorporated into a model when
known. Conversely, interventions may also have synergistic
effects.

• Climate and temperature effect vector transmission [109].
• Appreciate that certain behaviours are powerful risk factors for
disease transmission [110].

• Knowledge of intrinsic characteristics, including herd suscepti-
bility and population immunity.

• Knowledge that model assumption of early exponential growth
can overestimate epidemic size when early disease transmission
is slowed [111].

• Knowledge that highly detailed data input required for a com-
plex model may not necessarily generate more accurate predict-
ive results than a simplified model [112].

• A simplified model is not simplistic; this design may be used to
model more inclusive and comprehensive concepts [113].

• Understand that frequent model validation is required [114].

Conclusion

Predictive disease models constructed for past and ongoing epi-
demics have demonstrated value formulating the public health
response. Disease models permit effects estimation for various
transmission modalities, interactions between populations, and
mitigating applications of antimicrobials, vaccines and other public
health measures. Public health intervention planning models for

some diseases should be regularly examined in consideration of cur-
rently available pharmaceutical and non-pharmaceutical interven-
tions. Diseases considered for modelling as deliberate releases
should be more extensively modelled as natural outbreaks.
Increasing demands will likely be made that future modelling for
emerging diseases provide more rapid results and greater utility to
achieve a successful outbreak response.
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